JPH0326803A - Moist steam turbine stage - Google Patents
Moist steam turbine stageInfo
- Publication number
- JPH0326803A JPH0326803A JP15957089A JP15957089A JPH0326803A JP H0326803 A JPH0326803 A JP H0326803A JP 15957089 A JP15957089 A JP 15957089A JP 15957089 A JP15957089 A JP 15957089A JP H0326803 A JPH0326803 A JP H0326803A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- stage
- separation
- water droplet
- vane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- 230000007246 mechanism Effects 0.000 claims abstract description 4
- 238000000926 separation method Methods 0.000 claims description 57
- 230000007423 decrease Effects 0.000 claims description 5
- 230000000740 bleeding effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/32—Collecting of condensation water; Drainage ; Removing solid particles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、湿り蒸気で作動する原子力タービンの段落、
及び、火力タービンの低圧段落構造の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a paragraph of a nuclear turbine operated with wet steam;
The present invention also relates to improvements in the low-pressure stage structure of thermal power turbines.
近年来の大石燃料の高騰によって原子力タービンのベー
スロー・ド運用が定着化し.さらに、火力タービンでは
−ffの性能向上を図るために低圧最終段長翼が益々長
大化する傾向にある。このような湿り蒸気で作動する蒸
気タービンでは、段落性能の高効率化をタービン翼の信
頼性を阻害する要因の一つに、湿り蒸気に含まれる湿分
問題がある。Due to the recent rise in the price of Oishi fuel, base load operation of nuclear turbines has become established. Furthermore, in thermal power turbines, the low-pressure final stage long blades tend to become increasingly longer in order to improve -ff performance. In such steam turbines that operate with wet steam, one of the factors that hinders the reliability of the turbine blades while improving the efficiency of the stage performance is the problem of moisture contained in the wet steam.
この湿り蒸気中の湿分分離及び除去対策については,従
来から効果的な対策が強く求められ、種々の考案が提案
されている。その中で,代表的な考案は、実公昭52−
27282号公報に開示されている水滴分離ノズル翼
がある.第2図、及び、第3図は、従来の水滴分離ノズ
ル翼を適用したタービン段落構造と水滴分離ノズル翼の
断面構造図を示す。Effective measures for separating and removing moisture from wet steam have long been strongly sought after, and various ideas have been proposed. Among them, the representative idea was
There is a water droplet separation nozzle blade disclosed in Japanese Patent No. 27282. FIG. 2 and FIG. 3 show cross-sectional structural views of a turbine stage structure and a water droplet separation nozzle blade to which a conventional water droplet separation nozzle blade is applied.
第2図は,静翼1,4,7,43,動′R2,5,8,
11,ダイヤフラム内壁12,14,1.6,18、及
び、ダイヤプラム外壁13,15.17,19などから
構成される低圧タービン段落の最終段落静翼43に吸込
スリット44をもつ水滴分離ノズル翼を適用した例であ
り、ノズル翼の断面構造は、第3図のような翼内部を中
空構造とした静翼ホロ一部47を形成し、このホロ一部
47と、静翼腹面43表面に穿設された吸込スリット4
4とが連接し、吸込スリット44は翼高さ方向の外周側
に延在している。湿り蒸気中に含まれた水滴は,分離静
翼43の上流段落のljJ翼8によって飛散し、その一
部が分離Ip翼43の腹面45に付着,捕集され,翼面
を水膜状となって流下し、吸込スリット44から静翼ホ
ロ一部47に吸引される.この水滴は、分離静翼43の
外周側に配設したダイヤプラム外壁19の内部に設けた
吸込チャンバ49内に吸込スロットを介して導かれ、さ
らに、外周吸込スロツ1−からタービン系外に排出され
る。Figure 2 shows stationary blades 1, 4, 7, 43, dynamic blades 2, 5, 8,
11. A water droplet separation nozzle blade having a suction slit 44 in the final stage stationary blade 43 of a low-pressure turbine stage, which is composed of diaphragm inner walls 12, 14, 1.6, 18 and diaphragm outer walls 13, 15, 17, 19, etc. The cross-sectional structure of the nozzle blade is as shown in FIG. Drilled suction slit 4
4 are connected to each other, and the suction slit 44 extends toward the outer circumferential side in the blade height direction. The water droplets contained in the wet steam are scattered by the ljJ blade 8 in the upstream stage of the separation stator blade 43, and a part of it is attached to and collected on the ventral surface 45 of the separation Ip blade 43, forming a water film on the blade surface. The liquid flows downward and is sucked into the stator vane holo part 47 through the suction slit 44. These water droplets are guided through a suction slot into a suction chamber 49 provided inside the diaphragm outer wall 19 disposed on the outer circumferential side of the separation stationary vane 43, and are further discharged to the outside of the turbine system from the outer circumferential suction slot 1-. be done.
