JPS61182403A - Drain discharging apparatus of steam turbine - Google Patents

Drain discharging apparatus of steam turbine

Info

Publication number
JPS61182403A
JPS61182403A JP2171485A JP2171485A JPS61182403A JP S61182403 A JPS61182403 A JP S61182403A JP 2171485 A JP2171485 A JP 2171485A JP 2171485 A JP2171485 A JP 2171485A JP S61182403 A JPS61182403 A JP S61182403A
Authority
JP
Japan
Prior art keywords
drain
float
catch
steam
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2171485A
Other languages
Japanese (ja)
Inventor
Shohei Yoshida
正平 吉田
Kuniyoshi Tsubouchi
邦良 坪内
Yoshiaki Yamazaki
義昭 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2171485A priority Critical patent/JPS61182403A/en
Publication of JPS61182403A publication Critical patent/JPS61182403A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles

Abstract

PURPOSE:To prevent the leak of working steam by forming the inlet part of a drain discharge hole formed on the bottom part on the lower half side of a drain catch into semispherical form and installing a float and a cover for preventing the floatation of the float in close to the inlet part. CONSTITUTION:A drain collecting groove 13 is formed on the bottom part 12 on the lower half side of a drain catch, and a drain discharge hole 14 which communicates to an exhaust chamber is formed in the collecting groove part 13. The inlet part 15 of the discharge hole 14 is formed into a semispherical groove, and a spherical float 16 smaller than the semispherical groove and a cover 17 for preventing the floatation of the float 16 are arranged at the inlet part 15. Further, a groove 18 for accommodating the float 16 when it is floated-up is formed onto the cover 17. Further, in order to facilitate the drain catching, cut parts 19 for introducing drain and a roof 20 are formed into the collecting groove 13 and the cover 17. Therefore, only the drain is discharged, and the leak of the working steam having effective energy can be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蒸気タービンのドレン排出装置に係り、特に、
タービンの性能向上に好適なドレン排出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a drain discharge device for a steam turbine, and in particular,
The present invention relates to a drain discharge device suitable for improving turbine performance.

〔発明の背景〕[Background of the invention]

一般に、蒸気タービンの低圧力段や原子力タービンの全
段落では、蒸気が湿り域で作動するため、作動蒸気中に
相当量の水滴が発生する。このため、タービンの翼通路
において、一般に、湿り損失と呼ばれるエネルギ損失が
発生し、タービン性能が低下し、水滴が動翼と衝突して
二ローションを生じさせるなど性能及び、信頼性の面か
ら二つの大きな問題が生じる。湿り損失には、蒸気が水
滴に凝縮する際、水滴と蒸気の間で非可逆的に潜熱の授
受が行なわれるため、エントロピが増大することによる
熱力学的損失や、凝縮により発生した比較的大きな水滴
は、慣性力により静翼の腹面側後縁部に集積され最終的
には下流に放出されるが、静翼より放出された速度の遅
い粗大水滴が飛行中に高速の蒸気相に加速されるため、
蒸気自身はこの加速のためエネルギを消費する加速損失
、あるいは、加速された水滴が、動翼前縁の背面側に衝
突し、動翼が回転方向と逆の制動力を受けるために生じ
る動翼の制動損失などがある。
In general, in the low pressure stage of a steam turbine and in all stages of a nuclear power turbine, the steam operates in a humid region, so that a considerable amount of water droplets are generated in the operating steam. For this reason, an energy loss called moisture loss generally occurs in the turbine blade passage, which reduces turbine performance and causes water droplets to collide with the rotor blades and generate two lotions, resulting in problems in terms of performance and reliability. Two major problems arise. Moisture loss includes thermodynamic loss due to increased entropy due to the irreversible exchange of latent heat between water droplets and steam when steam condenses into water droplets, and a relatively large loss caused by condensation. Water droplets accumulate on the trailing edge of the ventral side of the stator blade due to inertial force and are eventually released downstream, but the slow coarse water droplets released from the stator blade are accelerated into a high-speed vapor phase during flight. In order to
Acceleration loss occurs when the steam itself consumes energy due to this acceleration, or the accelerated water droplet collides with the back side of the leading edge of the rotor blade, causing the rotor blade to receive a braking force in the opposite direction of rotation. braking loss, etc.

