JPH0791961B2 - Steam turbine vane - Google Patents

Steam turbine vane

Info

Publication number
JPH0791961B2
JPH0791961B2 JP11429287A JP11429287A JPH0791961B2 JP H0791961 B2 JPH0791961 B2 JP H0791961B2 JP 11429287 A JP11429287 A JP 11429287A JP 11429287 A JP11429287 A JP 11429287A JP H0791961 B2 JPH0791961 B2 JP H0791961B2
Authority
JP
Japan
Prior art keywords
groove
drain
outer peripheral
vane
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11429287A
Other languages
Japanese (ja)
Other versions
JPS63280801A (en
Inventor
唯士 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11429287A priority Critical patent/JPH0791961B2/en
Publication of JPS63280801A publication Critical patent/JPS63280801A/en
Publication of JPH0791961B2 publication Critical patent/JPH0791961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービンの静翼に係り、特に蒸気中のドレ
ンが動翼の先端に衝突することによって起きる羽根の浸
蝕や性能の低下を防止するのに適する蒸気タービンの静
翼に関する。
The present invention relates to a stationary blade of a steam turbine, and more particularly, to blade erosion caused by the fact that the drain in the steam collides with the tip of the moving blade. The present invention relates to a vane of a steam turbine suitable for preventing deterioration in performance.

(従来の技術) 原子力タービンや地熱タービンの大部分の段落あるいは
火力タービンの低圧部の段落では、作動流体である蒸気
の一部分が凝縮してドレンとなり、静翼の表面を流れ、
これらドレンが下流にある動翼を浸蝕したり、タービン
効率を低下させたりすることは知られている。
(Prior Art) In most paragraphs of nuclear power turbines and geothermal turbines, or in the low pressure section of thermal power turbines, a part of steam, which is a working fluid, condenses into drain, which flows on the surface of the stationary blade.
It is known that these drains erode the blades located downstream and reduce turbine efficiency.

静翼の表面で発生したドレンは、成長し集合し後縁へ流
れそこから飛散して蒸気主流の速度に追従できないまま
動翼に衝突する。衝突速度は翼の先端ほど速く、ドレン
の発生は翼の外周近くに多い。したがって、動翼先端が
集中的に浸蝕を受ける。また、ドレンの動翼への衝突
は、動翼の回転に対してブレーキとして作用するのでタ
ービン効率低下の要因となる。
The drain generated on the surface of the stationary blade grows, aggregates, flows to the trailing edge, and scatters from there, impinges on the moving blade without being able to follow the velocity of the main steam flow. The collision speed is faster toward the tip of the wing, and drains are often generated near the outer circumference of the wing. Therefore, the tip of the rotor blade is intensively eroded. Further, the collision of the drain with the moving blade acts as a brake on the rotation of the moving blade, which causes a decrease in turbine efficiency.

このような問題を改善するために、従来、第8図、第9
図に示されるような湿分分離装置を備えた蒸気タービン
が提案されている。
In order to improve such a problem, conventionally, FIGS.
A steam turbine having a moisture separator as shown in the figure has been proposed.

第8図において、流路外周壁1と静翼内輪2との間には
溶接や鋳込みなどにより50枚から100枚程度の静翼3が
放射状に固設されている。静翼3の腹側面3aの下流側に
は第9図に示すようにドレン捕獲溝4が形成され、この
ドレン捕獲溝4は流路外周壁1側から長手方向に流路中
央近くまで延設されている。また、ドレン捕獲溝4は流
路外周壁1内に設けられたドレン回収室5に連通孔6を
介して連通されている。静翼3の上流側と下流側の流路
外周壁1にはドレン吸込スリット8が設けられ、ドレン
回収室5に連通されている。ドレン回収室5は低圧の復
水器(図示せず)などに連通されている。また、静翼3
の下流にはホイール9に植込まれた静翼10が配設されて
いる。
In FIG. 8, about 50 to 100 stationary blades 3 are radially fixed by welding or casting between the outer peripheral wall 1 of the flow path and the inner race 2 of the stationary blade. A drain catching groove 4 is formed on the downstream side of the ventral side surface 3a of the vane 3 as shown in FIG. 9, and the drain catching groove 4 extends in the longitudinal direction from the flow path outer peripheral wall 1 side to near the flow path center. Has been done. Further, the drain capturing groove 4 communicates with a drain recovery chamber 5 provided in the outer peripheral wall 1 of the flow path via a communication hole 6. Drain suction slits 8 are provided in the outer peripheral wall 1 of the flow passage on the upstream side and the downstream side of the vane 3, and are connected to the drain recovery chamber 5. The drain recovery chamber 5 is connected to a low pressure condenser (not shown) or the like. Also, the stationary wings 3
A vane 10 embedded in the wheel 9 is disposed downstream of the.