従来、この構造、あるいは、類似の水滴分離ノズル翼は
湿り蒸気で運転する実機の蒸気タービンに多用されてい
るが,この411造の水滴分離ノズル翼の欠点は、分離
効率が満足できるほど高くないことである。発明者らの
経験では,分離効率が湿り度の大小に左右され、実機タ
ービンの湿り度における分離効率は,せいぜい,■0%
以下である。Traditionally, water droplet separation nozzle blades with this structure or similar ones have been widely used in actual steam turbines that operate on wet steam, but the drawback of this 411-built water droplet separation nozzle blade is that the separation efficiency is not high enough to satisfy That's true. In the experience of the inventors, the separation efficiency depends on the level of humidity, and the separation efficiency at the humidity of an actual turbine is at most 0%.
It is as follows.
この分離性能低下の主因は、通常の蒸気タービンの場合
,ノズル内の蒸気速度が極めて高速であるために翼面を
流下する水膜流の速度が大きくなり、吸込スリツ1へ4
4で吸引できろ水膜流に限界があること、また、湿り度
が大きくなると水膜が厚くなり、スリット44の近傍で
跳水現象を引き起し,f流側に持ち去られることなどが
考えられる。The main reason for this deterioration in separation performance is that in the case of ordinary steam turbines, the steam velocity in the nozzle is extremely high, so the velocity of the water film flowing down the blade surface increases, and the
It is conceivable that there is a limit to the flow of the water film that can be sucked at 4, and that as the humidity increases, the water film becomes thicker, causing a water splash phenomenon near the slit 44, and being carried away to the f flow side. .
一方、湿り蒸気段落内部の水滴を分離除去するもう−つ
の手段どして、特公昭63−176602号公報に記載
されているように,静翼43を保持するダイヤプラム外
壁の内面に多数のスリットを設け、外壁内面に付着した
水膜をスリットに導き、分離除去しようとする発明も提
案されていろ。しかし,この種の分,III造では,静
翼に列に衝突,付着した水滴の分離,除去が難しく5分
離性能の面で不十分である.
〔発明が解決しようとする課題〕
上記の従来技術は、水滴分離静翼々列中の主蒸気流の高
速化,湿り度増加に{?う水漬負荷の影響について考慮
がなされておらず2水滴分離静翼の分離性能、すなわち
、高効率化の達或に問題があった。On the other hand, as another means for separating and removing water droplets inside the wet steam stage, as described in Japanese Patent Publication No. 176602/1982, a large number of slits are provided on the inner surface of the outer wall of the diaphragm that holds the stationary vanes 43. Another invention has been proposed in which the water film adhering to the inner surface of the outer wall is separated and removed by introducing it into a slit. However, with this type of construction, it is difficult to separate and remove water droplets that collide with the rows of stator vanes and adhere to them, and is insufficient in terms of separation performance. [Problems to be Solved by the Invention] The above-mentioned conventional technology is capable of increasing the speed of the main steam flow and increasing the wetness in the row of water droplet separation stationary blades. Since no consideration was given to the influence of the immersion load, there was a problem in the separation performance of the two-water droplet separation stationary vane, that is, in achieving high efficiency.
本発明の目的は、湿り蒸気で作動する原子カタービンや
火力タービンの低圧段落内部に存在する蒸気中の湿分を
効果的に分離,除去し、分離性能の高効率化を達成可能
な段落構造を提供することにある。An object of the present invention is to provide a stage structure that can effectively separate and remove moisture in the steam existing inside the low-pressure stage of an atomic turbine or thermal power turbine that operates on wet steam, and that can achieve highly efficient separation performance. It is about providing.
上記の目的を達成するために,本発明の湿り蒸気タービ
ン段落構造は湿り蒸気で作動する蒸気タービン段落の静
翼上流部の翼の中央がら翼の先端にわたって、弾頭形の
円形前縁部と流線形後縁部とから構成される前置分離静
翼を複数枚配設し、弾頭形前縁部は、円錐形に開11シ
た水滴捕獲室と円形断面の前縁吸込スリットをもち、さ
らに、流線形後縁部は腹面及び背面の一部、あるいは、
複数部にそれぞれ吸込スリットをもち、これら三種の吸
込スリットは、前置分離静翼内部を中空構造とした水滴
集合室と翼高さ方向全域にわたって連接するなどの湿分
分離機構を備えた,前置分離静翼を配備したことを特徴
とする。In order to achieve the above object, the wet steam turbine stage structure of the present invention has a warhead-shaped circular leading edge and a flow path extending from the center of the vane upstream of the stator vane to the tip of the vane in the steam turbine stage operating with wet steam. The warhead-shaped leading edge has a water droplet capturing chamber with a conical opening and a leading edge suction slit with a circular cross section. , the streamlined trailing edge is part of the ventral and dorsal surfaces, or
Each of the three parts has suction slits, and these three types of suction slits are connected to a water droplet collection chamber with a hollow structure inside the front separation stator vane and a moisture separation mechanism that connects the entire blade height direction. It is characterized by the deployment of stationary separation vanes.
