JPS63176602A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS63176602A
JPS63176602A JP490187A JP490187A JPS63176602A JP S63176602 A JPS63176602 A JP S63176602A JP 490187 A JP490187 A JP 490187A JP 490187 A JP490187 A JP 490187A JP S63176602 A JPS63176602 A JP S63176602A
Authority
JP
Japan
Prior art keywords
nozzle
steam
drain
outer ring
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP490187A
Other languages
Japanese (ja)
Other versions
JP2573197B2 (en
Inventor
Kenji Natori
名取 顕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62004901A priority Critical patent/JP2573197B2/en
Publication of JPS63176602A publication Critical patent/JPS63176602A/en
Application granted granted Critical
Publication of JP2573197B2 publication Critical patent/JP2573197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To aim at abatement in erosion of a moving blade, by installing a drain extract port in a steam pass space at the inside of a nozzle outer ring, and also installing an annular fine at the downstream side of the drain extract port. CONSTITUTION:A drain extract port 8 is installed in a stem pass space at the inside of a nozzle outer ring. A drain groove 6 connecting this drain extract port 8 is connected to a drain discharge port 7. An annular fin 11, being projected to a steam pass space, is installed at the downstream side of the drain extract port 8. With this constitution, a liquid film on a nozzle outer ring inner surface and a nozzle blade surface is effectively eliminated, thus erosion in a moving blade is abatable.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は蒸気タービン内を流れる湿り蒸気中に発生する
液滴を除去し、液滴による動翼のエロージョン量を軽減
させると共に、湿り損失をも低減できるようにした蒸気
タービンに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention removes droplets generated in wet steam flowing in a steam turbine, and reduces the amount of erosion of rotor blades caused by the droplets. The present invention also relates to a steam turbine capable of reducing moisture loss.

(従来の技術) 近年、原油価格が高騰して以来、原子力タービンへの依
存率が次第に増加してきている。また、火力タービンも
原子力タービンとの対抗上、その効率向上が求められて
いる。
(Prior Art) Since the price of crude oil has skyrocketed in recent years, the dependence on nuclear turbines has gradually increased. In addition, thermal power turbines are required to improve their efficiency in order to compete with nuclear power turbines.

一般に、火力タービンの低圧最終段付近や原子力タービ
ンの大部分の段落は液滴を多数含んだ湿り蒸気中で作動
しており、この液滴による動翼の浸蝕や湿り損失の増加
等の問題が生じている。
In general, the vicinity of the low-pressure final stage of thermal power turbines and most of the stages of nuclear power turbines operate in humid steam containing many droplets, and these droplets can cause problems such as erosion of rotor blades and increased moisture loss. It is occurring.

湿り度の大きい原子力タービンの増加と、火力および原
子力タービンの大容量化に伴う最終段動翼の長大化によ
って、上記問題への効果的な対策がより強く求められる
ようになってきた。
Due to the increase in the number of nuclear power turbines with high humidity and the increase in the length of the final stage rotor blades due to the increase in the capacity of thermal power and nuclear power turbines, effective countermeasures to the above problems are increasingly required.

蒸気タービンの段落中の液滴除去装置としては、例えば
実公昭55−18485号公報に記載されたような液滴
除去装置が知られている。
As a droplet removing device in a stage of a steam turbine, a droplet removing device such as that described in Japanese Utility Model Publication No. 55-18485 is known.

第5図は従来の液滴除去装置の縦断面図を示すもので、
ノズル外輪1.1′ (ダッシュを付した符号は次段落
の同一部材を示すが、その表示は以下の説明では省略す
る。)の内面には外輪当板2が溶着されており、ま、た
外輪当板2にはノズル翼3が溶着されている。ノズル翼
3は内輪当板4とも溶着されており、内輪当板4はノズ
ル内輪5に溶着されて一体となり、ノズルを形成してい
る。
FIG. 5 shows a vertical cross-sectional view of a conventional droplet removal device.
An outer ring contact plate 2 is welded to the inner surface of the nozzle outer ring 1.1' (numerals with a dash indicate the same parts in the next paragraph, but their indication will be omitted in the following explanation). Nozzle blades 3 are welded to the outer ring contact plate 2. The nozzle blades 3 are also welded to an inner ring abutment plate 4, and the inner ring abutment plate 4 is welded to the nozzle inner ring 5 so as to form a nozzle.