主流蒸気は第8図における左方より静翼3に流入しここ
で流れの向きを変えつつ増速されて動翼10に流入し、こ
れを回転させる。温度、圧力の低い湿り蒸気が流れてい
る蒸気タービン段落では静翼3や流路外周壁1上で蒸気
の一部が凝縮してドレンが発生する。静翼3の腹側を流
れるドレンはドレン捕獲溝4で捕獲され、連通孔6から
ドレン回収室5に吸込まれ流路外へ排出される。流路外
周壁1上のドレンはドレン吸込スリット8を介して流路
外へ排出される。
The mainstream steam flows into the stationary vane 3 from the left side in FIG. 8, where it is accelerated while changing the direction of the flow and then flows into the moving blade 10 to rotate it. In a steam turbine stage in which moist steam having a low temperature and a low pressure is flowing, a part of the steam is condensed on the stationary blades 3 and the outer peripheral wall 1 of the flow path to generate a drain. The drain flowing on the ventral side of the stationary blade 3 is captured by the drain capturing groove 4, sucked into the drain recovery chamber 5 through the communication hole 6, and discharged outside the flow path. The drain on the outer peripheral wall 1 of the flow path is discharged to the outside of the flow path through the drain suction slit 8.

(発明が解決しようとする問題点) 静翼3の背側面には上記腹側面と同様にドレンの流れが
存在し、その量は腹側面を流れるドレンの20%〜120%
にも達し、背側面の下流近くで付着し成長するドレンも
多い。ドレンの半径方向の分布を見ると流路中央部から
外側に向かってドレンの大部分が集中しており、特に流
路高さの75%より外側に多く集中している。流路外周壁
1でもドレンは多量にフィルム状になって流れる。静翼
3の表面に長手方向に上記のようにドレン捕獲溝4を設
けると、ここでドレンは捕獲され、ドレンの主流方向の
速度は無くなり、あとは溝に沿った静圧勾配でより低圧
な方へ流されることが観察されている。
(Problems to be Solved by the Invention) A drain flow is present on the dorsal side surface of the stationary blade 3 similarly to the ventral side surface, and the amount thereof is 20% to 120% of the drainage flowing on the ventral side surface.
There are also many drains that attach and grow near the downstream side of the dorsal surface. Looking at the radial distribution of the drain, most of the drain is concentrated from the central part of the flow channel to the outside, and especially, it is concentrated more than 75% of the flow channel height to the outside. Even in the outer peripheral wall 1 of the flow path, a large amount of drain flows in the form of a film. When the drain trapping groove 4 is provided on the surface of the vane 3 in the longitudinal direction as described above, the drain is trapped here, the velocity of the drain in the main flow direction disappears, and then the static pressure gradient along the groove lowers the pressure. It has been observed to be swept away.

つまり、上記従来技術においては、静翼の背側面を流れ
るドレンは全く捕獲されないばかりか腹側のドレン捕獲
溝4でとらえたドレンも静圧勾配が抵抗となって連通孔
6まで達するものはごく一部に限られ、残りは再度流出
してしまう可能性が大きい。また、外周壁1を流れる多
量のドレンで連通孔6がいっぱいになりドレン捕獲溝4
のドレンが逆流する可能性もある。このような現象を防
ぐために連通孔6を大きくすることは可能であるが、有
効な仕事をする蒸気まで排出することになりタービン効
率の低下を招くことになる。
In other words, in the above-mentioned conventional technique, not only the drain flowing on the dorsal surface of the vane is not captured, but also the drain captured by the drain capturing groove 4 on the ventral side reaches the communication hole 6 due to the static pressure gradient as a resistance. It is limited to a part, and the rest is likely to leak again. Further, the communication hole 6 is filled with a large amount of drain flowing through the outer peripheral wall 1 and the drain capturing groove 4
There is also the possibility that the drain will flow back. Although it is possible to increase the size of the communication hole 6 in order to prevent such a phenomenon, the steam that performs effective work is also discharged, which leads to a decrease in turbine efficiency.