また、二ローションは前述のように、水滴が動翼に衝突
するために発生するものであり、一般にタービン出口の
湿り度が大きいほど、また、動翼の周速度が高いほど著
しい。
Further, as described above, the second lotion is generated due to water droplets colliding with the rotor blade, and generally, the higher the humidity at the turbine outlet and the higher the circumferential speed of the rotor blade, the more pronounced the problem.

以上の湿り損失や、エロージョンを減少させるためには
、原理的には水滴の発生を制御したり、発生した水滴を
できるだけ除去することが必要である。これらの方法と
して、ケーシングやダイヤフラムに耐着したドレンを再
び流路に戻さないようドレンキャッチを設け、ドレンキ
ャッチに集積したドレンをドレン排出孔より排出室に排
出させる方法がある。例えば、実開昭59−11650
2号公報では、ノズルダイヤフラム外軸にドレンを排出
する複数のドレン孔の総開口面積を、ノズル出口部の総
開口面積の0.1%より0.7%にした方法であり、ド
レン孔より漏れる有効エネルギをもつ作蒸気動の漏れ制
御に効果がある。この方法では、複数のドレン孔より排
気室に有効エネルギをもつ作動蒸気が排出されるという
問題点、及び、ドレン孔の総開口面積が小さいため、ド
レン集積効率が低下するという問題点があった。
In order to reduce the above moisture loss and erosion, it is necessary in principle to control the generation of water droplets and to remove the generated water droplets as much as possible. Among these methods, there is a method in which a drain catch is provided so that the drain that has adhered to the casing or the diaphragm is not returned to the flow path, and the drain that has accumulated on the drain catch is discharged from the drain discharge hole into the discharge chamber. For example, Utsukai Sho 59-11650
Publication No. 2 discloses a method in which the total opening area of a plurality of drain holes that discharge drain to the outer shaft of the nozzle diaphragm is set to 0.7% from 0.1% of the total opening area of the nozzle outlet. It is effective in controlling leakage in actuating steam operations that have leaking effective energy. This method has the problem that working steam with effective energy is discharged into the exhaust chamber through multiple drain holes, and that the total opening area of the drain holes is small, resulting in a decrease in drain collection efficiency. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、蒸気タービンのドレンキャッチに集積
した水滴を、排気室、または、系外に排出する際、ドレ
ンだけを排出し、有効エネルギをもつ作動蒸気の漏れを
防止することによってエネルギ損失の少ない蒸気タービ
ン装置を提供することにある。
An object of the present invention is to reduce energy loss by discharging only the condensate when discharging water droplets accumulated on the drain catch of a steam turbine to the exhaust chamber or outside the system, thereby preventing leakage of working steam that has effective energy. The object of the present invention is to provide a steam turbine device with less.

〔発明の概要〕[Summary of the invention]

本発明は、蒸気タービンのドレンを捕獲集積するドレン
キャッチの下半側底部に設けられているドレンを排出す
るどレン排出孔の入口部を略半球状溝に穿設し、この溝
と略合致し、ドレンに浮上する略球状のフロートと、フ
ロートの浮遊を防止するためのカバーをドレン排出孔入
口部に配置し、ドレンが集積すると半球状の溝に略合致
してぃたフロートが浮上し、ドレン排出孔よりドレンが
排出され、また、ドレンが排出されるとフロートがドレ
ン排出孔入口溝に合致し、作動蒸気の排出を防止するこ
とを特徴とする。
According to the present invention, the entrance part of the drainage hole provided at the bottom of the lower half of the drain catch that captures and accumulates the drain of a steam turbine is formed into a substantially hemispherical groove, and the entrance part of the drainage hole is formed into a substantially hemispherical groove, and the inlet portion is substantially aligned with the groove. Therefore, a substantially spherical float that floats on the drain and a cover to prevent the float from floating are placed at the entrance of the drain discharge hole, and when the drain accumulates, the float that roughly matches the hemispherical groove floats. , the drain is discharged from the drain discharge hole, and when the drain is discharged, the float matches the drain discharge hole inlet groove to prevent discharge of working steam.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第7図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

