JPH06173607A - Corrosion preventive device for steam turbine blade - Google Patents

Corrosion preventive device for steam turbine blade

Info

Publication number
JPH06173607A
JPH06173607A JP32454192A JP32454192A JPH06173607A JP H06173607 A JPH06173607 A JP H06173607A JP 32454192 A JP32454192 A JP 32454192A JP 32454192 A JP32454192 A JP 32454192A JP H06173607 A JPH06173607 A JP H06173607A
Authority
JP
Japan
Prior art keywords
steam
turbine
nozzle
valve
hollow chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32454192A
Other languages
Japanese (ja)
Inventor
Hisashi Moriyama
久志 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32454192A priority Critical patent/JPH06173607A/en
Publication of JPH06173607A publication Critical patent/JPH06173607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent an energy loss and performance deterioration by forming a water droplet recovering hole on a blade surface of a nozzle, forming hollow chambers inside of the nozzle so as to be communicated with the water droplet recovering hole, and arranging a valve opening commanding unit to output a valve opening operation signal to increase or decrease valve opening of a steam blowdown valve according to a turbine load. CONSTITUTION:An Upstream side hollow chamber 13 and a downstream side hollow chamber 14 are formed inside of a nozzle 10. A water droplet recovering hole 11 is formed on a blade surface of the nozzle 10 so as to suck water droplet contained steam by communicating with the upstream side hollow chamber 13, and a steam injecting hole 23 is formed so as to inject steam obtained by removing water droplet from the water droplet contained steam by communicating with the downstream side hollow chamber 14. A drain separator 21 to obtain only steam by removing the water droplet from this water droplet contained steam, a steam blowdown valve 19 and a steam valve are arranged. A valve opening commanding unit 24 is arranged to increase or decrease valve opening of the steam blowdown valve 19 and the steam valve 22 according to a turbine load of a wattmeter 25. Thereby, an energy loss can be reduced, and deterioration of turbine performance can be minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電所等のタービ
ン段落中の水滴により発生する羽根の浸食を防止する蒸
気タービンの羽根浸食防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blade erosion preventive device for a steam turbine, which prevents blade erosion caused by water droplets in a turbine stage of a thermal power plant or the like.

【0002】[0002]

【従来の技術】一般に、火力タービンの低圧部および原
子力タービンの作動流体は水滴を含む湿り蒸気である。
その蒸気中の水滴の速度は、主流蒸気に比べ非常に小さ
い。そのため周速の高い羽根先端部は、水滴の衝突によ
って浸食が起きる。また、羽根の回転エネルギーは、水
滴が羽根に衝突する際のブレーキ損失によって減少する
ことになる。この弊害を克服するために数多くの羽根浸
食防止装置が提案され、実用化されている。
BACKGROUND OF THE INVENTION Generally, the working fluid of low pressure sections of thermal turbines and nuclear turbines is wet steam containing water droplets.
The velocity of water droplets in the steam is much smaller than that in mainstream steam. Therefore, the tip of the blade having a high peripheral speed is eroded by the collision of water droplets. Also, the rotational energy of the blades will be reduced due to the brake loss when the water droplets strike the blades. In order to overcome this problem, many blade erosion preventive devices have been proposed and put into practical use.

【0003】従来の羽根浸食防止装置の一例を図5乃至
図7を用いて説明する。
An example of a conventional blade erosion preventive device will be described with reference to FIGS.

【0004】図5は、従来のタービン段落構造を示す断
面図である。ケーシング1に固定されたノズルダイアフ
ラム2には、通路部を形成するノズル3が設けられ、こ
のノズル3とケーシング1と同心で回転するホイール4
に取り付けられ通路部を形成する羽根5とからタービン
段落が形成されている。このタービン段落に対して水滴
を含む湿り蒸気が、図示実線矢印のようにノズル3から
羽根5へと膨張し、下流に流れる。
FIG. 5 is a sectional view showing a conventional turbine stage structure. A nozzle diaphragm 2 fixed to the casing 1 is provided with a nozzle 3 that forms a passage, and a wheel 4 that rotates concentrically with the nozzle 3 and the casing 1.
Turbine blades are formed from the blades 5 attached to the blades and forming the passage portion. Wet steam containing water droplets expands from the nozzle 3 to the blades 5 as shown by the solid arrow in the drawing and flows downstream.