ノズル外輪1の内面にはノズル溝6が円周方向に設けら
れており、これらのノズル溝6と蒸気通路部とは外輪当
板2に設けられたドレン抽出孔8を介して通じている。
Nozzle grooves 6 are provided in the inner surface of the nozzle outer ring 1 in the circumferential direction, and these nozzle grooves 6 and the steam passage portion communicate through drain extraction holes 8 provided in the outer ring backing plate 2.

また、下半側のノズル外輪1にはドレン溝6に通じるド
レン排出孔7が貫通して設けられ、コンデンサに連結さ
れている。
Further, a drain discharge hole 7 communicating with a drain groove 6 is provided to pass through the nozzle outer ring 1 on the lower half side, and is connected to a condenser.

上記ノズルには、動翼9がロータディスク10に植設さ
れて配置されており、ノズルと共にタービン段落を形成
している。
In the nozzle, rotor blades 9 are arranged so as to be embedded in a rotor disk 10, and together with the nozzle, a turbine stage is formed.

(発明が解決しようとする問題点) ところで、第5図に示す従来の液滴除去装置では液滴を
十分に除去することができず、動翼の浸蝕軽減や湿り損
失低減にあまり効果が上がっていなかった。
(Problems to be Solved by the Invention) By the way, the conventional droplet removal device shown in FIG. 5 cannot sufficiently remove droplets, and is not very effective in reducing rotor blade erosion and moisture loss. It wasn't.

その理由をいま少し詳しく説明する。I will now explain the reason in a little more detail.

第6図は、一般の事業用火力発電所における蒸気タービ
ンの膨張線を示したもので、点Aは最終段前段落(以下
L−1という)のノズル入口における蒸気状態を示し、
同様に、点B、はL−1ノズル出口の蒸気状態を、点C
はL−1動翼用口の蒸気状態を、点りは最終段落(以下
L−0という)のノズル出口の蒸気状態を、EはL−0
の動翼出口の蒸気状態を示す。
Figure 6 shows the expansion line of a steam turbine in a general commercial thermal power plant, where point A shows the steam state at the nozzle inlet of the stage before the final stage (hereinafter referred to as L-1),
Similarly, point B indicates the steam state at the L-1 nozzle outlet, and point C
indicates the steam state at the L-1 rotor blade inlet, the dot indicates the steam state at the nozzle outlet of the final stage (hereinafter referred to as L-0), and E indicates the steam state at the L-0 nozzle outlet.
This shows the steam condition at the rotor blade outlet.

第6図から分るように、L−1のノズル内で蒸気は乾き
蒸気から湿り蒸気となり、L−0の動翼出口では湿り度
が10%近くに達する。
As can be seen from FIG. 6, the steam changes from dry steam to wet steam in the nozzle L-1, and the humidity reaches nearly 10% at the exit of the rotor blade L-0.

しかしながら、蒸気は膨張により理論上の湿り域に達し
ても、直ちに凝縮を開始せず、湿り度が約3〜5%程度
になるまで非平衡状態で膨張した後、初めて液滴が発生
する。すなわち、一般的にはL−1の動翼内で液滴が発
生する。
However, even if the vapor reaches the theoretical wet region due to expansion, it does not immediately start condensing, and only after expanding in a non-equilibrium state until the wetness reaches about 3 to 5%, droplets are generated. That is, droplets are generally generated within the rotor blade L-1.