通常、湿り蒸気で作動する蒸気タービン段落の内部にお
ける流れの状況は、第4図に示すように、鎖線で示した
蒸気流れG、実線で示した水滴流れ、ハツチングで示し
た静翼々列内あるいはダイヤフラム外壁内面に付着した
水膜流れに大別される。Normally, the flow conditions inside a steam turbine stage that operates with wet steam are as shown in Fig. 4: steam flow G shown by a chain line, water droplet flow shown by a solid line, and flow within a row of stator blades shown by hatching. It can be broadly divided into water film flow that adheres to the inner surface of the outer wall of the diaphragm.
蒸気中の水滴は、蒸気流に比べて慣性力が大きいために
,前段落動翼の遠心力作用によって大部分は翼中央部か
ら先端側に飛ばされる。そのため、第5図に示すように
、静翼■0の入口部の湿り度は無次元高さ0.5(翼中
央部)から1.0(翼先端)に集中して分布することに
なる。従って、本発明において静翼の上流部に翼中央部
から先端にわたって前置分離静翼を配備することは、水
滴流れ、湿り度分布を十分考慮し,水滴捕獲性能の面か
ら従来にない分離作用が働くことになる。Since the water droplets in the steam have a larger inertial force than the steam flow, most of the water droplets are blown away from the center of the blade toward the tip side by the centrifugal force of the front stage rotor blade. Therefore, as shown in Figure 5, the humidity at the inlet of the stationary blade ■0 is concentrated and distributed at a dimensionless height of 0.5 (blade center) to 1.0 (blade tip). . Therefore, in the present invention, the provision of the pre-separating stator vane from the center to the tip of the stator vane takes into full consideration the water droplet flow and humidity distribution, and provides an unprecedented separation effect from the viewpoint of water droplet capture performance. will be working.
さらに、前置分離静翼を弾頭形前縁部と流線形後縁部と
を組合せ、前縁部に円錐形水滴捕獲室と円形吸込スリッ
トを配設し、さらに流線形後縁部の腹面及び背面の複数
個の吸込スリットを配設したことは、前段落動翼出口か
ら後段落静翼入口へ飛散する水滴のすべてをこれら三種
類の吸込みスリットでほとんど捕獲,分離できる作用と
したものである。特に、弾頭形前隷部に設けた円錐形水
滴捕獲室の軸線は、第7図に示す水滴の相対速度ベクト
ルを考慮して、水滴の飛散する角度に一致させることに
よって、水滴捕獲室の捕獲効率を大きくする作用として
働き、また、水滴捕獲室で捕獲できないような微細水滴
を後続する流線形後縁部の背面、及び、腹面に衝突させ
ることにより、腹,背面に設けた吸込スリットには補助
的な分離作用を働かせることができる。このような本発
明の前置分離静翼の配備により、湿り蒸気段落の水滴の
捕獲,分離効果が従来以上に効果的に作用する.
〔実施例〕
以下、本発明の一実施例について、第1図,第6図,第
7図及び第8図を用いて詳細に説明する.第1図は湿り
蒸気で作動する多段の蒸気タービン段落の典型的な構造
に本発明を適用した実施例を示したものである。タービ
ン段落は、上流段落から一対の静翼1,動翼2,ダイヤ
フラム内壁12及び外壁13によって主に構或され、後
続する段落へと移行するが、ここでは、その代表例とし
て最終段落に本発明を適用した例について,まず、記述
する.最終段落は、従来構造と同様に静翼10と静翼1
0を保持するダイヤフラム内壁l8、及び5ダイヤフラ
ム外壁19と動翼上見に加え、静翼10の軸方向上流部
に前置分離静翼9を周方向に複数枚を配備する。前置分
離静翼9と最終段静翼10及び前段落動翼8の二次元的
配置は第6図に示した通りである。前置静翼9は,第4
図,及び、第5図に示した従来の湿り蒸気段落における
蒸気流れG、水滴流れH、水膜流れ50の流れ状況と湿
り度分布を十分考慮して、翼高さ方向の配置を選定する
。すなわち、湿り蒸気段落における静翼に流入する水漬
流れは、水滴のもつ慣性力と前段落の動翼の遠心力作用
によって蒸気流れGから逸脱して半径方向に大きん偏向
し、翼先端側に水滴が押しつけられるような流れとなる
。従って,翼長方向の湿り度は,第5図に示すように、
翼中央部から翼先端にかけて急激に湿り度が増加する。Furthermore, the front separation stator vane is constructed by combining a warhead-shaped leading edge and a streamlined trailing edge, and a conical water droplet capturing chamber and a circular suction slit are provided at the leading edge, and the ventral surface of the streamlined trailing edge and The arrangement of multiple suction slits on the back allows these three types of suction slits to capture and separate most of the water droplets that fly from the front rotor blade outlet to the rear stage stator blade inlet. . In particular, the axis of the conical water droplet capture chamber provided in the warhead-shaped front part is made to match the angle at which the water droplets fly, taking into consideration the relative velocity vector of the water droplets shown in Figure 7. It acts as an effect to increase efficiency, and by causing minute water droplets that cannot be captured in the water droplet capture chamber to collide with the back and ventral surfaces of the trailing streamlined edge, the suction slits provided on the ventral and dorsal surfaces are An auxiliary separation effect can be