JPS63117104A - Moisture separating device for steam turbine - Google Patents

Moisture separating device for steam turbine

Info

Publication number
JPS63117104A
JPS63117104A JP26178486A JP26178486A JPS63117104A JP S63117104 A JPS63117104 A JP S63117104A JP 26178486 A JP26178486 A JP 26178486A JP 26178486 A JP26178486 A JP 26178486A JP S63117104 A JPS63117104 A JP S63117104A
Authority
JP
Japan
Prior art keywords
drain
steam
suction slit
groove
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26178486A
Other languages
Japanese (ja)
Inventor
Tadashi Tanuma
唯士 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26178486A priority Critical patent/JPS63117104A/en
Publication of JPS63117104A publication Critical patent/JPS63117104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at improvement in the drain trapping rate of the device in the caption by forming a groove, which has greater width than that of a suction slit, at the surface side end portion of the suction slit provided on the surface of a stationary blade. CONSTITUTION:On the surface of a stationary blade 2, a section slit 6 is provided to be intercommunicated with the low-pressure side of a condenser and the like through a cavity 7. At the surface side end portion of the suction slit 6, there is formed a through-groove 5, which has greater width than that of the suction slit 6 and runs in the same direction as the suction slit 6 does. Drain in a steam passage is trapped into the groove with greater width, thereby the drain trapping rate being enhanced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、蒸気タービンの湿分分離装置に係り、とりわ
け効率よくドレンを放出できがっ蒸気流路  −内から
の蒸気の流出を防止することができる蒸気タービンの湿
分分離装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a moisture separator for a steam turbine, and particularly to a moisture separator for a steam turbine, which is capable of efficiently discharging condensate from a steam flow path. The present invention relates to a moisture separator for a steam turbine that can prevent the outflow of water.

(従来の技術) 原子力タービンや地熱タービンの大部分の段落や火力タ
ービンの低圧部では、作動流体である蒸気の一部分が凝
縮してドレンとなり、蒸気流路の内周壁、外周壁および
動翼の表面を流れる。一般にはこの内周壁は静翼内輪表
面より構成され、外周壁はケーシング壁より構成されて
おり、これら内周壁等の表面を流れるドレンは下流にあ
る動翼を浸蝕したり、段落の効率を低下させる原因とな
っている。
(Prior art) In most stages of nuclear power turbines and geothermal turbines, and in the low-pressure section of thermal power turbines, a portion of steam, which is the working fluid, condenses and becomes drain, draining the inner and outer walls of the steam flow path and the rotor blades. flowing over the surface. Generally, this inner circumferential wall is made up of the inner ring surface of the stator vane, and the outer circumferential wall is made up of the casing wall, and the drain flowing on the surfaces of these inner circumferential walls etc. corrodes the downstream rotor blades and reduces the efficiency of the stage. It is the cause of this.

そこで、このようなドレンを蒸気主流から分離して除去
するために、従来から第5図および第6図に示すような
湿分分離装置が提案されている。
Therefore, in order to separate and remove such condensate from the main stream of steam, a moisture separator as shown in FIGS. 5 and 6 has been proposed.

第5図において、蒸気流路13の外周壁1と流路内周壁
を構成する静翼内輪11との間には静翼2が溶接や鋳込
み等によって接合固定されている。
In FIG. 5, stator blades 2 are fixedly joined by welding, casting, etc. between the outer circumferential wall 1 of the steam flow path 13 and the stator blade inner ring 11 constituting the inner circumferential wall of the flow path.

また、ロータ3には動翼4が取付けられている。Further, rotor 3 is attached with rotor blades 4 .

最終段動翼より上流でかつ蒸気の一部が凝縮している段
落には、ドレンが特に集中する外周壁1や静翼2の外側
近傍の表面に、吸込スリット20゜21が開口している
。第6図は第5図のVl−VT断面図であり、静翼の吸
込スリット21が、静翼2内部に形成された静翼空洞7
に連通している。外周壁の吸込スリット20は直接に外
周壁空洞8aと連通し一方静翼の吸込スリット21は静
翼空洞7を経て外周壁空洞8bに連通している。なお、
この外周壁空洞8a、8bはいずれも外周壁1内に形成
されている。
In the stage upstream from the final stage rotor blade and where a part of the steam is condensed, suction slits 20 and 21 are opened on the surface near the outer peripheral wall 1 and the outside of the stationary blade 2, where drain is particularly concentrated. . FIG. 6 is a cross-sectional view taken along the line Vl-VT in FIG.
is connected to. The suction slit 20 in the outer circumferential wall communicates directly with the outer circumferential wall cavity 8a, while the suction slit 21 in the stator vane communicates via the stator vane cavity 7 with the outer circumferential wall cavity 8b. In addition,
Both of the outer circumferential wall cavities 8a and 8b are formed within the outer circumferential wall 1.