この場合、発生する液滴の直径は0.1〜1μm程度で
あり、蒸気の膨張に伴って液滴は少しづつ成長する。そ
の際、一部の液滴はノズルや動翼の表面に衝突し、付着
するが、粒径が小さいため、この段階では翼の浸蝕はほ
とんど生じない。 ところが、動翼内での液滴は、遠心
力、コリオリカ、および蒸気力を受けて外周方向への運
動が支配的となり、L−0のノズル外輪内面にはかなり
の液滴が付着することになる。
In this case, the diameter of the generated droplets is about 0.1 to 1 μm, and the droplets grow little by little as the vapor expands. At this time, some of the droplets collide with and adhere to the surfaces of the nozzle and rotor blades, but because the particle size is small, there is almost no erosion of the blades at this stage. However, the droplets within the rotor blades are subjected to centrifugal force, Coriolis, and steam force, and the movement toward the outer circumference becomes dominant, resulting in a considerable number of droplets adhering to the inner surface of the outer ring of the L-0 nozzle. Become.

すなわち、第7図に示すようにL−0段落Jにおいて、
斜線部Fは液膜を示し、また破線Gは蒸気流線を、実線
Hは液滴流線を示す。この図から分るように液滴はL−
1段落■の動翼内で発生し、液滴流線Hに示されるよう
にL−0段落のシズル外輪の内外面やノズル翼面上に付
着し、液膜Fを形成し、発達しなからL−0のノズル後
縁に達する。L−0ノズルの後縁に達しだ液膜Fは後縁
端から蒸気力により吹きちぎられて蒸気中に混入し、ざ
らに水滴状に噴霧されるが、このとき形成される液滴径
は100〜500μmにも達し、自然発生した液滴と比
べはるかに巨大になっている。
That is, as shown in FIG. 7, in L-0 paragraph J,
The shaded area F indicates a liquid film, the broken line G indicates a vapor streamline, and the solid line H indicates a droplet streamline. As you can see from this figure, the droplet is L-
It occurs within the rotor blade of the first stage ■, and as shown by the droplet streamline H, it adheres to the inner and outer surfaces of the sizzle outer ring and the nozzle blade surface of the L-0 stage, forming a liquid film F, which does not develop. to the trailing edge of the nozzle at L-0. The liquid film F that has reached the trailing edge of the L-0 nozzle is blown away from the trailing edge by the steam force and mixed into the steam, and is sprayed in the form of rough water droplets, but the diameter of the droplets formed at this time is The droplets reach 100 to 500 μm, which is much larger than naturally occurring droplets.

このため、巨大液滴は蒸気力によって十分加速されない
まま、L−0の動翼に衝突し、動翼のエロージョンを引
き起すことになる。
Therefore, the giant droplet collides with the rotor blade of L-0 without being sufficiently accelerated by the steam force, causing erosion of the rotor blade.

第8図はL−0のノズル内の湿り度を示したもので、ノ
ズル外周部で急激に湿り度が高くなっており、液滴が外
周部に偏在していることがこれからもよく分る。
Figure 8 shows the humidity inside the nozzle of L-0, and it is clear from this that the humidity is rapidly increasing at the outer periphery of the nozzle, and that the droplets are unevenly distributed around the outer periphery. .

ノズル内の湿り蒸気の液滴の大半は上述のように、ノズ
ル外周部に偏在しているが、液膜についても同様のこと
が言える。すなわち、液膜は直径が0.5〜1μm程度
の液滴がノズル翼面やノズル外輪内面に付着し、表面を
下流方向へ蒸気力によって流されるに従って集合しつつ
形成され、発達していく。従って、液膜はノズル翼面の
外周部と、ノズル外輪内面にしか形成されない。また、
ノズル後縁に近付くにつれ液膜は急激に発達し、厚くな
る。
As described above, most of the wet vapor droplets in the nozzle are unevenly distributed around the outer periphery of the nozzle, but the same can be said of the liquid film. That is, a liquid film is formed in which droplets with a diameter of about 0.5 to 1 μm adhere to the nozzle blade surface or the inner surface of the nozzle outer ring, collect and develop as they flow downstream along the surface by the steam force. Therefore, the liquid film is formed only on the outer circumference of the nozzle blade surface and the inner surface of the nozzle outer ring. Also,
The liquid film rapidly develops and becomes thicker as it approaches the trailing edge of the nozzle.