【0005】また、通路部内の大きな水滴は、破線矢印
のように羽根5の遠心力で外周側に吹き飛ばされ、羽根
5で飛散した水滴は、ノズルダイアフラム2に設置した
ドレンキャッチャー6によって回収されるが、回収率が
小さいために後流段落のノズル7および羽根8の先端部
に残留水滴が流れ込みやすい。そのため、さらに残留水
滴を除去する目的で、ノズル7の翼内部を中空にし、翼
表面に複数の回収孔7a,7bを設けて、ノズル通路中
の湿り蒸気を吸込むと同時に水滴を回収した後、ノズル
ダイアフラム9に形成された排出孔9aからタービン段
落外にそのまま排出するようにしている。
Large water droplets in the passage are blown off to the outer peripheral side by the centrifugal force of the blades 5 as indicated by the broken line arrows, and the water droplets scattered by the blades 5 are collected by the drain catcher 6 installed on the nozzle diaphragm 2. However, since the recovery rate is small, the residual water droplets easily flow into the tips of the nozzle 7 and the blade 8 in the downstream stage. Therefore, for the purpose of further removing the residual water droplets, the inside of the blade of the nozzle 7 is made hollow, and a plurality of recovery holes 7a and 7b are provided on the blade surface to suck the wet steam in the nozzle passage and at the same time collect the water droplets. The discharge holes 9a formed in the nozzle diaphragm 9 are discharged directly to the outside of the turbine stage.

【0006】すなわち、図6および図6のAーA断面図
に示す図7の如く、湿り蒸気をノズル7の回収孔7a,
7bから吸い込み、中空部7cから上部のノズルダイア
フラム9の排出孔9aを経由して外部へ排出し、残留水
滴の除去を図っている。
That is, as shown in FIG. 6 and FIG. 7 which is a sectional view taken along the line AA of FIG.
It is sucked from 7b and discharged from the hollow portion 7c to the outside through the discharge hole 9a of the upper nozzle diaphragm 9 to remove residual water droplets.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図5に
示す構成の蒸気タービンの羽根浸食防止装置では、ター
ビンの低負荷運転時にも、タービン段落内の湿り度が小
さくなっているにもかかわらず回収孔7a,7bから一
律に多くの湿り蒸気を吸込むためタービン性能が低下す
るという問題がある。
However, in the steam turbine blade erosion preventive device having the structure shown in FIG. 5, even when the turbine is operated at a low load, it is recovered even though the degree of wetness in the turbine stage is small. Since a large amount of moist steam is uniformly sucked from the holes 7a and 7b, there is a problem that turbine performance is deteriorated.

【0008】上記問題をノズル通路内の水滴の流れの様
相を示す図8を参照して説明すると、ノズル7の上流の
水滴はノズル7の翼面の腹側および背側に付着しやす
く、この付着した水滴は翼面上に沿って流れ、ノズル7
の後縁端より大きな水滴が図示矢印Y方向となって飛散
する。
The above problem will be described with reference to FIG. 8 showing the flow of water droplets in the nozzle passage. The water droplets upstream of the nozzle 7 tend to adhere to the ventral and dorsal sides of the blade surface of the nozzle 7. The attached water droplets flow along the blade surface, and the nozzle 7
Water droplets larger than the trailing edge are scattered in the direction of the arrow Y in the figure.

【0009】ここで、蒸気のノズル出口絶対速度C2、
羽根の周速Uとすると、速度三角形から蒸気の羽根入口
相対速度W2となる。同様に、水滴Yのドレンのノズル
出口絶対速度C2d、羽根の周速Uとすると水滴Yに対
するドレンの羽根入口相対速度W2dは図示鎖線方向と
なる。
Here, the absolute nozzle outlet velocity of steam C2,
Assuming that the blade peripheral speed is U, the relative speed W2 is the blade inlet relative speed of steam from the speed triangle. Similarly, assuming that the drain nozzle absolute velocity C2d of the water droplet Y and the blade peripheral velocity U are, the drain blade inlet relative velocity W2d of the water droplet Y with respect to the water droplet Y is in the chain line direction in the figure.

【0010】この図からノズル7の出口側より飛散した
水滴Yの流出速度C2dは、蒸気のノズル出口絶対速度
C2よりも小さく、羽根8へ流入する水滴は、図示のド
レンの羽根入口相対速度W2dで流入することになり、
このドレンの羽根入口相対速度W2dは羽根の周速Uと
同等であり、流入方向がほぼ回転方向になるため、羽根
8の入口部に高速の水滴が直撃することになる。従っ
て、羽根8の前縁で浸食が生じると、同時にブレーキ損
失による回転エネルギーの減少が起こる。
From this figure, the outflow speed C2d of the water droplet Y scattered from the outlet side of the nozzle 7 is smaller than the absolute nozzle outlet speed C2 of the steam, and the water droplet flowing into the blade 8 is the relative blade inlet speed W2d of the illustrated drain. Will flow in,
The relative velocity W2d at the blade inlet of the drain is equal to the peripheral velocity U of the blade, and the inflow direction is almost the rotational direction, so that a high-speed water droplet directly hits the inlet portion of the blade 8. Therefore, when the leading edge of the blade 8 is eroded, the rotational energy is also reduced due to the brake loss.