第1図はロータ3と、このロータ3に周方向で相隔って
固定した動翼2及び、ケーシング7と、これに保持され
る外周側ダイヤフラム4により構成されたドレンキャッ
チ1と、外周側ダイヤフラム4と内周側ダイヤフラム5
によって周方向に相隔って固定された静翼6の環状翼列
をもつ軸流蒸気タービンの低圧段構造を示す。
FIG. 1 shows a rotor 3, rotor blades 2 fixed to the rotor 3 at intervals in the circumferential direction, a casing 7, a drain catch 1 constituted by an outer diaphragm 4 held by the rotor 3, and an outer diaphragm. 4 and inner diaphragm 5
1 shows a low-pressure stage structure of an axial steam turbine having an annular row of stationary blades 6 spaced apart from each other in the circumferential direction.

第2図は、第1@の低圧最終段落上半部を拡大したもの
でドレンキャッチ1は、ケーシング7と外周側ダイヤフ
ラム4により構成されている。外周側ダイヤフラム4及
び静翼6の表面に付着したドレンは、蒸気の旋回流によ
って与えられた水滴の慣性力により図中矢印で示すよう
にドレンキャッチ1に導かれる。外周側ダイヤフラム4
の内周面4′はケーシング7の内周面7′より半径方向
外周側に形成され、ドレンをドレンキャッチ1に導入し
やすい構造としている。蒸気の旋回流によって与えられ
た水滴の慣性力によってドレンキャッチ1に導かれたド
レンが、第2図に示す上半部では、ドレン自身の重量及
び旋回流により、再び、流路内に戻らないように、ドレ
ンキャッチの内周側は全周に折り返し部8.9が設けら
れている。
FIG. 2 is an enlarged view of the upper half of the first low-pressure final stage, and the drain catch 1 is composed of a casing 7 and an outer diaphragm 4. Drain adhering to the surfaces of the outer diaphragm 4 and the stationary blades 6 is guided to the drain catch 1 as shown by the arrow in the figure by the inertial force of water droplets given by the swirling flow of steam. Outer diaphragm 4
The inner peripheral surface 4' of the casing 7 is formed on the outer peripheral side in the radial direction than the inner peripheral surface 7' of the casing 7, so that the drain can be easily introduced into the drain catch 1. The condensate that is guided to the drain catch 1 by the inertial force of the water droplets given by the swirling flow of steam does not return back into the flow path in the upper half shown in Figure 2 due to the weight of the drain itself and the swirling flow. As shown, the inner circumferential side of the drain catch is provided with a folded portion 8.9 around the entire circumference.

ドレンキャッチ1に導かれたドレンは、第3図に矢印で
示す様に、旋回流及びドレン自身の重量により、上半側
10ではドレンキャッチ1の内周側を、下半側11では
ドレンキャッチ1の外周側をそれぞれ流下し、ドレンキ
ャッチ下半側底部12に集積され排気室24に排出され
る。
As shown by the arrows in Fig. 3, the drain guided to the drain catch 1 is guided by the swirling flow and the weight of the drain itself, so that the drain is guided to the inner circumferential side of the drain catch 1 on the upper half side 10 and on the inner circumferential side of the drain catch 1 on the lower half side 11. They flow down the outer periphery of the drain catch 1, are collected at the bottom 12 of the lower half of the drain catch, and are discharged into the exhaust chamber 24.

第4図にドレンキャッチ下半側底部12の詳細図を示す
、底部12にはドレンを集積するための集積溝13が設
けられ、さらに、集積溝13には排気室と連絡するドレ
ン排出孔14が設れられている。また、排出孔14の入
口部15は半球状の溝に形成されており、さらに、入口
部15の半球状の溝よりも若干小さな球状のフロート1
6と、フロート16の浮遊を防ぐためのカバー17が配
置されている。カバー17にはフロート16が浮上した
際、フロート16を収納する溝18が形成されている。
FIG. 4 shows a detailed view of the bottom part 12 of the lower half of the drain catch. The bottom part 12 is provided with an accumulation groove 13 for accumulating drain, and the accumulation groove 13 also has a drain discharge hole 14 communicating with the exhaust chamber. is set up. Further, the inlet portion 15 of the discharge hole 14 is formed in a hemispherical groove, and a spherical float 1 that is slightly smaller than the hemispherical groove of the inlet portion 15 is formed.
6 and a cover 17 for preventing the float 16 from floating. A groove 18 is formed in the cover 17 to accommodate the float 16 when the float 16 floats.