exerted. Due to the provision of the pre-separation stator vane of the present invention, the water droplet capture and separation effect of the wet steam stage is more effective than before. [Example] Hereinafter, an example of the present invention will be described in detail using FIGS. 1, 6, 7, and 8. FIG. 1 shows an embodiment in which the present invention is applied to a typical structure of a multi-stage steam turbine stage operating on wet steam. The turbine stage is mainly composed of a pair of stator blades 1, rotor blades 2, diaphragm inner wall 12, and outer wall 13 from the upstream stage, and moves to the succeeding stage. First, an example of applying the invention will be described. The final stage includes the stator blade 10 and the stator blade 1 as in the conventional structure.
In addition to the diaphragm inner wall 18 holding 0, the 5 diaphragm outer wall 19, and the upper surface of the rotor blade, a plurality of pre-separation stator blades 9 are arranged in the circumferential direction at the axially upstream portion of the stator blade 10. The two-dimensional arrangement of the front separation stator vane 9, the final stage stator vane 10, and the front stage rotor blade 8 is as shown in FIG. The front stationary blade 9 is the fourth
The arrangement in the blade height direction is selected by fully considering the flow conditions and wetness distribution of the steam flow G, water droplet flow H, and water film flow 50 in the conventional wet steam stage shown in FIGS. . In other words, the submerged flow that flows into the stationary blade in the wet steam stage deviates from the steam flow G and is largely deflected in the radial direction due to the inertial force of the water droplets and the centrifugal force of the rotor blade in the previous stage, and is deflected greatly in the radial direction toward the blade tip side. The flow is like water droplets being pressed against the surface. Therefore, the humidity in the spanwise direction is as shown in Figure 5.
Humidity increases rapidly from the center of the wing to the tip of the wing.
この湿り度の増加が,翼先端部領域の性能低下と動翼の
二〇ージョン発生を招く結果となる。This increase in wetness results in a decrease in performance in the blade tip region and the occurrence of 20 motion in the rotor blade.
そこで,本発明では,前置分離静翼9を水滴の集中する
翼中央部から翼先端にわたって配備し、翼先端部に集中
的に集まる水滴群を前置分離静X.9によって捕獲・分
離しようとするものである。前置分離静翼9によって分
離した水滴は,ダイヤフラム外壁l9に穿設された吸込
スロッ1・22を介して油気室25に導かれ、タービン
外部へ排出される。また、本発明の前置分離静翼は、原
子力タービンなどのように全段落湿り蒸気域で運転され
るタービンでは、第1図の最終段落よりも上流段落に対
してもそれぞれ適用され、前置分離静翼6,3のように
配備される。次に、前置分離静翼9の具体的構造につい
て、第7図,第8図に示した実施例を用いて説明する。Therefore, in the present invention, the pre-separating stationary vane 9 is arranged from the center of the blade where water droplets are concentrated to the tip of the blade, and the pre-separating stationary vane 9 is arranged to move the water droplets concentrated at the tip of the blade to the pre-separating stationary vane 9. 9 to capture and separate them. The water droplets separated by the front separation stationary vane 9 are guided to the oil chamber 25 through suction slots 1 and 22 formed in the outer wall 19 of the diaphragm, and are discharged to the outside of the turbine. Furthermore, in a turbine such as a nuclear power turbine that operates in a wet steam region in all stages, the pre-separation stator vane of the present invention is also applied to the stages upstream of the final stage in FIG. They are arranged like separation vanes 6 and 3. Next, the specific structure of the front separation stationary vane 9 will be explained using the embodiment shown in FIGS. 7 and 8.