【0011】そこで、本発明は水滴と蒸気を段落外へ排
出する際に、羽根浸食防止をすると共に、タービン性能
の低下を防止する蒸気タービンの羽根浸食防止装置を提
供することを目的とする。
Therefore, an object of the present invention is to provide a blade erosion preventive device for a steam turbine, which prevents blade erosion when water droplets and steam are discharged to the outside of a paragraph and prevents deterioration of turbine performance.

【0012】[0012]

【課題を解決するための手段】請求項1の発明は、ノズ
ルの翼面に付着する水滴を含む蒸気をノズル内部に回収
してタービンの羽根の浸食を防止する蒸気タービンの羽
根浸食防止装置において、ノズルの翼面には、水滴を含
む蒸気を吸込むための水滴回収孔を形成する一方、ノズ
ル内部には、水滴回収孔に連通し、吸込んだ水滴を含む
蒸気を回収する中空室を形成し、回収された水滴を含む
蒸気をタービン段落外に蒸気排出弁を介して排出する中
空室に連通する蒸気排出管とを設け、タービンの性能低
下を防止するためタービン負荷と蒸気排出弁の弁開度と
の関係を予め設定し、タービン負荷に応じて蒸気排出弁
の弁開度を増減させるための弁開度操作信号を出力する
弁開度指令器とを設けるようにしたものである。
According to a first aspect of the present invention, there is provided a blade erosion preventive device for a steam turbine, which collects steam containing water droplets adhering to a blade surface of a nozzle into the nozzle to prevent erosion of turbine blades. While forming a water drop collection hole for sucking steam containing water drops on the blade surface of the nozzle, a hollow chamber for collecting the steam containing the sucked water drops is formed inside the nozzle so as to communicate with the water drop collecting hole. , A steam exhaust pipe communicating with the hollow chamber for exhausting the steam containing the collected water droplets outside the turbine stage via the steam exhaust valve, and opening the turbine load and the steam exhaust valve to prevent deterioration of turbine performance. And a valve opening degree commander that outputs a valve opening degree operation signal for increasing or decreasing the valve opening degree of the steam discharge valve according to the turbine load.

【0013】請求項2の発明は、ノズルの翼面に付着す
る水滴を含む蒸気をノズル内部に回収してタービンの羽
根の浸食を防止する蒸気タービンの羽根浸食防止装置に
おいて、ノズル内部には、上流側中空室と下流側中空室
とを形成する一方、ノズルの翼面には、上流側中空室に
連通して、水滴を含む蒸気を吸込むための水滴回収孔を
形成し、下流側中空室に連通して、水滴を含む蒸気から
水滴が除去された蒸気をタービン段落内に噴射するため
の蒸気噴射孔を形成し、水滴を含む蒸気から水滴を除去
して蒸気のみとするドレンセパレータと蒸気弁とを配設
し上流側中空室と下流側中空室とを連通する蒸気管とを
設け、タービンの性能低下を防止するためタービン負荷
と蒸気弁の弁開度との関係を予め設定し、タービン負荷
に応じて蒸気弁の弁開度を増減させるための弁開度指令
を出力する弁開度指令器とを設けるようにしたものであ
る。
According to a second aspect of the present invention, there is provided a blade erosion preventive device for a steam turbine, wherein steam containing water droplets attached to a blade surface of the nozzle is collected in the nozzle to prevent erosion of turbine blades. While forming an upstream side hollow chamber and a downstream side hollow chamber, the blade surface of the nozzle is connected to the upstream side hollow chamber, to form a water droplet recovery hole for sucking vapor containing water droplets, the downstream side hollow chamber A drain separator and steam that form a steam injection hole for injecting steam from the steam containing water droplets into the turbine stage by communicating with the drain separator and removing only water vapor from the steam containing water droplets. A valve is provided and a steam pipe that connects the upstream hollow chamber and the downstream hollow chamber is provided, and the relationship between the turbine load and the valve opening of the steam valve is set in advance in order to prevent performance deterioration of the turbine. Depending on the turbine load, the steam valve It is obtained as provided with the valve opening command for outputting a valve opening degree command for increasing or decreasing the degree of opening.

【0014】[0014]

【作用】請求項1の発明は、ノズルの翼面に付着した水
滴を含む蒸気が水滴回収孔から吸込まれ、吸込まれた水
滴を含む蒸気が中空室に回収される。回収された水滴を
含む蒸気は、蒸気排出管に設けた蒸気排出弁を介してタ
ービン段落外に排出される。この場合、弁開度指令器
は、エネルギーの損失が少なく、タービンの性能を低下
させないようにタービン負荷と蒸気排出弁の弁開度との
関係を予め設定し、タービン負荷に応じて蒸気排出弁の
弁開度を増減させる。この結果、タービン負荷に応じて
ノズルの翼面から吸い込んだ水滴を含む蒸気がタービン
段落外に排出されるからエネルギーの損失が少なく、タ
ービンの性能の低下を最少限に抑制しつつ、羽根に水滴
が衝突することを防止することができる。
According to the first aspect of the present invention, the vapor containing the water droplets attached to the blade surface of the nozzle is sucked through the water droplet collecting hole, and the vapor containing the sucked water droplet is collected in the hollow chamber. The steam containing the collected water droplets is discharged outside the turbine stage through a steam discharge valve provided in the steam discharge pipe. In this case, the valve opening commander presets the relationship between the turbine load and the valve opening of the steam discharge valve so that the energy loss is small and the performance of the turbine is not deteriorated, and the steam discharge valve is set according to the turbine load. Increase or decrease the valve opening of. As a result, steam containing water droplets sucked from the blade surface of the nozzle is discharged to the outside of the turbine stage according to the turbine load, so there is little energy loss, and water droplets on the blades are minimized while minimizing the deterioration of turbine performance. Can be prevented from colliding.