この様子を第9図を用いて説明する。同図は従来例のノ
ズル外周部の拡大図であるが、液膜Fは外輪当板2の内
面およびノズル翼3の面上に形成される。一方ドレン溝
6内はドレン排出孔7によって動翼出口と通じているの
で、ドレン溝6の圧力はノズル蒸気通路部内の圧力より
低くなっている。その結果、液膜Fの一部は外輪当板2
に設りられたドレン抽出孔8を通り、液膜の流れKに示
すようにドレン溝6内へ吸いこまれる。
This situation will be explained using FIG. 9. This figure is an enlarged view of the outer periphery of the conventional nozzle, and the liquid film F is formed on the inner surface of the outer ring contact plate 2 and the surface of the nozzle blade 3. On the other hand, since the inside of the drain groove 6 communicates with the rotor blade outlet through the drain discharge hole 7, the pressure in the drain groove 6 is lower than the pressure in the nozzle steam passage. As a result, a part of the liquid film F is exposed to the outer ring contact plate 2.
It passes through the drain extraction hole 8 provided in the drain hole 8 and is sucked into the drain groove 6 as shown by the flow K of the liquid film.

しかしながら、液膜Fはノズル流路内でかなりの蒸気力
を受けているため、ドレン抽出孔8から十分吸込まれな
いうちに下流へ流されてしまう。
However, since the liquid film F is subjected to considerable steam force within the nozzle flow path, it is swept downstream before being sufficiently sucked through the drain extraction hole 8.

液膜の吸込み量を増加させるためにはドレン抽出孔8を
大きくしたり、数を増やしてやればよいが、逆に主蒸気
をも多く吸込み、タービン性能が極度に悪くなるので、
従来例ではノズル内の液膜除去を積極的におこなえず、
ドレン除去の効果があまり上がらなかった。
In order to increase the suction amount of the liquid film, it is possible to make the drain extraction holes 8 larger or increase the number, but this would also suck in a large amount of main steam and the turbine performance would be extremely poor.
With conventional methods, it is not possible to actively remove the liquid film inside the nozzle.
Drain removal was not very effective.

[発明の構成] (問題点を解決するための手段) 本発明の蒸気タービンは、ノズル外輪と、ノズル翼と、
ノズル内輪とからなるタービンノズルを備えた蒸気ター
ビンにおいて、前記ノズル外輪内側の蒸気通路部に複数
のドレン抽出孔を開口させ、これらドレン抽出孔を連結
するドレン溝をノズル外輪内に設け、前記ドレン抽出孔
の蒸気流れ方向下流側に、蒸気通路部へ突出して円環状
のフィンを設けたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The steam turbine of the present invention includes a nozzle outer ring, a nozzle blade,
In a steam turbine equipped with a turbine nozzle consisting of an inner nozzle ring, a plurality of drain extraction holes are opened in the steam passage inside the nozzle outer ring, a drain groove connecting these drain extraction holes is provided in the nozzle outer ring, and the drain This device is characterized in that an annular fin is provided on the downstream side of the extraction hole in the steam flow direction, protruding into the steam passage.

(作 用) 上記のように構成した本発明の蒸気タービンにおいては
、ノズル外輪内面を流れる液膜はフィンによりせき止め
られるので、ノズル流路内で受ける蒸気力によって下流
へ簡単に流されることがなくなる。その結果、ドレン抽
出孔からノズル外輪内面を流れる液膜の大部分はドレン
溝6内へ除去され、動翼のエロージョン最も大幅に軽減
され、また湿り損失も低下し、タービン効率および信頼
性が向上する。
(Function) In the steam turbine of the present invention configured as described above, the liquid film flowing on the inner surface of the nozzle outer ring is blocked by the fins, so that it is not easily flowed downstream by the steam force received within the nozzle flow path. . As a result, most of the liquid film flowing from the drain extraction hole to the inner surface of the nozzle outer ring is removed into the drain groove 6, which greatly reduces rotor blade erosion, reduces moisture loss, and improves turbine efficiency and reliability. do.