また、外周壁空洞ga、3bはドレン排出口12a、1
2bによって復水器(図示せず)等のより低圧な場所と
連通しており、このため外周壁空洞8a、8bは流路内
部より低圧となる。従って吸込スリット20.21を横
切ろうとするドレンは吸込スリット20.21によって
吸込まれ、さらにドレン排出口12a、12bを通じて
外部に排出される。
In addition, the outer peripheral wall cavities ga and 3b have drain outlets 12a and 1
2b communicates with a lower pressure location such as a condenser (not shown), so that the outer peripheral wall cavities 8a, 8b are at a lower pressure than the inside of the flow path. Therefore, the drain attempting to cross the suction slit 20.21 is sucked in by the suction slit 20.21 and is further discharged to the outside through the drain outlets 12a, 12b.

(発明が解決しようとする問題点) 上記のように提案された湿分分離装置は既に実際に蒸気
タービン低圧段落で採用されており、経験上動翼先端の
浸蝕防止にはある程度有効である。
(Problems to be Solved by the Invention) The moisture separator proposed above has already been actually employed in the low-pressure stage of a steam turbine, and experience shows that it is effective to some extent in preventing erosion of the rotor blade tips.

しかし、最終段に例えば26インチ以上の長翼を採用し
た場合やロータの回転数が高い場合、さらに蒸気の湿り
度が大きい場合の浸蝕防止に対しては不十分であり、ま
た上記提案された湿分分離装置は段落効率の改善には十
分な効果が得られないという問題がある。
However, it is insufficient to prevent corrosion when the final stage uses long blades of 26 inches or more, when the rotor speed is high, or when the humidity of the steam is high. The problem with moisture separators is that they are not sufficiently effective in improving stage efficiency.

このような従来の湿分分離装置の問題点を明らかにする
ためにモデルタービンを用いて実験を行なったところ次
のようなことが判明した。
In order to clarify the problems with such conventional moisture separators, experiments were conducted using a model turbine, and the following findings were made.

すなわち、外周壁1や静翼2表面外側近傍には蒸気の湿
り度大の時に予想通りドレンの流れが存在するが、それ
らは膜状であるよりも筋状に流れることが多く、ドレン
の筋状の流れと交差する部分以外の吸込スリット20.
21の開口部は常に主流蒸気を吸込んでしまう。こうし
て吸込まれた蒸気はドレン排出口12a、12b等で冷
却されて凝縮するので、見かけ上のドレン除去量は多い
が、有効な仕事をする蒸気までも流出してしまうという
結果になっていた。
In other words, condensate flows near the outer peripheral wall 1 and the outer surface of the stationary blade 2 as expected when the steam is highly humid, but they often flow in streaks rather than in a film. The suction slit 20.
The opening 21 always sucks in mainstream steam. The steam sucked in in this way is cooled and condensed at the drain outlets 12a, 12b, etc., so although the apparent amount of drain removed is large, the result is that even the steam that does effective work flows out.

このような場合、蒸気の流出を防止するため、吸込スリ
ット20.21の幅を小さくすることも考えられる。し
かし吸込スリット20.21の幅を小さくすると、筋状
のドレン流の厚みは大きいのでドレン流の大半が吸込ス
リット20.21を通り越してしまう。
In such a case, it may be considered to reduce the width of the suction slits 20, 21 in order to prevent steam from flowing out. However, if the width of the suction slit 20.21 is made small, the thickness of the striped drain flow is large, so that most of the drain flow passes through the suction slit 20.21.

本発明はこのような点を考慮してなされたものであり、
効率よくドレンを蒸気から分離して放出することができ
、しかも蒸気の流出を防止することができる蒸気タービ
ンの湿分分離装置を提供することを目的とする。
The present invention has been made in consideration of these points,
It is an object of the present invention to provide a moisture separator for a steam turbine that can efficiently separate and discharge condensate from steam and prevent the steam from flowing out.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、蒸気流路の内周壁面、蒸気流路の外周壁面ま
たは静翼表面のうち、少なくとも1つの表面に復水器等
の低圧側と連通する吸込スリットを設けて蒸気流路内の
ドレンを吸込み、蒸気とドレンを分離する蒸気タービン
の湿分分離装置であって、前記吸込スリットの表面側端
部に吸込スリット幅より大きな幅を有しかつ吸込スリッ
トと同一方向に連続する溝を形成し、この溝内にドレン
を貯えるように構成したことを特徴としている。
(Means for Solving the Problems) The present invention provides at least one surface of the inner peripheral wall surface of the steam flow path, the outer peripheral wall surface of the steam flow path, or the stator vane surface, which communicates with a low pressure side of a condenser or the like. A moisture separator for a steam turbine that includes a suction slit to suck in condensate in a steam flow path and separate the steam from the condensate, the suction slit having a width larger than the suction slit width at a surface side end thereof, and It is characterized in that a groove is formed that continues in the same direction as the suction slit, and the drain is stored in this groove.

(作 用) 蒸気流路内のドレンは、吸込スリットより大きな幅を有
する溝内に捕獲され、この溝内に貯留されるので、ドレ
ンを捕獲する率を従来の装置より高めることができる。
(Function) Since the drain in the steam flow path is captured in the groove having a width larger than the suction slit and stored in this groove, the rate of capturing the drain can be increased compared to the conventional device.