【0015】請求項2の発明は、ノズルの翼面に付着し
た水滴を含む蒸気が水滴回収孔から吸込まれ、吸込まれ
た水滴を含む蒸気が上流側中空室にに回収される。回収
された水滴を含む蒸気は、蒸気管に設けられたドレンセ
パレータで水滴が除去され蒸気のみとなり、蒸気弁を介
して下流側中空室に流入し、蒸気が蒸気噴射孔から噴射
される。この場合、弁開度指令器は、エネルギーの損失
が少なく、タービンの性能を低下させないように蒸気弁
の弁開度とタービン負荷との関係を予め設定し、タービ
ン負荷に応じて蒸気弁の弁開度を増減させる。これによ
り、ノズルの翼面から吸い込んだ水滴を含む蒸気の内で
水滴のみがタービン負荷に応じてタービン段落外に排出
されるからエネルギーの損失が少なく、タービンの性能
の低下を最少限に抑制する。さらに、水滴を除去した蒸
気は蒸気噴射孔から高速噴射され、ノズルの翼面に溜ま
った大きな水滴が細分化され除去されるから羽根に水滴
が衝突することを防止することができる。
According to the second aspect of the present invention, the vapor containing the water droplets adhering to the blade surface of the nozzle is sucked from the water droplet collecting hole, and the vapor containing the sucked water droplet is collected in the upstream hollow chamber. The steam including the collected water droplets is removed by a drain separator provided in the steam pipe to become only steam, which flows into the downstream hollow chamber via the steam valve and is injected from the steam injection hole. In this case, the valve opening commander presets the relationship between the valve opening of the steam valve and the turbine load so that the energy loss is small and the turbine performance is not degraded, and the valve of the steam valve is set according to the turbine load. Increase or decrease the opening. As a result, only the water droplets of the steam containing the water droplets sucked from the blade surface of the nozzle are discharged to the outside of the turbine stage according to the turbine load, so there is little energy loss and the deterioration of turbine performance is suppressed to a minimum. . Furthermore, the steam from which the water droplets have been removed is jetted at high speed from the steam injection holes, and the large water droplets that have accumulated on the blade surface of the nozzle are subdivided and removed, so that the water droplets can be prevented from colliding with the blades.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の一実施例を示す蒸気ター
ビンの羽根浸食防止装置を備えたタービン段落の断面図
である。図5と同一符号は、同一部分または相当部分を
示す。図において、ノズル10は中空構造として、この
中空の内部に仕切板12が配置され、上流中空室13と
下流中空室14が形成され、上流中空室13には、複数
の水滴回収孔11が形成されている。ノズルダイアフラ
ム外輪15は、上流捕集室16と下流捕集室17とが形
成され、これらはそれぞれ上流中空室13と下流中空室
14とに連通し、さらに、上流捕集室16は蒸気排出管
18から排出弁19を介して外部に連通すると共に、蒸
気排出管18は、分岐して蒸気流入管20に接続され、
ドレンセパレータ21と調節弁22を介して下流捕集室
17に連通し、下流中空室14に形成された蒸気噴射孔
23を介して外部に連通している。
FIG. 1 is a sectional view of a turbine stage equipped with a blade erosion preventive device for a steam turbine showing an embodiment of the present invention. The same reference numerals as those in FIG. 5 indicate the same or corresponding portions. In the drawing, the nozzle 10 has a hollow structure, and a partition plate 12 is disposed inside the hollow, an upstream hollow chamber 13 and a downstream hollow chamber 14 are formed, and a plurality of water droplet collection holes 11 are formed in the upstream hollow chamber 13. Has been done. The nozzle diaphragm outer ring 15 is formed with an upstream collection chamber 16 and a downstream collection chamber 17, which communicate with the upstream hollow chamber 13 and the downstream hollow chamber 14, respectively, and further, the upstream collection chamber 16 is a steam discharge pipe. 18 communicates with the outside through the discharge valve 19 and the steam discharge pipe 18 is branched and connected to the steam inflow pipe 20.
It communicates with the downstream collection chamber 17 through the drain separator 21 and the control valve 22, and communicates with the outside through the steam injection hole 23 formed in the downstream hollow chamber 14.