また、集積溝13とカバー17にはドレンの捕獲を容易
にするために、ドレン導入切欠19及びドレン導入ひさ
し20がそれぞれ形成されている。
Furthermore, a drain introduction notch 19 and a drain introduction eaves 20 are formed in the collecting groove 13 and the cover 17, respectively, in order to facilitate the capture of drain.

次に、このように構成されたドレンキャッチ底部12の
ドレン排出構成の作動原理を説明する。
Next, the operating principle of the drain discharge structure of the drain catch bottom 12 configured as described above will be explained.

第5図はドレン集積溝13にドレンが集積されていない
状態を示している。この時、集積溝13の気力P1と排
気室24の圧力pHの関係はP□〉Poとなり、その圧
力差によりフロート16は、ドレン排出孔入口部15に
吸付けられ固定される。第6図はこの状態の■−■断面
図を示すが、ドレン排出孔入口部15とフロート16の
間にはギャップGが形成されるように、ドレン排出孔1
4が設けられている。このギャップGは、フロート16
がドレン排出孔入口部15に吸付けられる際の吸付は力
を緩和する目的で設けられ、このギャップGの大きさを
謂節することにより、フロートに作用する吸付は力を調
節することが可能である。また、ギャップGより微量の
蒸気を吸い込み、ドレンキャッチ1の圧力P工を低下さ
せ、ドレンをドレンキャッチ1に導かせるのに役立つ。
FIG. 5 shows a state in which no drain is accumulated in the drain accumulation groove 13. At this time, the relationship between the air force P1 in the collecting groove 13 and the pressure pH in the exhaust chamber 24 is P□>Po, and the float 16 is attracted and fixed to the drain discharge hole entrance 15 due to the pressure difference. FIG. 6 shows a sectional view taken along the line ■-■ in this state.
4 is provided. This gap G is the float 16
The suction force when the float is suctioned to the drain discharge hole entrance part 15 is provided for the purpose of alleviating the force, and by adjusting the size of this gap G, the suction force acting on the float can be adjusted. is possible. In addition, a small amount of steam is sucked in through the gap G, which lowers the pressure P of the drain catch 1 and serves to guide the drain to the drain catch 1.

しかし、この蒸気量は微量であるため、タービン効果に
影響を及ぼす量ではない。ギャップGの断面積はドレン
を排出させるのに必要な断面積より小さく形成されてい
るため、ドレン集積溝13には徐々にドレンが集積し、
その水位が上昇する。
However, this amount of steam is so small that it does not affect the turbine effect. Since the cross-sectional area of the gap G is smaller than the cross-sectional area required for draining the drain, the drain gradually accumulates in the drain collecting groove 13.
The water level rises.

ドレンの水位が上昇することによりフロート16に作用
する浮力F1が増加する。集積溝13の圧力Piと排気
室の圧力PI、の圧力差によって生じるフロート16に
作用する吸引力F。と浮力F1の関係がF工〉Fo に
なると、フロート16は浮上し、ドレン排出孔の入口部
15が開放状態となり、ドレンは排気室に排出される。
As the water level of the drain rises, the buoyant force F1 acting on the float 16 increases. A suction force F acting on the float 16 is generated by a pressure difference between the pressure Pi in the accumulation groove 13 and the pressure PI in the exhaust chamber. When the relationship between F and buoyancy F1 becomes F>Fo, the float 16 floats, the inlet 15 of the drain discharge hole becomes open, and the drain is discharged into the exhaust chamber.