(実施例) 以下、第1図ないし第4図を参照しつつ、本発明の実施
例とその作用を説明する。
(Embodiments) Hereinafter, embodiments of the present invention and their effects will be described with reference to FIGS. 1 to 4.

第1図は本発明の蒸気タービンにおけるノズルの縦断面
図であり、第5図と同一部分には同一符号を付し、その
説明を省略する。
FIG. 1 is a longitudinal cross-sectional view of a nozzle in a steam turbine of the present invention, and the same parts as in FIG. 5 are given the same reference numerals, and their explanation will be omitted.

この実施例と従来例との異なる点はノズル蒸気通路部内
の外周部にフィン11を複数本、設けた点である。すな
わち、外輪当板の内面側には蒸気通路部に突出するよう
に複数本のフィン11を円環状に設けである。しかもこ
れらのフィン11は上記ノズル当板2に設けられたドレ
ン抽出孔8の蒸気流れ方向のやや下流側に設けられてい
る。
The difference between this embodiment and the conventional example is that a plurality of fins 11 are provided on the outer periphery of the nozzle steam passage. That is, a plurality of fins 11 are provided in an annular shape on the inner surface side of the outer ring abutment plate so as to protrude into the steam passage section. Furthermore, these fins 11 are provided slightly downstream of the drain extraction hole 8 provided in the nozzle contact plate 2 in the steam flow direction.

蒸気タービンのノズルは鋳造によって全体を一体として
形成される場合と、第1図に示されるように溶接組立式
で形成される場合がある。
The nozzle of a steam turbine may be integrally formed by casting, or may be formed by welding as shown in FIG.

前者の鋳造による場合には、鋳型にフィン11用の溝を
設けておけば簡単にフィン11が形成できる。また、後
者の溶接組立式の場合には、第2図(A)に示すように
、外輪当板2にフィン11を嵌め込む溝12をドレン抽
出孔8の下流側に円環状に設け、フィン11の根元部を
嵌め込んだ後、第2図(B)に示すように溝12の端部
を押潰し、フィン11と外輪当板2とが押漬部分13で
固定されるように形成する。
In the former case of casting, the fins 11 can be easily formed by providing grooves for the fins 11 in the mold. In addition, in the case of the latter welding assembly type, as shown in FIG. 2(A), a groove 12 into which the fin 11 is fitted is provided in an annular shape on the downstream side of the drain extraction hole 8 in the outer ring contact plate 2, and the fin After fitting the base portion of the groove 11, the end portion of the groove 12 is crushed as shown in FIG. .

従来例ではノズル内の液膜除去が効果的に行え−〇 − なかったが、本発明の実施例ではフィン11を設けたこ
とによりノズル内の液膜除去が効果的に行える。
In the conventional example, the liquid film inside the nozzle could not be effectively removed, but in the embodiment of the present invention, by providing the fins 11, the liquid film inside the nozzle can be effectively removed.

この点に関して第3図を用いていま少し詳しく説明する
This point will be explained in more detail using FIG. 3.

ノズル翼3の面上や外輪当板2の内面に付着した液滴は
、ノズル流路内を流れる蒸気により、下流方向へ流され
つつ液膜Fを形成し、発達してノズル後縁端に達する。
The droplets adhering to the surface of the nozzle blade 3 and the inner surface of the outer ring contact plate 2 are swept downstream by the steam flowing in the nozzle flow path, forming a liquid film F, which develops and is deposited on the trailing edge of the nozzle. reach

しかし、フィン11があることにより、外輪当板2内面
やノズル3面上を流れてきた液膜Fは一時的にせきとめ
られる。フィン11の蒸気流れ方向上流には、ドレン抽
出孔8が円環状に設けてあり、液膜Fは従来例に比して
はるかに効果的にドレン溝6に吸い込まれていく。
However, due to the presence of the fins 11, the liquid film F flowing on the inner surface of the outer ring contact plate 2 and the surface of the nozzle 3 is temporarily stopped. A drain extraction hole 8 is provided in an annular shape upstream of the fin 11 in the steam flow direction, and the liquid film F is sucked into the drain groove 6 much more effectively than in the conventional example.