【0018】弁開度指令器24は、その出力側に排出弁
19と調節弁22とが接続され、その入口側に電力計2
5が接続され、タービンの負荷量に対して弁開度を演算
し、排出弁19と調節弁22とを開閉制御する。
The valve opening commander 24 has a discharge valve 19 and a control valve 22 connected to the output side thereof, and an electric power meter 2 connected to the inlet side thereof.
5 is connected, the valve opening degree is calculated with respect to the load amount of the turbine, and the discharge valve 19 and the control valve 22 are opened / closed.

【0019】上記構成で、ノズル10の翼面に付着した
水滴がタービン段落内の蒸気と共に、水滴回収孔11か
ら吸込まれ、ノズル10の上流中空室13へ流入する。
上流中空室13に流入した水滴および蒸気は、上流捕集
室16を経て蒸気排出管18へ導かれ、排出弁19を通
ってタービン段落外へ排出される。
With the above construction, the water droplets adhering to the blade surface of the nozzle 10 are sucked together with the steam in the turbine stage from the water droplet recovery hole 11 and flow into the upstream hollow chamber 13 of the nozzle 10.
The water droplets and steam that have flowed into the upstream hollow chamber 13 are guided to the steam discharge pipe 18 through the upstream collection chamber 16, and are discharged to the outside of the turbine stage through the discharge valve 19.

【0020】ここで、タービン段落内の湿り度(蒸気中
に含まれる水の割合)は、図2のタービン膨張線でエン
トロピーエンタルピー線図で示すようにタービンの負荷
(図示の100%,75%,50%,30%)に対応し
て変化し、定格負荷100%では各段落内の湿り度が大
きく、約10%程度で多く水滴を含んだ蒸気であり、逆
に低負荷、例えば、30%では、湿り度が3%〜4%程
度で、水滴が微小となっている。
Here, the degree of wetness (ratio of water contained in steam) in the turbine stage is determined by the turbine load (100%, 75% in the figure) as shown by the entropy enthalpy diagram in the turbine expansion line of FIG. , 50%, 30%), and at a rated load of 100%, the degree of wetness in each paragraph is large, and at about 10%, it is a steam that contains many water droplets. %, The wetness is about 3% to 4% and the water droplets are minute.

【0021】弁開度指令器24では、図2に示すタービ
ン負荷に対する水滴と蒸気の関係から、図3に示す一例
の如く、タービン負荷に対する排出弁19の弁開度19
aと調節弁22の弁開度22aの関係を予め設定してい
る。弁開度指令器24は、上記の関係に基づいて電力計
25からのタービン負荷に応じて排出弁19と調節弁2
2とをそれぞれ制御する。
In the valve opening commander 24, the valve opening 19 of the discharge valve 19 with respect to the turbine load is changed from the relationship between the water drop and the steam with respect to the turbine load shown in FIG.
The relationship between a and the valve opening degree 22a of the control valve 22 is preset. The valve opening commander 24 determines the discharge valve 19 and the control valve 2 according to the turbine load from the power meter 25 based on the above relationship.
2 and are controlled respectively.

【0022】これにより、タービン負荷が約40%から
100%のとき、タービン負荷に応じて排出弁19が全
閉から全開となり、その開度に応じて水滴が外部へ排出
される。
As a result, when the turbine load is about 40% to 100%, the discharge valve 19 changes from fully closed to fully open according to the turbine load, and water droplets are discharged to the outside according to the opening degree.

【0023】このように、タービン負荷に応じて排出弁
19の弁開度が開閉し、最適な水滴の回収がされ、低負
荷で必要以上に、水滴回収孔11から蒸気を吸込むこと
がなくなり、タービン効率の向上に寄与すると同時に、
効率良い水滴回収が可能になる。
In this way, the valve opening of the discharge valve 19 is opened and closed according to the turbine load, and the optimum collection of water droplets is achieved, so that it is possible to prevent the intake of steam from the water droplet collection hole 11 at a low load more than necessary. At the same time contributing to the improvement of turbine efficiency,
Water droplets can be collected efficiently.

【0024】一方、タービン負荷が約75%から100
%のとき、タービン負荷に応じて蒸気排出管18が全閉
から全開となり、タービン負荷に応じて蒸気が下流捕集
室17に流入される。この蒸気は、ドレンセパレータ2
1で水滴が除去され、下流捕集室17から下流中空室1
4に流入する。そして、ノズル出口端の周辺は、真空状
態となっているためノズル出口端の蒸気噴射孔23から
高速の蒸気が外部へ噴射される。このとき、ノズル10
の翼面に付着し、溜まっている大きな水滴を高速蒸気の
噴射により、細分化する。これによって、ノズル10の
翼面の大きな水滴の除去がされ、羽根の浸食防止がされ
る。
On the other hand, the turbine load is about 75% to 100
When it is%, the steam discharge pipe 18 is changed from fully closed to fully open according to the turbine load, and steam is flown into the downstream collection chamber 17 according to the turbine load. This steam is drain separator 2
1, the water droplets are removed, and the downstream collection chamber 17 moves to the downstream hollow chamber 1
Inflow to 4. Since the area around the nozzle outlet end is in a vacuum state, high-speed steam is injected to the outside from the steam injection hole 23 at the nozzle outlet end. At this time, the nozzle 10
The large water droplets that have adhered to the wing surface of and are accumulated are subdivided by the injection of high-speed steam. As a result, large water droplets on the blade surface of the nozzle 10 are removed, and erosion of the blade is prevented.