そこで、本発明は、上述したような従来の蒸気タービン
静翼のドレン排出上の欠点を解消し、静翼の表面上で発
生するドレンによる動翼の浸蝕を防止すると共に、ター
ビン効率を向上させることを目的とするものである。
Therefore, the present invention solves the above-mentioned drawbacks in drain discharge of the conventional steam turbine stationary blade, prevents corrosion of the moving blade due to drain generated on the surface of the stationary blade, and improves turbine efficiency. That is the purpose.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明は、外周側端部を流
路外周壁に、内周側端部を静翼内輪にそれぞれ支持した
静翼を有し、この静翼の背側面または腹側面の少なくと
も一方の面に上記流路外周壁から間隔を隔てた位置より
上記静翼内輪側へ向けて長手方向へ延びるドレン捕獲溝
を形成したことを特徴とするものである。
(Means for Solving Problems) In order to achieve the above object, the present invention has a vane in which an outer peripheral side end is supported by a flow channel outer peripheral wall and an inner peripheral side end is supported by a stationary vane inner ring. However, a drain trap groove extending in the longitudinal direction from the position spaced from the flow passage outer peripheral wall toward the stator vane inner ring side is formed on at least one surface of the back surface or ventral surface of the stator blade. It is what

(作 用) 本発明によれば、静翼の表面を流れるドレンはドレン捕
獲溝に捕えられ、外周壁側における静圧が内輪側におけ
る静圧より高いという上記溝内の静圧勾配によってドレ
ンは内輪側へ流され、静翼の下流に配置された動翼の周
速が充分小さくなる半径方向の位置まで導かれ、上記溝
がなくなる近くでドレンは再び静翼の表面に流れ出して
後縁から飛散する。ここでは動翼の先端近くと異なりそ
の周速が小さいのでドレンの動翼への衝突速度は小さ
く、動翼を浸蝕することはなく、ブレーキ作用によるタ
ービン効率の低下も小さい。また、ドレン蒸気は流路か
ら外部へ排出されないので、蒸気の損失も少なくなる。
(Operation) According to the present invention, the drain flowing on the surface of the vane is caught by the drain trapping groove, and the drain is prevented by the static pressure gradient in the groove that the static pressure on the outer peripheral wall side is higher than the static pressure on the inner ring side. It is flown to the inner ring side and is guided to a radial position where the peripheral speed of the moving blades located downstream of the stationary blade becomes sufficiently small, and the drain flows out to the surface of the stationary blade again near the disappearance of the groove, and from the trailing edge. Scatter. Here, unlike the vicinity of the tip of the moving blade, its peripheral speed is small, so that the collision speed of the drain against the moving blade is small, the moving blade is not eroded, and the turbine efficiency is not lowered by the braking action. Further, since the drain steam is not discharged from the flow path to the outside, the loss of steam is reduced.

(実施例) 以下、本発明による蒸気タービンの静翼の一実施例を第
1図乃至第3図を参照して説明する。なお、第8図と同
一部分には同一符号を付して示し説明を省略する。
(Embodiment) An embodiment of a stationary blade of a steam turbine according to the present invention will be described below with reference to FIGS. 1 to 3. The same parts as those in FIG. 8 are designated by the same reference numerals and the description thereof will be omitted.

第1図において、静翼3の背側面及び腹側面の後縁近く
には、静翼3の長手方向に沿ってドレン捕獲溝4が形成
されている。この溝4は流路外周壁1側に開口しない形
状になっており、本実施例においては、溝4の外周側端
部と流路外周壁1との距離Dが約3mm以上隔てられてい
る。一方、溝4の内周側端部は、静翼内輪2の外周面を
基準とする静翼高さの75%より内輪2側に近くなるよう
形成されている。
In FIG. 1, a drain capturing groove 4 is formed along the longitudinal direction of the vane 3 near the rear edges of the dorsal and ventral sides of the vane 3. The groove 4 has a shape that does not open to the flow path outer peripheral wall 1 side, and in this embodiment, the distance D between the outer peripheral side end of the groove 4 and the flow path outer peripheral wall 1 is separated by about 3 mm or more. . On the other hand, the inner peripheral side end of the groove 4 is formed so as to be closer to the inner ring 2 side than 75% of the height of the stationary blade with respect to the outer peripheral surface of the stationary blade inner ring 2.

静翼3の背側面の溝4は、後縁近くに後縁とほぼ平行に
なるように形成され、静翼3の腹側面の溝4は、外周側
端部がプロフィル前縁側にかつ内周側端部がプロフィル
後縁側に近付くよう形成されている。
The groove 4 on the back side of the vane 3 is formed near the trailing edge so as to be substantially parallel to the trailing edge, and the groove 4 on the ventral side of the vane 3 has an outer peripheral end on the front side of the profile and an inner periphery. The side end portion is formed so as to approach the trailing edge side of the profile.