ドレン抽出孔8とフィン11とを複数個設けであるので
、最上流のフィンの下流側にできた液膜も順次効果的に
除去され、最終的にはかなりの液膜が除去される。
Since a plurality of drain extraction holes 8 and fins 11 are provided, the liquid film formed on the downstream side of the most upstream fin is also effectively removed one after another, and eventually a considerable liquid film is removed.

第4図に示すグラフは上記の点を明確にしたもので、一
般の事業用の火力タービンの最終段落のノズルにおける
従来例と本発明の実施例とのドレン除去の比較結果を示
すものである。横軸には相対吸い込み量、縦軸には相対
ドレン捕獲量と相対段落性能を示しである。グラフ内の
実線が従来例のものであり、破線が本発明の実施例のも
のである。
The graph shown in Figure 4 clarifies the above point and shows the results of a comparison of condensate removal between the conventional example and the embodiment of the present invention in the final stage nozzle of a thermal power turbine for general business use. . The horizontal axis shows the relative suction amount, and the vertical axis shows the relative drain capture amount and relative stage performance. The solid line in the graph is for the conventional example, and the broken line is for the example of the present invention.

同図中の相対ドレン捕獲量を見ると、従来例に比して本
発明の実施例では3〜4倍程度多くなっており、ドレン
抽出孔からの液膜や蒸気の吸い込み量が多くなくても、
かなりのドレンを捕獲していることが分る。
Looking at the relative amount of condensate captured in the same figure, it is about 3 to 4 times larger in the example of the present invention than in the conventional example, and the amount of liquid film and steam sucked from the drain extraction hole is not large. too,
It can be seen that a considerable amount of drain is captured.

少ない吸い込み量でドレン捕獲量が多くなっているので
、主蒸気の吸い込み量を従来例と同じにした場合、ドレ
ン捕獲量は数倍となり、湿り度は大幅に低減する。また
、ドレン捕獲量を同じにした場合、主蒸気の吸い込み量
はかなり少なくてすみ、段落性能の低減が大幅に改善さ
れる。従って、液滴による動翼のエロージョンも大幅に
改善されるとともにタービン効率の低減も大幅に改善さ
れる。
Since the amount of condensate captured is large with a small suction amount, when the amount of main steam suction is the same as in the conventional example, the amount of condensate captured is several times larger, and the humidity level is significantly reduced. Furthermore, if the amount of condensate captured is the same, the amount of main steam sucked in will be considerably smaller, and the reduction in stage performance will be significantly improved. Therefore, the erosion of the rotor blades by droplets is significantly improved, as well as the reduction in turbine efficiency.