第7図は、前置分離静翼9の二次元的断面構造を示した
ちので、前置分離i1119a,9bは、弾頭形前縁部
41a,4lbとこれに連接する流線形後縁部60a,
60bとから構成される。弾頭形前縁部41a,4lb
の水滴衝突部は、円錐形の水滴捕獲室33a,33bを
形成し,水滴捕獲室33a,33bの入[1部は衝突し
てくる水滴を捕獲し易いように入日開11部を人きくと
り、これと接続する前縁吸込スリッ1・34a,34b
に達するまで、漸次,流路を狭くした円錐形流路を形成
する。そして、水滴捕獲室33a,33bはそれぞれ前
縁吸込みスリット34a,34bを介し7て静翼内部を
中空構造とした水a集合室42a,42bへ接続する,
また,水滴捕獲室33の軸線52と静翼の接線方向基準
線53とのなす角度θは、第7図に併記した流入する水
満の速度ベクトルの方向に一致させて配備する。すなわ
ち、前置分離静翼9へ流入する水滴の相対速度29は、
蒸気の流出する相対速度26に比べて小さく、周方向の
速度べ夕1ヘルは蒸気27,水滴3工のようにほぼ同一
であるために、実際に前置分離静翼への流入する水滴の
絶対速度30の方向は蒸気の速度ベクトルとは異なり、
接線方向に対してOなる角度をもつ。このような水滴の
流動特性を加味して、水滴捕獲室33のlui!!l線
52の方向を選定することが、流入する水滴の捕獲性能
を十分確保するためには肝要なことである.このように
,水滴捕獲室9を配備することによっ”C,流入する水
滴のうち比較的大きな粒径の大部分は,水滴捕獲室9に
より捕獲分離されることになる。この捕獲性能について
、第9図,第10図を用いて補足的に説明する。一般に
,直径Dの球状物体54に衝突する直径aの水滴の衝突
効果率ηは5次式で表わされる無次元パラメータのス1
・一クス数に左右される。FIG. 7 shows the two-dimensional cross-sectional structure of the front separation stator vane 9, so the front separation i1119a, 9b consists of the warhead-shaped leading edges 41a, 4lb, the streamlined trailing edge 60a connected thereto,
60b. Warhead-shaped leading edge 41a, 4lb
The water droplet collision part forms conical water droplet capture chambers 33a, 33b, and the entrance part of the water droplet capture chambers 33a, 33b is made up of 11 parts of the water droplet opening so as to easily capture the colliding water droplets. leading edge suction slit 1, 34a, 34b connected to this
A conical channel is formed by gradually narrowing the channel until reaching . The water droplet capturing chambers 33a and 33b are connected to water a collecting chambers 42a and 42b, each of which has a hollow structure inside the stator blade, through leading edge suction slits 34a and 34b, respectively.
Further, the angle θ formed between the axis 52 of the water droplet capturing chamber 33 and the tangential direction reference line 53 of the stationary blade is arranged so as to match the direction of the velocity vector of the inflowing water, which is also shown in FIG. That is, the relative velocity 29 of the water droplets flowing into the preseparation stator vane 9 is:
It is smaller than the relative velocity 26 of steam flowing out, and the velocity in the circumferential direction is almost the same as that of steam 27 and water droplets 3, so the velocity of water droplets actually flowing into the pre-separation stationary vane is The direction of the absolute velocity 30 is different from the steam velocity vector,
It has an angle O with respect to the tangential direction. By taking into consideration the flow characteristics of water droplets, the lui! ! It is important to select the direction of the l-line 52 in order to ensure sufficient capture performance for inflowing water droplets. As described above, by providing the water droplet capture chamber 9, most of the relatively large particle sizes among the inflowing water droplets are captured and separated by the water droplet capture chamber 9. Regarding this capture performance, A supplementary explanation will be provided using Figures 9 and 10. In general, the collision effectiveness rate η of a water droplet of diameter a colliding with a spherical object 54 of diameter D is a dimensionless parameter s 1 expressed by a quintic equation.
・It depends on the number of squares.
ストークス数 Stx=ρz−d”U/9 prDここ
で、ρ,:水滴の密度,μg :蒸気の粘性係数,U:
蒸気のアプO−チ速度である、このストークス数SLκ
と衝突効率ηとの関係は、第1 0図に示すように、ス
1一一クス数の増加に伴って衝突効率が急増加する特性
となる。実機蒸気タービンの運転条件(SLK−t〜1
0)の領域では、衝突効率ηが40%〜90%の性能と
なる。Stokes number Stx=ρz−d”U/9 prDwhere, ρ: Density of water droplets, μg: Viscosity coefficient of steam, U:
This Stokes number SLκ, which is the approach velocity of steam,
As shown in FIG. 10, the relationship between the collision efficiency η and the collision efficiency η is such that the collision efficiency rapidly increases as the number of squares increases. Operating conditions of actual steam turbine (SLK-t~1
In the region 0), the collision efficiency η is 40% to 90%.