また、溝内に貯留されたドレンは吸込スリットの開口部
を覆うので、流路内の蒸気が吸込スリットから外部へ放
出してしまうことはない。
Moreover, since the drain stored in the groove covers the opening of the suction slit, the steam in the flow path will not be released from the suction slit to the outside.

(実施例) 次に本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図乃至第3図は本発明による蒸気タービンの湿分分
離装置の一実施例を示す図である。なお、従来装置と同
一部材には同一符号を付して詳細な説明を省略する。
1 to 3 are diagrams showing an embodiment of a moisture separator for a steam turbine according to the present invention. Note that the same members as those in the conventional device are given the same reference numerals and detailed explanations will be omitted.

第1図に示すように、蒸気流路13の外周壁1には円周
方向に連続する外周壁ドレン捕獲用の溝9が設けられて
いる。さらにこの溝9底部の蒸気流に対する下流側には
、溝9より幅の狭い外周壁の吸込スリット10が、溝9
と同じ方向に連続して設けられ、外周壁1内に形成され
た外周壁空洞8aとドレン捕獲用の溝9とを連通させて
いる。
As shown in FIG. 1, the outer circumferential wall 1 of the steam flow path 13 is provided with a circumferentially continuous groove 9 for capturing outer circumferential wall drain. Further, on the downstream side of the bottom of the groove 9 with respect to the steam flow, a suction slit 10 in the outer circumferential wall narrower than the groove 9 is provided.
The grooves 8 and 9 are continuously provided in the same direction as the grooves 1 and 2, and communicate the outer circumferential wall cavity 8a formed in the outer circumferential wall 1 with the drain capturing groove 9.

外周壁空洞8aには、外周壁空洞8aより圧力の低い復
水器(図示せず)等へ通じるドレン排出ロー2aが設け
られている。
The outer circumferential wall cavity 8a is provided with a drain discharge row 2a that communicates with a condenser (not shown) or the like having a lower pressure than the outer circumferential wall cavity 8a.

一方静翼2の表面には、第2図に示すように半径方向(
長手方向)に蒸気の流れF 方向と直交する連続する静
翼ドレン捕獲の溝5が設けである。
On the other hand, the surface of the stator blade 2 is coated in the radial direction (
A continuous stator blade drain capture groove 5 is provided in the longitudinal direction) perpendicular to the steam flow direction F.

この満5底部の蒸気流F に対する下流側には溝5より
幅の狭い静翼の吸込スリット6が溝5と同じ方向に連続
して設けられ、静翼2の内部に形成された静翼空洞7と
ドレン捕獲用の満5を連通させている。
A stator blade suction slit 6 narrower than the groove 5 is provided continuously in the same direction as the groove 5 on the downstream side of the steam flow F at the bottom of the full 5, and a stator blade cavity formed inside the stator blade 2 is provided. 7 and 5 for drain capture are connected.

静翼空洞7は外周壁1内に形成された外周壁空洞8bに
通じており、外周壁空洞8bには外周壁空洞8bより圧
力の低い復水器(図示せず)等へ通じるドレン排出ロー
2bが設けられている。
The stator vane cavity 7 communicates with an outer circumferential wall cavity 8b formed in the outer circumferential wall 1, and the outer circumferential wall cavity 8b has a drain discharge row that communicates with a condenser (not shown) or the like having a lower pressure than the outer circumferential wall cavity 8b. 2b is provided.

なお、上述した溝5,9は、それぞれの溝に形成された
吸込スリブ)6.10に比べて十分な深さを有しており
、また吸込スリット6.10の深さは必要最小限の深さ
となっている。
Note that the grooves 5 and 9 described above have a sufficient depth compared to the suction slits 6.10 formed in each groove, and the depth of the suction slit 6.10 is the minimum required depth. It's deep.

次にこのような構成からなる本実施例の作用について説
明する。
Next, the operation of this embodiment having such a configuration will be explained.

蒸気流路13内で湿り蒸気が流れると、蒸気流路13の
上流側で凝縮して発生したドレンは動翼4で振り切られ
て流路外周壁1に衝突し、大半が外周壁1の壁面に沿っ
て次の段落に軸方向に流れて行く。外周壁1の壁面を流
れるドレンはボアスコープやファイバースコープを用い
ることにより、ちょうどガラス窓を伝わる雨滴のように
筋状になって流れることが観察されている。
When wet steam flows in the steam flow path 13, the condensate generated on the upstream side of the steam flow path 13 is shaken off by the moving blades 4 and collides with the flow path outer peripheral wall 1, and most of it is on the wall surface of the outer peripheral wall 1. Flows axially along to the next paragraph. By using a borescope or a fiberscope, it has been observed that the drain flowing on the wall surface of the outer peripheral wall 1 flows in the form of streaks, just like raindrops traveling through a glass window.