【0025】このように、ノズルを中空にしノズルダイ
アフラム外輪15に2つの水滴捕集室を設け、ノズル翼
面の水滴回収孔より吸込んだ水滴と蒸気を段落外へ導く
蒸気管に付属する流量調節弁によって、タービン負荷に
応じて流量をコントロールすることで必要以上に蒸気を
吸込まない最適な水滴回収を行い、さらに、タービン段
落外の蒸気を再びタービン段落内へ流入させることによ
ってタービン性能を向上させることができる。
In this way, the nozzle is made hollow and two water drop collecting chambers are provided in the outer ring 15 of the nozzle diaphragm, and the flow rate control attached to the steam pipe for guiding the water drop and the steam sucked from the water drop collection hole on the nozzle blade surface to the outside of the paragraph. The valve controls the flow rate according to the turbine load to perform optimal water droplet collection that does not inhale steam more than necessary, and further improves the turbine performance by allowing steam outside the turbine stage to flow into the turbine stage again. Can be made.

【0026】図4は、本発明の第2実施例を示すタービ
ン段落の断面図である。
FIG. 4 is a sectional view of a turbine stage showing a second embodiment of the present invention.

【0027】図1の第1実施例と異なる点は、上流捕集
室26から下流捕集室27へ接続される蒸気管28の途
中にドレンセパレータ29と調節弁30を設けているこ
とである。
The difference from the first embodiment shown in FIG. 1 is that a drain separator 29 and a control valve 30 are provided in the middle of a steam pipe 28 connected from the upstream collection chamber 26 to the downstream collection chamber 27. .

【0028】この構成で、水滴回収孔11で吸込まれた
水滴と蒸気は、蒸気管28を通り、ドレンセパレータ2
9で水滴が除去され、その後に調節弁30でタービン負
荷に応じて流量調整がされ、ノズル10の出口端の蒸気
噴射孔23より高速噴射される。本実施例に示す構成に
よっても図1に示す羽根浸食防止装置と同様の作用効果
が得られる。
With this structure, the water droplets and the steam sucked in the water droplet collecting hole 11 pass through the steam pipe 28 and pass through the drain separator 2
The water droplets are removed at 9, and then the flow rate is adjusted by the control valve 30 according to the turbine load, and high-speed injection is performed from the steam injection hole 23 at the outlet end of the nozzle 10. The same effects as those of the blade erosion prevention device shown in FIG. 1 can be obtained by the configuration shown in this embodiment.

【0029】[0029]

【発明の効果】以上説明したように請求項1の発明によ
れば、エネルギーの損失が少なく、タービンの性能を低
下させないようにタービン負荷に応じてノズルの翼面か
ら吸い込んだ水滴を含む蒸気がタービン段落外に排出さ
れるからエネルギーの損失が少なく、タービンの性能の
低下を最少限に抑制しつつ、羽根に水滴が衝突すること
を防止することができる。
As described above, according to the first aspect of the present invention, the steam containing water droplets sucked from the blade surface of the nozzle according to the turbine load is generated so that the energy loss is small and the turbine performance is not deteriorated. Since it is discharged to the outside of the turbine stage, energy loss is small, and it is possible to prevent water droplets from colliding with the blades while suppressing the deterioration of turbine performance to a minimum.

【0030】また、請求項2の発明によれば、エネルギ
ーの損失が少なく、タービンの性能を低下させないよう
にノズルの翼面から吸い込んだ水滴を含む蒸気の内で水
滴のみがタービン負荷に応じてタービン段落外に排出さ
れるからエネルギーの損失が少なく、タービンの性能の
低下を最少限に抑制する。さらに、蒸気が蒸気噴射孔か
ら高速噴射され、ノズルの翼面に溜まった大きな水滴を
除去するから一層効果的に防止することができる。
According to the second aspect of the invention, only the water droplets of the steam including the water droplets sucked from the blade surface of the nozzle depending on the turbine load have a small energy loss and do not deteriorate the performance of the turbine. Since it is discharged outside the turbine stage, there is little energy loss, and the deterioration of turbine performance is suppressed to a minimum. Furthermore, since the steam is sprayed at high speed from the steam spray holes to remove large water droplets accumulated on the blade surface of the nozzle, it can be more effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す羽根浸食防止装置を
備えるタービン段落の断面図である。
FIG. 1 is a sectional view of a turbine stage equipped with a blade erosion preventive device according to a first embodiment of the present invention.