従って、本発明の前置分離静翼9を実機タービンに適用
すれば、従来例に示したスリット付静翼(第2図参照)
に比κで格段に高い水滴の捕獲効率を得ることが可能で
ある。Therefore, if the pre-separation stator vane 9 of the present invention is applied to an actual turbine, the stator vane with slits shown in the conventional example (see Fig. 2)
It is possible to obtain a significantly higher water droplet capture efficiency with a ratio of κ to κ.
〜方5前置分M静翼9aの流線形後縁部の腹面、及び、
背面に設(づた吸込スリツh38a,39aは,腹面3
6aの変曲点近傍と背面37aの急変部(弾頭形前縁部
41aとの接合部近傍)にそれぞれ設けられ、弾頭前縁
部41aの水滴捕獲室33aで捕獲しきれないで前縁部
の周辺に付着した水膜流35a,40aを分離,除去し
て、水滴集合室42aで導引する働きを行う。前述のよ
うに、弾頭形前縁部41aの捕獲性能は、ストークス数
が小さく (水滴径が微小)になれば効率が低下する。- The ventral surface of the streamlined trailing edge of the front M stationary blade 9a, and
The suction slits h38a and 39a installed on the back are located on the ventral surface 3.
They are provided near the inflection point of the warhead 6a and at the sudden change part of the back surface 37a (near the joint with the warhead-shaped leading edge 41a). It functions to separate and remove the water film flows 35a and 40a adhering to the periphery and guide them to the water droplet collection chamber 42a. As described above, the capture performance of the warhead-shaped leading edge portion 41a decreases as the Stokes number decreases (water droplet diameter decreases).
従って、前置分離静翼9aに配設する腹面及び背面の吸
込スリット38a,39aは、弾頭形前縁部・11aの
水滴捕獲i 3 3 b、前橡吸込スリット34の分離
作用を補助する働きを受1−1も゛つことになる。また
、流線形後縁部60aの後縁端と背面とで形或される翼
形状はタービン軸線とほぼ一致させ、後続の静翼1 0
に対して迎え角をほぼ零とし、蒸気の流動損失を最小に
することは勿論である。Therefore, the suction slits 38a and 39a on the ventral and rear surfaces of the front separation stator vane 9a serve to assist the water droplet capture i33b of the warhead-shaped leading edge 11a and the separation action of the front air suction slit 34. 1-1 will also be received. In addition, the blade shape formed by the trailing edge end and the back surface of the streamlined trailing edge portion 60a is made to substantially match the turbine axis, and the trailing stationary blade 10
It goes without saying that the angle of attack should be set to almost zero to minimize steam flow loss.
また、前置分離静翼8に配設される前縁部の水滴捕獲室
33,前橡吸込スリット34、及び、後縁部翼腹面と背
面との吸込スリット38.39は、第8図に示すように
1浄翼の翼高さ方向全域にわたって細長いスリット状を
形威した配備され、翼内部の水滴集合室と接続している
。In addition, the water droplet capture chamber 33 on the leading edge, the front air suction slit 34, and the suction slits 38 and 39 on the ventral surface and the back surface of the trailing edge blade are shown in FIG. As shown, it is arranged in the shape of a long and narrow slit over the entire height of the blade, and is connected to the water droplet collection chamber inside the blade.
なお,本発明で前置分離静19の水滴捕獲室33の入口
開口部の大きさは、前述した水滴の衝突性能を表わす無
次元パラメータであるストークス数が1〜10になるよ
うに選定し、水滴の捕獲性能を十分確保することが望ま
しい。In the present invention, the size of the inlet opening of the water droplet capture chamber 33 of the preseparator 19 is selected so that the Stokes number, which is a dimensionless parameter representing the water droplet collision performance described above, is 1 to 10. It is desirable to ensure sufficient water droplet capture performance.
本発明は、このように構或されているので以下に記載し
たような効果を期待できる。Since the present invention is constructed in this manner, the following effects can be expected.
(1)湿り蒸気で作動する蒸気タービン段落において、
各段落静翼上流部の翼高さ方向の中央部から先端にかけ
て複数個の前置分離静翼を配備することにより、前段落
の動翼から飛散する水滴の翼長方向湿り度分布を配慮し
た分離効果を達或でき、分離性能向上に寄与する。(1) In a steam turbine stage that operates with wet steam,
By deploying multiple pre-separated stator vanes from the center in the blade height direction upstream to the tip of each stage stator blade, we have taken into consideration the blade lengthwise wetness distribution of water droplets scattered from the rotor blade in the previous stage. It can achieve separation effect and contribute to improvement of separation performance.
(2)前置分離静翼は、前縁部を弾頭形とし、この入口
部に円錐形開口部と円形吸込スリットを備えた水滴捕獲
室を具備し,さらにその取付角度を適正化することによ
り,前縁部に衝突する水滴の大部分゜を捕獲分離し、従
来のスリット付静翼構造に比べて格段の分離効果改善に
寄与できる。(2) The front separation stator vane has a warhead-shaped front edge, and is equipped with a water droplet capture chamber equipped with a conical opening and a circular suction slit at the inlet part, and by optimizing its mounting angle. , most of the water droplets that collide with the leading edge are captured and separated, contributing to a marked improvement in the separation effect compared to the conventional stator vane structure with slits.