このように外周壁1の壁面に沿って軸方向に流れるドレ
ンは、ドレン流れ方向と直交する円周方向に設けられた
外周壁ドレン捕獲用の溝9に落ち込み捕獲される。ドレ
ン捕獲用の溝9に捕獲されたドレンは下流側へ流れ外周
壁空洞8aと蒸気流路13との差圧と水の表面張力によ
り溝9内に円周方向に充満していき、蒸気中に露出して
いる吸込スリット10の開口部を完全に覆う。溝9とス
リット10の面積比および外周壁空洞8aと蒸気流路1
3内との圧力差を適当に設定することにより溝9があふ
れることなくかつ吸込スリット10が蒸気中に露出する
こともない状態に保持することができる。
The drain flowing in the axial direction along the wall surface of the outer circumferential wall 1 falls into the outer circumferential wall drain capturing groove 9 provided in the circumferential direction perpendicular to the drain flow direction and is captured. The drain captured in the drain capture groove 9 flows downstream and fills the groove 9 in the circumferential direction due to the differential pressure between the outer circumferential wall cavity 8a and the steam flow path 13 and the surface tension of the water. completely cover the opening of the suction slit 10 that is exposed to the Area ratio of groove 9 and slit 10 and outer peripheral wall cavity 8a and steam flow path 1
By appropriately setting the pressure difference between the groove 9 and the inside of the slit 3, it is possible to maintain a state in which the groove 9 does not overflow and the suction slit 10 is not exposed to the steam.

蒸気の圧力や湿り度が、外周壁1の円周方向に分布を持
っている場合には、これらの圧力や湿り度に対応させて
ドレン捕獲用の溝9と吸込スリット10の幅を円周方向
に分布を持たせることもできる。ドレン吸込みのときに
大きな流体抵抗を生ずる吸込スリット10の深さは、溝
9の深さを大きくとることによって十分小さくすること
ができる。
If the steam pressure and humidity are distributed in the circumferential direction of the outer peripheral wall 1, the widths of the drain capture grooves 9 and the suction slits 10 should be adjusted in accordance with these pressures and humidity. It is also possible to have a distribution in the direction. The depth of the suction slit 10, which causes a large fluid resistance when suctioning the drain, can be made sufficiently small by increasing the depth of the groove 9.

吸込スリット10から吸込まれたドレンは外周壁空洞8
a内に一時たまり、その後ドレン排出口12aから、よ
り低圧の復水器などに吸込まれていく。こうして外周壁
1表面を流れてくるドレンをこの段階でほとんど分離し
放出することができる。
The drain sucked in from the suction slit 10 flows into the outer peripheral wall cavity 8.
It temporarily accumulates in the drain a, and is then sucked into a lower pressure condenser or the like through the drain outlet 12a. In this way, most of the drain flowing on the surface of the outer peripheral wall 1 can be separated and discharged at this stage.

一方主流の蒸気は上流側から静!2に流入し、膨張しな
がら流れる方向を変え、下流にある動翼4に流入し、動
144を回転させて熱エネルギーをロータ3を回転させ
る機械的エネルギーへ変換させる。静翼2内で蒸気が膨
張する際には新しくドレンが発生する。また静翼2に流
入する主流蒸気中にはあらかじめ微小なドレンが混在し
ており、これら新旧のドレンの大半は蒸気の流れに完全
に乗ることができず、静翼2の表面に衝突し付着して、
以後第2図に示すように蒸気に押し流されるように概ね
蒸気流F と同じ方向に流れていく。
On the other hand, the mainstream steam is quiet from the upstream side! 2, changes its flow direction while expanding, flows into the rotor blade 4 located downstream, rotates the rotor 144, and converts thermal energy into mechanical energy that rotates the rotor 3. When steam expands within the stationary blade 2, new drainage is generated. In addition, the mainstream steam flowing into the stator blade 2 already contains minute condensate, and most of these old and new condensates cannot completely ride the steam flow, collide with the surface of the stator blade 2, and stick to it. do,
Thereafter, as shown in FIG. 2, it flows in roughly the same direction as the steam flow F as if being swept away by the steam.

S この場合もドレンは筋状に流れることが多い。モして静
翼2表面にドレン流れ方向と直交するように設けられた
静翼ドレン捕獲用の溝5に落ち込み捕獲される。第3図
に示すように、蒸気の流れF は変化することなく下流
に流れていくが、溝5に捕獲されたドレン14は外周壁
空洞8bと蒸気流路13内の差圧と水の表面張力によっ
て溝5の半径方向(長手方向)に広がり、溝5の中に充
満して静翼の吸込スリット6の開口部は完全にドレン1
4で覆われる。この場合もあらかじめ溝5と吸込スリッ
ト6の面積比と外周壁空洞8bと流路13内の圧力差の
大きさを適当に設定しておくことにより、運転中にit
溝5があふれることなくかつ吸込スリット6が蒸気中に
露出することもない状態に保持することができる。静翼
2の表面の静圧分布をあらかじめ計算して等圧線上に溝
5と吸込スリット6を加工することは可能であるが、表
面を流れるドレンの分布は同じではない。ドレンが長手
方向に分布した場合は、溝5と吸込スリット6の幅を長
手方向に分布させて、溝5のドレンの水位を長手方向に
一定に保つことができる。
S In this case as well, the drain often flows in streaks. The liquid then falls into a groove 5 for trapping the drain on the stator blade 2, which is provided perpendicularly to the drain flow direction, and is captured. As shown in FIG. 3, the steam flow F flows downstream without change, but the drain 14 captured in the groove 5 is caused by the difference in pressure between the outer wall cavity 8b and the steam passage 13 and the surface of the water. Due to the tension, the groove 5 expands in the radial direction (longitudinal direction), and the groove 5 is filled, and the opening of the suction slit 6 of the stationary blade is completely filled with the drain 1.
Covered by 4. In this case as well, by appropriately setting the area ratio of the groove 5 and the suction slit 6 and the size of the pressure difference between the outer peripheral wall cavity 8b and the flow path 13, it is possible to
It is possible to maintain a state in which the groove 5 does not overflow and the suction slit 6 is not exposed to the steam. Although it is possible to calculate the static pressure distribution on the surface of the stationary blade 2 in advance and process the grooves 5 and suction slits 6 on the isobaric line, the distribution of the drain flowing on the surface is not the same. When the drain is distributed in the longitudinal direction, the widths of the grooves 5 and suction slits 6 are distributed in the longitudinal direction, so that the water level of the drain in the grooves 5 can be kept constant in the longitudinal direction.