この状態を示したのが第7図である。また、ドレン排出
孔14の断面積は集積されるドレン量を十分排出できる
大きさの断面積に形成されているため、ドレン集積溝1
3に集積されたドレンは一部全て排出され第5図に示す
状態に戻り、上記した動作を繰り返す。
FIG. 7 shows this state. In addition, since the cross-sectional area of the drain discharge hole 14 is formed to be large enough to discharge the accumulated amount of drain, the drain collecting groove 1
A portion of the drain accumulated in No. 3 is completely discharged, returning to the state shown in FIG. 5, and the above-described operation is repeated.

本実施例によれば、ドレンキャッチに集積されたドレン
を排気室に排出する際、有効エネルギをもつ作動蒸気の
漏れを防止し、蒸気タービンの性−向上に寄与できる。
According to this embodiment, when drain collected in the drain catch is discharged into the exhaust chamber, leakage of working steam having effective energy can be prevented, contributing to improved performance of the steam turbine.

第8図は本発明の他の実施例を示す。この実施例では、
ケーシング7とこれに保持される外周側ダイヤフラム4
により構成されるドレンキャッチ1に、蒸気吸込み口2
1を設け、また、ドレンキャッチ1内の圧力より低い、
静翼6の半径方向内周附近に蒸気吹き出し口22を設け
、さらに、外周側ダイヤフラム4及び静翼6の内部を通
り、蒸気吸込み口21と蒸気吹き出し口22を連絡する
導管23を穿設する。蒸気吸込み口21の附近の圧力P
□と蒸気吹き出し口22の圧力P2の関係はP□〉P2
であるため、ドレンキャッチ1の圧力P1静翼6の半径
方向外周側附近の圧力P、よりも低くなる。このP2と
P、の圧力差により、外周側ダイヤフラム4等に耐着し
たドレンの回収効率を向上できるのはもちろん、静翼6
やドレンキャッチ1の入口部を飛翔する水滴の回収も期
待できる。
FIG. 8 shows another embodiment of the invention. In this example,
Casing 7 and outer diaphragm 4 held therein
A steam suction port 2 is connected to a drain catch 1 consisting of a
1, and lower than the pressure inside the drain catch 1,
A steam outlet 22 is provided near the inner circumference in the radial direction of the stator blade 6, and a conduit 23 that passes through the outer diaphragm 4 and the inside of the stator blade 6 and connects the steam inlet 21 and the steam outlet 22 is bored. . Pressure P near the steam suction port 21
The relationship between □ and the pressure P2 of the steam outlet 22 is P□〉P2
Therefore, the pressure P1 of the drain catch 1 is lower than the pressure P near the radially outer peripheral side of the stationary blade 6. This pressure difference between P2 and P not only improves the recovery efficiency of the drain that has adhered to the outer diaphragm 4, etc.
It can also be expected that water droplets flying around the inlet of the drain catch 1 can be collected.

また、ドレンキャッチ1に設けた蒸気吸込み口21より
蒸気を吸込む際、集積したドレンも蒸気と共に吸込む恐
れがあるが、第9図に示すように、蒸気吸込み口21の
入口部をドレン旋回方向の逆向きに配置することにより
導IW23へのドレンの進入を妨げる。
Furthermore, when steam is sucked in through the steam suction port 21 provided in the drain catch 1, there is a risk that accumulated condensate may be sucked in along with the steam, but as shown in FIG. By arranging it in the opposite direction, the drain is prevented from entering the guide IW 23.

また蒸気吹き出し口22を蒸気流速が音速を越える、動
翼6の半径方向内周側位置に設けることにより、蒸気吸
い込み口21より吸い込まれたドレンも、蒸気吹き出し
口22より放出される際、次の関係式によって噴霧状に
微粒化される。
In addition, by providing the steam outlet 22 at a position on the radially inner circumferential side of the rotor blade 6 where the steam flow velocity exceeds the speed of sound, the condensate sucked in from the steam suction port 21 is also discharged from the steam outlet 22. It is atomized into a spray according to the relational expression.

ここで、Weはウニバー数で普通20〜25となる。ま
たσ、は水の表面張力、ρ7は蒸気の密度、Uvは蒸気
の速度、ULは水滴の速度であり、dが水滴径である。
Here, We is the Univer number, which is usually 20 to 25. Further, σ is the surface tension of water, ρ7 is the density of steam, Uv is the velocity of steam, UL is the velocity of water droplets, and d is the diameter of water droplets.