(3)また、前置分離静翼は、流線形後縁部の腹,背面
にそれぞれ吸込スリットを設けることにより、前縁部の
水滴捕獲室での分離作用を補助し、全体の分離効果を高
めることができる。(3) In addition, the front separation stator vane has suction slits on the belly and back sides of the streamlined trailing edge, which assists the separation action in the water droplet capture chamber at the leading edge and improves the overall separation effect. can be increased.
第1図は、本発明の一実施例の湿り蒸気タービン段落構
造を表わす縦断面図、第2図は、従来の湿り蒸気タービ
ン構造を示す縦断面図、第3図は、従来のスリット付分
離静翼の横断面図,第4図,第5図は、湿り蒸気タービ
ン段落における蒸気及び水滴流れ状況の説明図、第6図
は第1図のVl−■矢視断面図、第7図は,本発明の前
置分離静翼の二次元的断面構造図、第8図は、本発明の
前置分離静翼の斜視図、第9図,第10図は、水滴の衝
突特性及び効率を示す説明図である。
9・・・前置分離静翼、10・・・静翼、1工・・・動
翼、33・・・水滴捕獲室、34・・・前縁吸込スリッ
ト、38・・・腹面吸込スリット、39・・・背面吸込
スリット、第Z口
第3(2)
弟ムω
50 −゛フド、Rl二:三Lfへ・
第6の
め″7図
革
5■FIG. 1 is a longitudinal sectional view showing a wet steam turbine stage structure according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing a conventional wet steam turbine structure, and FIG. 3 is a longitudinal sectional view showing a conventional wet steam turbine structure. 4 and 5 are cross-sectional views of the stationary blades, and are explanatory diagrams of steam and water droplet flow conditions in the wet steam turbine stage. FIG. 6 is a sectional view taken along the Vl-■ arrow in FIG. 1. , FIG. 8 is a perspective view of the front separation stationary vane of the present invention, and FIGS. 9 and 10 are diagrams showing the collision characteristics and efficiency of water droplets. FIG. 9... Front separation stator blade, 10... Stator blade, 1 piece... Moving blade, 33... Water droplet capture chamber, 34... Leading edge suction slit, 38... Ventral suction slit, 39... Rear suction slit, Z port 3rd (2) younger brother ω 50 -゛ hood, Rl 2: to 3Lf, 6th eye'' 7 figure leather 5 ■
Claims (1)
て、 複数の静翼と複数の動翼から構成される各段落の前記静
翼の軸方向上流部に湿分分離機構を備えた複数個の前置
分離静翼を配備し、前記前置分離静翼は上流段落の前記
動翼から飛散する水滴が集中する翼高さ方向中央から先
端にわたつて高さ方向に配備し、前記前置分離静翼によ
つて段落内湿分を分離除去し、タービン系外に導出する
ことを特徴とする湿り蒸気タービン段落。 2、請求項1において、 前記前置分離静翼は、弾頭型の円形前縁部と後縁に向か
つて次第に肉厚が減少する流線形の後縁部から構成され
、前記円形前縁部は上流に向かつて円錐形に開口した断
面をもつ水滴捕獲室及び円形断面の前縁吸込スリットを
もち、前記水滴捕獲室及び前記前縁吸込スリットは、前
記前置分離静翼の内部に中空に穿孔さりた水滴集合室と
連接し、さらに前記流線形状の後縁部の腹面及び背面の
一部あるいは複数部に腹面吸込スリットと背面吸込スリ
ットを配設し、かつ前記三種の吸込スリットはいずれも
静翼高さ全域に延在した湿分分離機構を、配備したこと
を特徴とする湿り蒸気タービン段落。 3、請求項1または2において 前記前置分離静翼に配備した前縁部の前記水滴捕獲室の
開口部の中心軸線と接線方向とのなす角を、上流段落の
前記動翼から飛散する水滴の相対速度が接線方向となす
角に一致させ、かつ、前記前置分離静翼の流線形後縁部
端と背面とで形成される翼形状はタービン軸線と一致さ
せたことを特徴とする湿り蒸気タービン段落。[Claims] 1. In a low-pressure stage of a steam turbine that operates on wet steam, a moisture separation mechanism is provided at an axially upstream portion of the stator blades of each stage composed of a plurality of stator blades and a plurality of rotor blades. A plurality of front separation stator vanes are arranged, and the front separation stator vanes are arranged in the height direction from the center in the blade height direction to the tip where water droplets scattered from the rotor blades of the upstream stage are concentrated. , a wet steam turbine stage characterized in that moisture within the stage is separated and removed by the pre-separation stationary vane and led out of the turbine system. 2. In claim 1, the front separation stator vane is composed of a warhead-shaped circular leading edge and a streamlined trailing edge whose wall thickness gradually decreases toward the trailing edge, and the circular leading edge is It has a water droplet capture chamber with a conical cross section opening toward the upstream side and a leading edge suction slit with a circular cross section, and the water droplet capture chamber and the leading edge suction slit are hollowly bored inside the front separation stationary vane. A ventral suction slit and a back suction slit are connected to the collected water droplet collection chamber, and a ventral suction slit and a back suction slit are provided on a portion or multiple portions of the ventral surface and the dorsal surface of the streamlined trailing edge, and all of the three types of suction slits are A wet steam turbine stage characterized by being equipped with a moisture separation mechanism extending over the entire height of the stationary blades. 