[発明の効果] 以上の説明から明らかなように、本発明はノズル外輪の
内面のドレン抽出孔の下流側にフィンを円環状に設けた
ことにより、ノズル外輪内面やノズル翼面上の液膜除去
が効果的に行われ、その結果、液滴による動翼のエロー
ジョン量を大幅に軽減させると共に湿り損失をも大幅に
低減させ、夕 ゛−ビン効率の向上と信頼性の向上を図
ることができる。
[Effects of the Invention] As is clear from the above description, the present invention provides an annular fin on the downstream side of the drain extraction hole on the inner surface of the nozzle outer ring, thereby reducing the liquid film on the inner surface of the nozzle outer ring and the nozzle blade surface. The removal is carried out effectively, and as a result, the amount of erosion of the rotor blades by droplets is significantly reduced, as well as the moisture loss, which improves the turbine efficiency and reliability. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる蒸気タービンの実施例を示すノ
ズル部の縦断面図、第2図(A)、(B)は第1図にお
けるフィン形成方法を例示する説明図、第3図は本発明
におけるタービンノズル内の液膜の流動状態図、第4図
は本発明と従来例における相対吸い込み量と相対ドレン
捕獲量および相対段落性能との関係を示すグラフ、第5
図は従来のタービン段落を示す縦断面図、第6図は一般
の事業用火力タービンの膨張線の一例を示すグラフ、第
7図は一般の事業用火力タービンの最終段溝近傍におけ
る液滴の流動状況を示す説明図、第8図は一般の事業用
火力タービン最終段ノズル内における湿り度とノズル高
さく無次元)との関係を示すグラフ、第9図は従来例に
おけるタービンノズル内の液膜の流動状態図である。 1・・・・・・ノズル外輪 2・・・・・・外輪当板 3・・・・・・ノズル翼 4・・・・・・内輪当板 5・・・・・・ノズル内輪 6・・・・・・ドレン溝 7・・・・・・ドレン排出孔 8・・・・・・ドレン抽出孔 9・・・・・・動翼 10・・・・・・ロータディスク 11・・・・・・フィン 12・・・・・・溝 13・・・・・・押し潰し部分 代理人 弁理士  則 近 憲 缶 周  三俣弘文 第4図 第5図 第7図 湿  リ  度 第8図
FIG. 1 is a vertical cross-sectional view of a nozzle part showing an embodiment of a steam turbine according to the present invention, FIGS. 2(A) and (B) are explanatory views illustrating the fin forming method in FIG. 1, and FIG. FIG. 4 is a flow state diagram of the liquid film in the turbine nozzle according to the present invention; FIG.
The figure is a vertical cross-sectional view showing a conventional turbine stage, Figure 6 is a graph showing an example of the expansion line of a general commercial thermal power turbine, and Figure 7 is a graph of droplets near the final stage groove of a general commercial thermal turbine. An explanatory diagram showing the flow situation, Fig. 8 is a graph showing the relationship between the humidity in the final stage nozzle of a general commercial thermal power turbine and the nozzle height, and Fig. 9 shows the liquid in the turbine nozzle in a conventional example. It is a flow state diagram of a membrane. 1... Nozzle outer ring 2... Outer ring contact plate 3... Nozzle blade 4... Inner ring contact plate 5... Nozzle inner ring 6... ... Drain groove 7 ... Drain discharge hole 8 ... Drain extraction hole 9 ... Moving blade 10 ... Rotor disk 11 ...・Fin 12...Groove 13...Crushing part agent Patent attorney Nori Chika Ken Shu Hirofumi Mitsumata Figure 4 Figure 5 Figure 7 Humidity Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)ノズル外輪と、ノズル翼と、ノズル内輪とからな
るタービンノズルを備えた蒸気タービンにおいて、前記
ノズル外輪内側の蒸気通路部に複数のドレン抽出孔を開
口させ、これらドレン抽出孔を連結するドレン溝をノズ
ル外輪内に設け、前記ドレン抽出孔の蒸気流れ方向下流
側に、蒸気通路部へ突出して円環状のフィンを設けたこ
とを特徴とする蒸気タービン。
(1) In a steam turbine equipped with a turbine nozzle consisting of a nozzle outer ring, a nozzle blade, and a nozzle inner ring, a plurality of drain extraction holes are opened in the steam passage inside the nozzle outer ring, and these drain extraction holes are connected. A steam turbine characterized in that a drain groove is provided in a nozzle outer ring, and an annular fin is provided on the downstream side of the drain extraction hole in the steam flow direction so as to protrude into a steam passage section.
(2)溶接組立式の蒸気タービンにおいて、ノズル当板
に円周方向の溝を設け、この溝内にフィンの根元部を嵌
め込み固定したことを特徴とする特許請求の範囲第1項
記載の蒸気タービン。
(2) In a welded assembly type steam turbine, the steam turbine according to claim 1, characterized in that a circumferential groove is provided in the nozzle contact plate, and a root portion of the fin is fitted and fixed in the groove. turbine.
JP62004901A 1987-01-14 1987-01-14 Steam turbine Expired - Lifetime JP2573197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004901A JP2573197B2 (en) 1987-01-14 1987-01-14 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004901A JP2573197B2 (en) 1987-01-14 1987-01-14 Steam turbine