最近の大容量蒸気タービンの低圧最終段静翼の半径方向
内周側の最大速度は700m/s程度となるため、蒸気
吹き出し口22より放出されるドレンの水滴径は数ミク
ロン以下にすることができ、動翼に衝突した場合の衝撃
力を小さくすることができる。水滴を微粒化したことに
より、水滴の加速損失、あるいは、動翼の制動損失及び
二ローションなどを減少することができる。
Since the maximum speed on the radially inner circumferential side of the low-pressure final stage stationary blades of recent large-capacity steam turbines is about 700 m/s, the diameter of condensate water droplets discharged from the steam outlet 22 can be reduced to several microns or less. It is possible to reduce the impact force when colliding with the rotor blade. By atomizing the water droplets, it is possible to reduce the acceleration loss of the water droplets, the braking loss of the rotor blades, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、排気室に、ドレンだけを排出し、有効
エネルギをもつ作動蒸気の漏れを防止することができ、
タービン性能向上に大きく寄与でき、二ローション等の
少ない信頼性の高いタービンを実現することができる。
According to the present invention, only condensate can be discharged into the exhaust chamber, and leakage of working steam having effective energy can be prevented.
This can greatly contribute to improving turbine performance, and can realize a highly reliable turbine with less double lotion and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の蒸気タービン低圧段の断面
図、第2図は第1図の最終段上半側拡大図、第3図は、
第1図の■−■矢視断面図、第4図は、第3図のドレン
キャッチ下半側底部の詳細図、第5図、第6図、第7図
は本発明の作動原理図、第8@は本発明の他の実施例の
説明図、第9図は第8図のIK−[矢視断面図である。 1・・・ドレンキャッチ、2・・・動翼、6・・・静翼
、1゜・・・上半側ドレンキャッチ、11・・・下半側
ドレンキャッチ、13・・・ドレン集積溝、15・・・
排水孔入口溝、16・・・フロート
FIG. 1 is a sectional view of a steam turbine low pressure stage according to an embodiment of the present invention, FIG. 2 is an enlarged view of the upper half of the final stage in FIG. 1, and FIG.
1 is a sectional view taken along the arrow ■-■, FIG. 4 is a detailed view of the bottom of the lower half of the drain catch in FIG. 3, and FIGS. 8th @ is an explanatory diagram of another embodiment of the present invention, and FIG. 9 is a sectional view taken along the IK-[arrow in FIG. 8. 1... Drain catch, 2... Moving blade, 6... Stationary blade, 1°... Upper half side drain catch, 11... Lower half side drain catch, 13... Drain accumulation groove, 15...
Drain hole entrance groove, 16...Float

Claims (1)

【特許請求の範囲】 1、静翼部を通過した飽和蒸気から発生するドレンを捕
獲集積するドレンキャッチを備えた蒸気タービンにおい
て、 前記ドレンキャッチの下半側底部に設けられているドレ
ンを排出するドレン排出孔の入口部を略半球状溝に穿設
し、前記溝と略合致し、前記ドレンに浮上する略球状の
フロートと、このフロートの浮遊を防止するためのカバ
ーを前記ドレン排出孔入口部に配置したことを特徴とす
る蒸気タービンのドレン排出装置。 2、特許請求の範囲第1項において、前記ドレンキャッ
チに吸込み口を設け、また、前記静翼部の半径方向内周
側に吹き出し口を設け、前記吸込み口と前記吹き出し口
を、前記静翼の内部を通って連絡する導管を穿設したこ
とを特徴とする蒸気タービンのドレン排出装置。
[Claims] 1. In a steam turbine equipped with a drain catch that captures and collects drain generated from saturated steam that has passed through a stationary blade, the drain provided at the bottom of the lower half of the drain catch is discharged. A substantially hemispherical groove is formed at the entrance of the drain discharge hole, and a substantially spherical float that substantially coincides with the groove and floats on the drain, and a cover for preventing this float from floating are provided at the entrance of the drain discharge hole. 1. A drain discharge device for a steam turbine, characterized in that the drain discharge device is disposed in a section. 2. In claim 1, the drain catch is provided with a suction port, and an air outlet is provided on the radially inner peripheral side of the stator blade portion, and the suction port and the air outlet are connected to the stator blade. A drain discharge device for a steam turbine, characterized in that a conduit is bored through the interior of the steam turbine.
JP2171485A 1985-02-08 1985-02-08 Drain discharging apparatus of steam turbine Pending JPS61182403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171485A JPS61182403A (en) 1985-02-08 1985-02-08 Drain discharging apparatus of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171485A JPS61182403A (en) 1985-02-08 1985-02-08 Drain discharging apparatus of steam turbine