3. In claim 1 or 2, the angle between the central axis and the tangential direction of the opening of the water droplet capturing chamber of the leading edge of the front separation stationary vane provided in the front separation stationary vane is set to the water droplets scattered from the moving blade of the upstream stage. The relative velocity of the vane is made to match the angle made with the tangential direction, and the blade shape formed by the streamlined trailing edge end and the back surface of the front separation stator vane is made to match the turbine axis. Steam turbine paragraph.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15957089A JPH0326803A (en) | 1989-06-23 | 1989-06-23 | Moist steam turbine stage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15957089A JPH0326803A (en) | 1989-06-23 | 1989-06-23 | Moist steam turbine stage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0326803A true JPH0326803A (en) | 1991-02-05 |
Family
ID=15696610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15957089A Pending JPH0326803A (en) | 1989-06-23 | 1989-06-23 | Moist steam turbine stage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0326803A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10331604A (en) * | 1997-05-30 | 1998-12-15 | Toshiba Corp | Steam turbine plant |
JP2010031723A (en) * | 2008-07-28 | 2010-02-12 | Mitsubishi Heavy Ind Ltd | Steam turbine |
WO2014197266A1 (en) * | 2013-06-06 | 2014-12-11 | Dresser-Rand Company | Integrated separator turbine |
CN114382551A (en) * | 2022-01-20 | 2022-04-22 | 刘建松 | Energy-saving method for steam turbine, steam turbine blade and energy-saving steam turbine structure |
-
1989
- 1989-06-23 JP JP15957089A patent/JPH0326803A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10331604A (en) * | 1997-05-30 | 1998-12-15 | Toshiba Corp | Steam turbine plant |
JP2010031723A (en) * | 2008-07-28 | 2010-02-12 | Mitsubishi Heavy Ind Ltd | Steam turbine |
WO2014197266A1 (en) * | 2013-06-06 | 2014-12-11 | Dresser-Rand Company | Integrated separator turbine |
CN114382551A (en) * | 2022-01-20 | 2022-04-22 | 刘建松 | Energy-saving method for steam turbine, steam turbine blade and energy-saving steam turbine structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3766719A (en) | Particle and moisture separator for engine inlet | |
JP5824208B2 (en) | System for reducing the effects of erosion on parts | |
US4928480A (en) | Separator having multiple particle extraction passageways | |
JP2007315385A (en) | Airfoil and method for removing moisture and injecting steam | |
JP2009138540A (en) | Steam turbine and moisture removing structure for steam turbine stage | |
SE522132C2 (en) | Cleaning method for stationary gas turbine unit in operation, by spraying cleaning fluid into point in air inlet channel where air velocity has specific minimum value | |
CZ201290A3 (en) | Steam turbine | |
JP2016166569A (en) | Steam turbine | |
JP2010203438A (en) | Steam turbine and method for extracting moisture from steam turbine | |
JPH0326803A (en) | Moist steam turbine stage | |
JPH0326802A (en) | Stationary blade apparatus of steam turbine | |
JP2753237B2 (en) | Stationary structure of steam turbine | |
JP3862893B2 (en) | Drain separation structure of steam turbine | |
JPH04140401A (en) | Nozzle of steam turbine | |
JPH0925803A (en) | Drain removal device for steam turbine | |
JP2573197B2 (en) | Steam turbine | |
JPS63280801A (en) | Stationary blade for steam turbine | |
JPS62168905A (en) | Moisture removing device for turbine | |
JPS61216710A (en) | Apparatus for separating and collecting mist from air stream | |
JPH08121107A (en) | Steam turbine nozzle | |
JPS63117105A (en) | Moisture removing device for blade cascade of steam turbine | |
JP2002250205A (en) | Droplet removing structure for steam turbine | |
JPS6149133A (en) | Particle separator | |
JPH0742506A (en) | Drain discharging structure of steam turbine | |
JPS61265307A (en) | Axial flow steam turbine |