【図2】タービン負荷に応じてエンタルピーエントロピ
ー線図により湿り度を算出する方法を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a method of calculating a wetness degree by an enthalpy entropy diagram according to a turbine load.

【図3】タービン負荷に対する弁開度を示す排出弁と調
節弁のそれぞれの弁開度線図である。
FIG. 3 is a valve opening diagram of each of a discharge valve and a control valve showing a valve opening with respect to a turbine load.

【図4】本発明の第2実施例を示す羽根浸食防止装置を
備えるタービン段落の断面図である。
FIG. 4 is a sectional view of a turbine stage equipped with a blade erosion preventive device showing a second embodiment of the present invention.

【図5】従来のタービン段落の断面図である。FIG. 5 is a sectional view of a conventional turbine stage.

【図6】図5の作用を示すタービン段落の説明図であ
る。
FIG. 6 is an explanatory view of a turbine paragraph showing the operation of FIG.

【図7】図6のAーA断面図である。7 is a cross-sectional view taken along the line AA of FIG.

【図8】従来のノズル翼面の水滴の流れ様相および水滴
の速度を示す説明図である。
FIG. 8 is an explanatory diagram showing a flow pattern of water droplets and a velocity of water droplets on a conventional nozzle blade surface.

【符号の説明】[Explanation of symbols]

1 ケーシング 10 ノズル 11 水滴回収孔 12 仕切板 13 上流中空室 14 下流中空室 15 ノズルダイアフラム外輪 16 上流捕集室 17 下流捕集室 18 蒸気排出管 19 排出弁 20 蒸気流入管 21 ドレンセパレータ 22 調節弁 23 蒸気噴射孔 24 弁開度指令器 1 Casing 10 Nozzle 11 Water Droplet Recovery Hole 12 Partition Plate 13 Upstream Hollow Chamber 14 Downstream Hollow Chamber 15 Nozzle Diaphragm Outer Ring 16 Upstream Collection Chamber 17 Downstream Collection Chamber 18 Steam Discharge Pipe 19 Discharge Valve 20 Steam Inflow Pipe 21 Drain Separator 22 Control Valve 23 Steam injection hole 24 Valve opening commander

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ノズルの翼面に付着する水滴を含む蒸気
をノズル内部に回収してタービンの羽根の浸食を防止す
る蒸気タービンの羽根浸食防止装置において、 前記ノズルの翼面には、前記水滴を含む蒸気を吸込むた
めの水滴回収孔を形成する一方、前記ノズル内部には、
前記水滴回収孔に連通し、前記吸込んだ水滴を含む蒸気
を回収する中空室を形成し、回収された水滴を含む蒸気
をタービン段落外に蒸気排出弁を介して排出する前記中
空室に連通する蒸気排出管を設け、タービンの性能低下
を防止するためタービン負荷と前記蒸気排出弁の弁開度
との関係を予め設定し、タービン負荷に応じて前記蒸気
排出弁の弁開度を増減させるための弁開度操作信号を出
力する弁開度指令器とを設けたことを特徴とする蒸気タ
ービンの羽根浸食防止装置。
1. A vane erosion preventive apparatus for a steam turbine, wherein steam containing water droplets adhering to a blade surface of a nozzle is collected inside the nozzle to prevent erosion of a blade of a turbine, wherein the water droplet is provided on a blade surface of the nozzle. While forming a water droplet recovery hole for sucking vapor containing, inside the nozzle,
A hollow chamber that communicates with the water droplet collection hole and collects the steam containing the sucked water droplets is formed, and communicates with the hollow chamber that discharges the steam containing the collected water drops through a steam discharge valve outside the turbine stage. To provide a steam discharge pipe to preset the relationship between the turbine load and the valve opening of the steam discharge valve in order to prevent deterioration of turbine performance, and to increase or decrease the valve opening of the steam discharge valve according to the turbine load. And a valve opening commander that outputs a valve opening operation signal of the blade opening prevention device for a steam turbine.
【請求項2】 ノズルの翼面に付着する水滴を含む蒸気
をノズル内部に回収してタービンの羽根の浸食を防止す
る蒸気タービンの羽根浸食防止装置において、 前記ノズル内部には、上流側中空室と下流側中空室とを
形成する一方、前記ノズルの翼面には、前記上流側中空
室に連通して、前記水滴を含む蒸気を吸込むための水滴
回収孔を形成し、前記下流側中空室に連通して、前記水
滴を含む蒸気から水滴が除去された蒸気をタービン段落
内に噴射するための蒸気噴射孔を形成し、前記水滴を含
む蒸気から水滴を除去して蒸気のみとするドレンセパレ
ータと蒸気弁とを配設し前記上流側中空室と下流側中空
室とを連通する蒸気管を設け、タービンの性能低下を防
止するためタービン負荷と前記蒸気弁の弁開度との関係
を予め設定し、タービン負荷に応じて前記蒸気弁の弁開
度を増減させるための弁開度指令を出力する弁開度指令
器とを設けたことを特徴とする蒸気タービンの羽根浸食
防止装置。
2. A vane erosion preventive device for a steam turbine, wherein vapor containing water droplets adhering to a blade surface of a nozzle is recovered in the nozzle to prevent erosion of turbine vanes, wherein the nozzle has an upstream hollow chamber. And a downstream hollow chamber, the blade surface of the nozzle communicates with the upstream hollow chamber to form a water droplet recovery hole for sucking vapor containing the water droplet, and the downstream hollow chamber. A drain separator that communicates with the water vapor and forms a steam injection hole for injecting steam from the steam containing the water droplets into the turbine stage, and removing the water drops from the steam containing the water droplets to leave only the steam. And a steam valve, and a steam pipe that connects the upstream hollow chamber and the downstream hollow chamber is provided, and in order to prevent deterioration of the performance of the turbine, the relationship between the turbine load and the valve opening of the steam valve is preset. Set and turbine negative Blade erosion prevention device of a steam turbine is characterized by providing a valve opening command for outputting a valve opening degree command for increasing or decreasing the valve opening of the steam valve in response to.
JP32454192A 1992-12-04 1992-12-04 Corrosion preventive device for steam turbine blade Pending JPH06173607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32454192A JPH06173607A (en) 1992-12-04 1992-12-04 Corrosion preventive device for steam turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32454192A JPH06173607A (en) 1992-12-04 1992-12-04 Corrosion preventive device for steam turbine blade