Publications (2)

Publication Number Publication Date
JPS63176602A true JPS63176602A (en) 1988-07-20
JP2573197B2 JP2573197B2 (en) 1997-01-22

Family

ID=11596566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004901A Expired - Lifetime JP2573197B2 (en) 1987-01-14 1987-01-14 Steam turbine

Country Status (1)

Country Link
JP (1) JP2573197B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151055A (en) * 2008-12-25 2010-07-08 Toshiba Corp Steam turbine
JP2013011172A (en) * 2011-06-28 2013-01-17 Mitsubishi Heavy Ind Ltd Stationary blade for steam turbine and method for assembling the same
JP2014112000A (en) * 2012-12-05 2014-06-19 Tlv Co Ltd Gas-liquid separator
US20150003969A1 (en) * 2013-06-27 2015-01-01 Kabushiki Kaisha Toshiba Steam turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153908A (en) * 1978-05-26 1979-12-04 Toshiba Corp Nozzle diaphragm
JPS5540237A (en) * 1978-09-13 1980-03-21 Toshiba Corp Geothermal turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153908A (en) * 1978-05-26 1979-12-04 Toshiba Corp Nozzle diaphragm
JPS5540237A (en) * 1978-09-13 1980-03-21 Toshiba Corp Geothermal turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151055A (en) * 2008-12-25 2010-07-08 Toshiba Corp Steam turbine
JP2013011172A (en) * 2011-06-28 2013-01-17 Mitsubishi Heavy Ind Ltd Stationary blade for steam turbine and method for assembling the same
JP2014112000A (en) * 2012-12-05 2014-06-19 Tlv Co Ltd Gas-liquid separator
US20150003969A1 (en) * 2013-06-27 2015-01-01 Kabushiki Kaisha Toshiba Steam turbine
JP2015010482A (en) * 2013-06-27 2015-01-19 株式会社東芝 Steam turbine
US9850781B2 (en) 2013-06-27 2017-12-26 Kabushiki Kaisha Toshiba Steam turbine

Also Published As

Publication number Publication date
JP2573197B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JP4886271B2 (en) Steam turbine and hydrophilic coating material thereof
KR20070113132A (en) Airfoil and method for moisture removal and steam injection
JP4328269B2 (en) Gas turbine equipment
JP2013508618A (en) Droplet catcher for centrifugal compressors
US11203941B2 (en) Steam turbine
CN106988792B (en) Steam turbine, steam turbine nozzle, and method of managing moisture in a steam turbine
JP2009138540A (en) Steam turbine and moisture removing structure for steam turbine stage
JPS63176602A (en) Steam turbine
JPH0326802A (en) Stationary blade apparatus of steam turbine
JP3093479B2 (en) Steam turbine moisture separator
JP2753237B2 (en) Stationary structure of steam turbine
JP2002097902A (en) Water removing pocket having improved water removing efficiency
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
JP3862893B2 (en) Drain separation structure of steam turbine
JPH08200007A (en) Moisture removing device of steam turbine
JPS62168905A (en) Moisture removing device for turbine
JPH08121107A (en) Steam turbine nozzle
JPS61182403A (en) Drain discharging apparatus of steam turbine
JPS61265305A (en) Steam turbine
JPH062503A (en) Moisture separation structure for steam turbine stationary blade
JPH0861006A (en) Steam turbine
JP2007138864A (en) Steam turbine stage and steam turbine
JPH09273875A (en) Condenser for steam turbine
JP5868774B2 (en) Steam turbine and steam turbine blades
JPH02185601A (en) Stationary blade device for steam turbine