また静g2の場合も溝5の深さを大きく取ることによっ
てドレンの流れFdにとって大きな抵抗になる吸込スリ
ット6の深さを十分小さくすることができる。
Also, in the case of static g2, by increasing the depth of the groove 5, the depth of the suction slit 6, which becomes a large resistance to the drain flow Fd, can be made sufficiently small.

第3図に示すように、吸込スリット6から吸込まれたド
レン14は静翼空洞7に一時貯められ、それに連通ずる
外周壁空洞8bに吸込まれ、次にドレン排出口12bか
ら、より低圧の復水器などに吸込まれていく。こうして
静5A2を流れる蒸気中の湿分の大半は分離され排出さ
れるので、下流側の動X4には蒸気だけが流入すること
になる。
As shown in FIG. 3, the drain 14 sucked in from the suction slit 6 is temporarily stored in the stationary vane cavity 7, and is sucked into the outer peripheral wall cavity 8b communicating therewith, and then drained from the drain outlet 12b at a lower pressure. It gets sucked into things like water vessels. In this way, most of the moisture in the steam flowing through the station 5A2 is separated and discharged, so that only steam flows into the downstream station X4.

以上説明したように、本実施例によれば外周壁1表面上
のドレン流れ方向と直交する方向に吸込スリット10よ
り大きな幅ををする連続溝9が成されているので、この
溝9によってドレンを効率よく捕獲して貯える事ができ
る。この場合、吸込スリット10開口部はドレンによっ
て完全に覆われるので、蒸気が吸込スリット10から外
部へ放出されることはない。
As explained above, according to this embodiment, since the continuous groove 9 having a width larger than the suction slit 10 is formed on the surface of the outer peripheral wall 1 in a direction perpendicular to the drain flow direction, this groove 9 allows the drain to drain. can be captured and stored efficiently. In this case, the opening of the suction slit 10 is completely covered by the drain, so that no steam is released from the suction slit 10 to the outside.

また、静翼2表面上のドレン流れ方向と直交する方向に
吸込スリット6より大きな幅を有する連続溝5が形成さ
れているので、この溝5によってドレンを効率よく捕獲
して貯えることができる。
Moreover, since the continuous groove 5 having a width larger than the suction slit 6 is formed in the direction perpendicular to the drain flow direction on the surface of the stator blade 2, the drain can be efficiently captured and stored by the groove 5.

この場合、吸込スリット6開口部はドレンによって完全
に覆われるので、蒸気が吸込スリット6から外部へ放出
されることはない。
In this case, the opening of the suction slit 6 is completely covered by the drain, so that no steam is released from the suction slit 6 to the outside.

さらに、吸込スリット6.10は溝5,9のドレン流れ
方向下流に形成されている。このため、例えば第3図に
示すようにドレン14は溝5内の下流側壁に衝突して貯
えられるので、吸込スリット6内に吸込まれやすくなっ
ている。
Furthermore, the suction slit 6.10 is formed downstream of the grooves 5, 9 in the drain flow direction. Therefore, as shown in FIG. 3, for example, the drain 14 collides with the downstream wall of the groove 5 and is stored therein, so that it is easily sucked into the suction slit 6.

次に本発明による蒸気タービンの湿分分離装置の他の実
施例を第4図で説明する。
Next, another embodiment of the moisture separator for a steam turbine according to the present invention will be described with reference to FIG.