Publications (1)

Publication Number Publication Date
JPS61182403A true JPS61182403A (en) 1986-08-15

Family

ID=12062731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171485A Pending JPS61182403A (en) 1985-02-08 1985-02-08 Drain discharging apparatus of steam turbine

Country Status (1)

Country Link
JP (1) JPS61182403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925785A1 (en) * 2006-11-22 2008-05-28 Siemens Aktiengesellschaft Water drainage apparatus for a turbine
JP2014040803A (en) * 2012-08-23 2014-03-06 Hitachi Ltd Stator blade structure of steam turbine, and steam turbine
JPWO2014010287A1 (en) * 2012-07-11 2016-06-20 三菱日立パワーシステムズ株式会社 Axial exhaust turbine
EP3428412A1 (en) * 2017-07-12 2019-01-16 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine drain structure and method of modifying the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925785A1 (en) * 2006-11-22 2008-05-28 Siemens Aktiengesellschaft Water drainage apparatus for a turbine
JPWO2014010287A1 (en) * 2012-07-11 2016-06-20 三菱日立パワーシステムズ株式会社 Axial exhaust turbine
US10072528B2 (en) 2012-07-11 2018-09-11 Mitsubishi Hitachi Power Systems, Ltd. Axial-flow exhaust turbine
JP2014040803A (en) * 2012-08-23 2014-03-06 Hitachi Ltd Stator blade structure of steam turbine, and steam turbine
EP3428412A1 (en) * 2017-07-12 2019-01-16 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine drain structure and method of modifying the same
US10648367B2 (en) 2017-07-12 2020-05-12 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine drain structure and method of modifying the same

Similar Documents

Publication Publication Date Title
JP2007315385A (en) Airfoil and method for removing moisture and injecting steam
CN1097176C (en) Air compressor end wall treatment
US6524373B2 (en) Two-stage water extractor
JP4328269B2 (en) Gas turbine equipment
EA006690B1 (en) Anti-icing system for wind turbines
CZ201290A3 (en) Steam turbine
US4602925A (en) Moisture separator
JPS61182403A (en) Drain discharging apparatus of steam turbine
JP2010203438A (en) Steam turbine and method for extracting moisture from steam turbine
JPH0326802A (en) Stationary blade apparatus of steam turbine
JP3862893B2 (en) Drain separation structure of steam turbine
JP2753237B2 (en) Stationary structure of steam turbine
JPS63176602A (en) Steam turbine
CN208073565U (en) A kind of small chamber's vacuum exhauster system for eliminating blade erosion
KR102055506B1 (en) Drain discharging structure of steam turbine and remodeling method thereof
CN212027891U (en) Dehumidification ring of dehumidification stage of low-parameter saturated steam turbine
JPH06173607A (en) Corrosion preventive device for steam turbine blade
JP5173646B2 (en) Steam turbine
JPH09273875A (en) Condenser for steam turbine
CN220687415U (en) Efficient drainage structure of low-pressure final-stage partition plate of steam turbine
JPH04194302A (en) Steam turbine structure
JPS6038001Y2 (en) geothermal turbine
CN217206596U (en) Be applied to oval dehumidification structure of water erosion prevention on steam turbine blade surface
CN111396148A (en) Dehumidification ring of dehumidification stage of low-parameter saturated steam turbine
JPH0326803A (en) Moist steam turbine stage