Publications (1)

Publication Number Publication Date
JPH06173607A true JPH06173607A (en) 1994-06-21

Family

ID=18166958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32454192A Pending JPH06173607A (en) 1992-12-04 1992-12-04 Corrosion preventive device for steam turbine blade

Country Status (1)

Country Link
JP (1) JPH06173607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065319A (en) * 1999-04-01 2000-11-15 윤영석 Stationary blade of steam turbine for power plant
EP1091094A1 (en) * 1998-05-27 2001-04-11 Mitsubishi Heavy Industries, Ltd. Steam turbine stationary blade
CN104061023A (en) * 2014-06-23 2014-09-24 中国船舶重工集团公司第七�三研究所 Marine turbine dehumidification device
JP2015068325A (en) * 2013-09-30 2015-04-13 株式会社東芝 Water droplet removing device for steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091094A1 (en) * 1998-05-27 2001-04-11 Mitsubishi Heavy Industries, Ltd. Steam turbine stationary blade
US6305902B1 (en) 1998-05-27 2001-10-23 Mitsubishi Heavy Industries, Ltd. Steam turbine stationary blade
KR20000065319A (en) * 1999-04-01 2000-11-15 윤영석 Stationary blade of steam turbine for power plant
JP2015068325A (en) * 2013-09-30 2015-04-13 株式会社東芝 Water droplet removing device for steam turbine
CN104061023A (en) * 2014-06-23 2014-09-24 中国船舶重工集团公司第七�三研究所 Marine turbine dehumidification device

Similar Documents

Publication Publication Date Title
US7354247B2 (en) Blade for a rotor of a wind energy turbine
JP2007315385A (en) Airfoil and method for removing moisture and injecting steam
JP6931991B2 (en) How to manage moisture in steam turbines, steam turbine nozzles, and steam turbines
US4336039A (en) Geothermal turbine
JPH06173607A (en) Corrosion preventive device for steam turbine blade
JPS63263204A (en) Erosion prevention device for turbine blade
GB1563282A (en) Turbine blades including cooling arrangement
CA2006906A1 (en) Improved turbine moisture removal system
JPH0326802A (en) Stationary blade apparatus of steam turbine
CN108266233A (en) A kind of small chamber's vacuum exhauster system and its method of work for eliminating blade erosion
JP3815143B2 (en) Steam turbine
JP3862893B2 (en) Drain separation structure of steam turbine
JPH0545842B2 (en)
JP2723334B2 (en) Steam turbine nozzle water droplet removal equipment
JPH01300002A (en) Steam turbine nozzle device
JPH01110812A (en) Stationary blade structure of steam turbine
CS229652B2 (en) Method of energy recuperation from exhaust gases and equipment to perform this method
JPS62174503A (en) Steam turbine
JPH0925803A (en) Drain removal device for steam turbine
JP3630740B2 (en) Drain discharge device for steam turbine
JPS61182403A (en) Drain discharging apparatus of steam turbine
CN219482078U (en) Dust remover cooling structure
JPS62261604A (en) Water drop removing equipment of steam turbine
JPH0861006A (en) Steam turbine
JPS5928740B2 (en) Blast furnace exhaust gas energy recovery method and device