第4図において、静m2は背側と腹側を別々の板金を曲
げ、その後背側と腹側を縁部を溶接結合し、溶接箇所を
研磨して形成されている。この場合、溶接結合する前に
静翼2に静翼ドレン捕獲用の溝5を加工し、静翼2の内
面に溝部封鎖板15を溶接して取付けて吸込スリット1
6を形成しておく。また、静翼空洞7は、第1の実施例
と同様、外周壁空洞およびドレン排出口を経て復水器等
の低圧な場所に連通させておく。
In FIG. 4, the seat m2 is formed by bending separate sheet metals for the dorsal side and the ventral side, then welding the edges of the dorsal side and the ventral side together, and polishing the welded parts. In this case, before welding and joining, the stator blade 2 is machined with a groove 5 for trapping the stator blade drain, and a groove sealing plate 15 is welded and attached to the inner surface of the stator blade 2 to open the suction slit 1.
Form 6. Furthermore, as in the first embodiment, the stator vane cavity 7 is communicated with a low-pressure location such as a condenser through the outer circumferential wall cavity and the drain outlet.

本実施例によれば、静翼ドレンの吸込スリット16の深
さを零とすることができるので、吸込抵抗を低くして吸
込スリット16からの吸込性能を高めることができる。
According to this embodiment, the depth of the suction slit 16 of the stator vane drain can be made zero, so that the suction resistance can be lowered and the suction performance from the suction slit 16 can be improved.

また、高価な放電加工によることなく溶接加工によって
吸込スリット16を形成することができるので、製作コ
ストを低減できる。さらに溝部封鎖板15に耐食性の良
い板金を用いることによって、運転中に溝5の底部が浸
蝕されることを防止することができる。このため、吸込
スリット16が広くなってドレンのみならず蒸気も流出
してしまうという状態を防止できる。
Further, since the suction slit 16 can be formed by welding without using expensive electrical discharge machining, manufacturing costs can be reduced. Furthermore, by using a sheet metal with good corrosion resistance for the groove sealing plate 15, it is possible to prevent the bottom of the groove 5 from being eroded during operation. Therefore, it is possible to prevent the suction slit 16 from becoming wide and causing not only drain but also steam to flow out.

なお、静翼2に溝部封鎖板15を取付けた例を示したが
、外周壁1に溝部封鎖板を取付けて深さを零とする吸込
スリ・ントを形成してもよい。
Although an example is shown in which the groove sealing plate 15 is attached to the stationary blade 2, a suction slit having a zero depth may be formed by attaching the groove sealing plate to the outer peripheral wall 1.

また、上記実施例において、静翼2の腹側の外周近傍に
静翼ドレン捕獲用の溝5を設けた例を示したが、静翼2
の内周から外周まで全域にわたって設けてもよく、また
静W2の背側に設けてもよい。静翼2の背側に溝5を設
けることによってドレン除去効率を上昇させることがで
きる。さらに、吸込スリット6.10を溝5,9と略同
−長さに連続に形成した例を示したが、吸込スリット6
゜10を短く断続的に形成してもよい。
Further, in the above embodiment, an example was shown in which the stator blade drain capture groove 5 was provided near the outer periphery of the ventral side of the stator blade 2, but the stator blade 2
It may be provided over the entire area from the inner periphery to the outer periphery, or may be provided on the back side of the station W2. By providing the groove 5 on the back side of the stationary blade 2, the drain removal efficiency can be increased. Furthermore, although an example was shown in which the suction slit 6.10 was continuously formed to have approximately the same length as the grooves 5 and 9, the suction slit 6.10
10 may be formed briefly and intermittently.

また、外周壁1に溝9とスリット10を形成した例を示
したが、静翼内輪11で構成される内周壁に溝とスリッ
トを形成してもよい。この場合は流路内周壁表面上のド
レンを効率よく除去することができる。
Further, although an example is shown in which the grooves 9 and slits 10 are formed in the outer circumferential wall 1, the grooves and slits may be formed in the inner circumferential wall constituted by the stator blade inner ring 11. In this case, the drain on the surface of the inner circumferential wall of the channel can be efficiently removed.

さらに、ドレン捕獲用の溝5,9の形成方向は、ドレン
の流れ方向Fdに対して自由に定めることができ、例え
ばドレン流速およびドレン流れ方向曲線に応じてドレン
捕獲率を高めるよう形成方向を定めることができる。
Furthermore, the formation direction of the drain trapping grooves 5 and 9 can be freely determined with respect to the drain flow direction Fd. can be determined.

[発明の効果〕 本発明によれば、蒸気流路内のドレンは吸込スリットよ
り大きな幅を有する溝内に捕獲されるので、ドレン捕獲
率を従来の装置より高めることができる。また、溝内に
貯留されたドレンは吸込スリットの開口部を覆うので、
流路内の有効な仕事をする蒸気が吸込スリットから外部
へ放出してしまうことはなく、蒸気タービンのエネルギ
ロスを防止できる。
[Effects of the Invention] According to the present invention, since the drain in the steam flow path is captured in the groove having a width larger than the suction slit, the drain capture rate can be increased compared to conventional devices. In addition, since the drain stored in the groove covers the opening of the suction slit,
The steam that does useful work in the flow path will not be released from the suction slit to the outside, and energy loss in the steam turbine can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるにたの湿分分離装置の一実施例を
示す断面図であり、第2図は第1図■−■線断面図、第
3図は第2図の溝および吸込スリットを示すA部拡大図
、第4図は本発明による蒸気タービンの湿分分離装置の
他の実施例であって溝および吸込スリットを示す断面図
、第5図は従来の蒸気タービンの湿分分離装置を示す断
面図、第6図は第5図Vl−VI線断面図である。 1・・・外周壁、2・・・静翼、3・・・ロータ、4・
・・動翼、5・・・溝、6・・・吸込スリット、7・・
・静翼空洞、8a、8b・・・外周壁空洞、9・・・溝
、10・・・吸込スリット、11・・・静翼内輪、12
a、12b・・・ドレン排出口、13・・・蒸気流路、
15・・・溝部封鎖板、16・・・吸込スリット、F 
・・・蒸気の流れ、Fd・・・ドレンの流れ。 出願人代理人  佐  藤  −雄 躬5図
FIG. 1 is a cross-sectional view showing an embodiment of the moisture separator according to the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. FIG. 4 is an enlarged view of part A showing the slits, FIG. 4 is a cross-sectional view showing grooves and suction slits in another embodiment of the steam turbine moisture separator according to the present invention, and FIG. 5 is a conventional steam turbine moisture separator. FIG. 6 is a sectional view showing the separation device, and FIG. 6 is a sectional view taken along the line Vl-VI in FIG. DESCRIPTION OF SYMBOLS 1... Outer peripheral wall, 2... Stationary blade, 3... Rotor, 4...
... Moving blade, 5... Groove, 6... Suction slit, 7...
・Stator blade cavity, 8a, 8b...Outer peripheral wall cavity, 9...Groove, 10...Suction slit, 11...Stator blade inner ring, 12
a, 12b... drain outlet, 13... steam flow path,
15... Groove sealing plate, 16... Suction slit, F
...Steam flow, Fd...Drain flow. Applicant's agent Sato - Yumani 5

Claims (1)

【特許請求の範囲】 1、蒸気流路の内周壁面、蒸気流路の外周壁面または静
翼表面のうち、少なくとも1つの表面に復水器等の低圧
側と連通する吸込スリットを設けて蒸気流路内のドレン
を吸込み、蒸気とドレンを分離する蒸気タービンの湿分
分離装置において、前記吸込スリットの表面側端部に吸
込スリット幅より大きな幅を有しかつ吸込スリットと同
一方向に連続する溝を形成し、この溝内にドレンを貯え
るように構成したことを特徴とする蒸気タービンの湿分
分離装置。 2、連続する溝はドレン流れ方向と略直交して形成され
ていることを特徴とする特許請求の範囲第1項に記載の
蒸気タービンの湿分分離装置。 3、連続する溝のドレン流れ方向下流側に吸込スリット
が配置されていることを特徴とする特許請求の範囲第1
項に記載の蒸気タービンの湿分分離装置。
[Scope of Claims] 1. A suction slit communicating with the low pressure side of a condenser or the like is provided on at least one surface of the inner peripheral wall surface of the steam flow path, the outer peripheral wall surface of the steam flow path, or the surface of the stationary blade, so that the steam In a moisture separator for a steam turbine that sucks condensate in a flow path and separates steam and condensate, the suction slit has a width larger than the suction slit width at the surface side end thereof and continues in the same direction as the suction slit. A moisture separator for a steam turbine, characterized in that a groove is formed and drain is stored in the groove. 2. The moisture separator for a steam turbine according to claim 1, wherein the continuous groove is formed substantially perpendicular to the drain flow direction. 3. Claim 1, characterized in that the suction slit is arranged on the downstream side of the continuous groove in the drain flow direction.
A moisture separator for a steam turbine according to paragraph 1.
JP26178486A 1986-11-05 1986-11-05 Moisture separating device for steam turbine Pending JPS63117104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26178486A JPS63117104A (en) 1986-11-05 1986-11-05 Moisture separating device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26178486A JPS63117104A (en) 1986-11-05 1986-11-05 Moisture separating device for steam turbine

Publications (1)

Publication Number Publication Date
JPS63117104A true JPS63117104A (en) 1988-05-21

Family

ID=17366654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26178486A Pending JPS63117104A (en) 1986-11-05 1986-11-05 Moisture separating device for steam turbine

Country Status (1)

Country Link
JP (1) JPS63117104A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140401A (en) * 1990-10-01 1992-05-14 Toshiba Corp Nozzle of steam turbine
JPH06123202A (en) * 1992-10-07 1994-05-06 Toshiba Corp Moisture content separating device for steam turbine
GB2424454A (en) * 2005-03-24 2006-09-27 Alstom Technology Ltd Water extracting turbine stator blade
EP1510659A3 (en) * 2003-08-28 2008-05-14 United Technologies Corporation Turbine airfoil cooling flow particle separator
JP2012102636A (en) * 2010-11-08 2012-05-31 Panasonic Corp Pump
WO2015015858A1 (en) * 2013-07-30 2015-02-05 三菱重工業株式会社 Moisture removal device for steam turbine
WO2015015859A1 (en) * 2013-07-30 2015-02-05 三菱重工業株式会社 Moisture removal device for steam turbine and slit hole formation method
WO2020250596A1 (en) * 2019-06-10 2020-12-17 三菱日立パワーシステムズ株式会社 Steam turbine stationary blade, steam turbine, and manufacturing method for steam turbine stationary blade

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499522A (en) * 1972-03-29 1974-01-28
JPS5120322U (en) * 1974-07-31 1976-02-14
JPS54153908A (en) * 1978-05-26 1979-12-04 Toshiba Corp Nozzle diaphragm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499522A (en) * 1972-03-29 1974-01-28
JPS5120322U (en) * 1974-07-31 1976-02-14
JPS54153908A (en) * 1978-05-26 1979-12-04 Toshiba Corp Nozzle diaphragm

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140401A (en) * 1990-10-01 1992-05-14 Toshiba Corp Nozzle of steam turbine
JPH06123202A (en) * 1992-10-07 1994-05-06 Toshiba Corp Moisture content separating device for steam turbine
EP1510659A3 (en) * 2003-08-28 2008-05-14 United Technologies Corporation Turbine airfoil cooling flow particle separator
GB2424454A (en) * 2005-03-24 2006-09-27 Alstom Technology Ltd Water extracting turbine stator blade
JP2012102636A (en) * 2010-11-08 2012-05-31 Panasonic Corp Pump
CN105392965A (en) * 2013-07-30 2016-03-09 三菱日立电力系统株式会社 Moisture removal device for steam turbine and slit hole formation method
WO2015015859A1 (en) * 2013-07-30 2015-02-05 三菱重工業株式会社 Moisture removal device for steam turbine and slit hole formation method
CN105324553A (en) * 2013-07-30 2016-02-10 三菱日立电力系统株式会社 Moisture removal device for steam turbine
WO2015015858A1 (en) * 2013-07-30 2015-02-05 三菱重工業株式会社 Moisture removal device for steam turbine
JP5996115B2 (en) * 2013-07-30 2016-09-21 三菱日立パワーシステムズ株式会社 Moisture removal device for steam turbine
JPWO2015015859A1 (en) * 2013-07-30 2017-03-02 三菱日立パワーシステムズ株式会社 Moisture removal device for steam turbine and method for forming slit hole
CN105392965B (en) * 2013-07-30 2017-06-06 三菱日立电力系统株式会社 The moisture removal device of steam turbine and the forming method of slit pore
US10001032B2 (en) 2013-07-30 2018-06-19 Mitsubishi Hitachi Power Systems, Ltd. Water removal device for steam turbine
US10690009B2 (en) 2013-07-30 2020-06-23 Mitsubishi Hitachi Power Systems, Ltd. Water removal device for steam turbine and method for forming slit
WO2020250596A1 (en) * 2019-06-10 2020-12-17 三菱日立パワーシステムズ株式会社 Steam turbine stationary blade, steam turbine, and manufacturing method for steam turbine stationary blade
CN113785105A (en) * 2019-06-10 2021-12-10 三菱动力株式会社 Steam turbine stator blade, steam turbine, and method for manufacturing steam turbine stator blade
CN113785105B (en) * 2019-06-10 2023-08-15 三菱重工业株式会社 Steam turbine stator blade, steam turbine, and method for manufacturing steam turbine stator blade
US11840938B2 (en) 2019-06-10 2023-12-12 Mitsubishi Heavy Industries, Ltd. Steam turbine stator vane, steam turbine, and production method for steam turbine stator vane

Similar Documents

Publication Publication Date Title
JP5824208B2 (en) System for reducing the effects of erosion on parts
RU2478797C2 (en) Steam turbine and method of moisture removal from flow path in steam turbine
US20100329853A1 (en) Moisture removal provisions for steam turbine
JP2007023895A (en) Steam turbine, turbine nozzle diaphragm, nozzle blade used for same and method for manufacturing same
JP6931991B2 (en) How to manage moisture in steam turbines, steam turbine nozzles, and steam turbines
US7789618B2 (en) Systems for moisture removal in steam turbine engines
FI82763B (en) HOEGHASTIGHETSVATTENAVSKILJARE.
JPS63117104A (en) Moisture separating device for steam turbine
JPH04259604A (en) Honeycomb type sealing device and moisture content draining device
US11840938B2 (en) Steam turbine stator vane, steam turbine, and production method for steam turbine stator vane
JPH0218884B2 (en)
JP3093479B2 (en) Steam turbine moisture separator
JP2008075655A (en) Device controlling operation of steam turbine, and steam turbine
JP2002097902A (en) Water removing pocket having improved water removing efficiency
JPS62157206A (en) Draining device for steam turbine
JPS58176404A (en) Drain removing device
JPH08200007A (en) Moisture removing device of steam turbine
JP6000876B2 (en) Steam turbine
JPS62168905A (en) Moisture removing device for turbine
JP6813446B2 (en) Drain discharge structure of steam turbine and its modification method
JPH04140401A (en) Nozzle of steam turbine
JPS63280801A (en) Stationary blade for steam turbine
JPS61265305A (en) Steam turbine
JPS63176602A (en) Steam turbine
US9745866B2 (en) Moisture separator unit for steam turbine and steam-turbine stationary blade