次に、本発明における蒸気タービンの静翼の作用を説明
する。
Next, the operation of the vane of the steam turbine in the present invention will be described.

湿り蒸気が流れる蒸気タービンにおいては、蒸気が静翼
3の間を流れるときに、蒸気中の湿分が流れ方向の速度
変化に追従できず静翼3の表面に衝突したり、静翼3の
表面に沿って流れるうちに凝縮したりして静翼3表面に
ドレンが発生する。
In a steam turbine in which wet steam flows, when the steam flows between the stationary blades 3, the moisture in the steam cannot follow the speed change in the flow direction and collides with the surface of the stationary blades 3, or Drain occurs on the surface of the stationary blade 3 due to condensation while flowing along the surface.

静翼3のIII−III断面及びIV−IV断面(第1図参照)の
プロフィル表面静圧分布は第3図に示すような関係にあ
り、外周側のIII−III断面部の方が内周側のIV−IV断面
部より圧力は高い。従って、ドレン捕獲溝4を形成する
と背・腹側両面とも外周側で高く内周側で低いという圧
力差が溝4に沿って生じる。第3図ではこの圧力差を腹
側、背側についてそれぞれ△P1,△P2で示している。た
だし背側では溝4を後縁に平行にするだけで十分な圧力
差が生ずるが、腹側では第3図から明らかなように、そ
れだけでは不十分なので溝4の外周側端部をプロフィル
前縁寄りに、かつ内周側端部をプロフィル後縁寄りにな
るよう形成することによって圧力差を大きくしている。
The profile surface static pressure distributions in the III-III cross section and the IV-IV cross section (see FIG. 1) of the stationary blade 3 have a relationship as shown in FIG. 3, and the III-III cross section on the outer circumference side is the inner circumference. The pressure is higher than the IV-IV cross section on the side. Therefore, when the drain capturing groove 4 is formed, a pressure difference is generated along the groove 4 that is high on the outer peripheral side and low on the inner peripheral side on both the back and ventral sides. In FIG. 3, this pressure difference is indicated by ΔP 1 and ΔP 2 on the ventral side and the dorsal side, respectively. However, on the back side, a sufficient pressure difference is generated only by making the groove 4 parallel to the trailing edge, but on the ventral side, as is clear from FIG. The pressure difference is increased by forming the end portion on the inner peripheral side closer to the edge and closer to the trailing edge of the profile.

静翼3表面のドレンは翼の表面上を流れるうちにドレン
捕獲溝4に捕えられ、溝4内の静圧勾配によって内周側
に流され、溝4がなくなる部位の近くで再び流出して静
翼3の後縁まで流される。この間のドレンの経路は第1
図に符号Fdで示されている。後縁に到達したドレンはそ
こから飛散して動翼7に衝突するが、前記ドレン捕獲溝
4は充分に長く、ドレンが衝突する位置の半径は充分小
さくなっているので、ドレンの衝突速度は充分小さい。
The drain on the surface of the vane 3 is caught in the drain trapping groove 4 while flowing on the surface of the vane, flows toward the inner peripheral side due to the static pressure gradient in the groove 4, and flows out again near the portion where the groove 4 disappears. It is made to flow to the trailing edge of the stationary blade 3. The drain route during this time is the first
It is designated by the symbol Fd in the figure. The drain that has reached the trailing edge is scattered from there and collides with the moving blade 7, but since the drain capturing groove 4 is sufficiently long and the radius at which the drain collides is sufficiently small, the collision velocity of the drain is Small enough.

一方、実験によって流路外周壁1上をフィルム状になっ
て流れるドレンはその量も多いことがわかっているが、
ドレン捕獲溝4と流路外周壁1との間には3mm以上の間
隔Dがあり、外周壁1上のドレンが溝4に流れ込むこと
はなく、外周壁1上のドレンは静翼3の下流のドレン吸
込スリット8に効率良く吸込まれる。
On the other hand, it has been found through experiments that the amount of drain flowing in the form of a film on the outer peripheral wall 1 of the flow channel is large.
There is a distance D of 3 mm or more between the drain capturing groove 4 and the flow passage outer peripheral wall 1, the drain on the outer peripheral wall 1 does not flow into the groove 4, and the drain on the outer peripheral wall 1 is downstream of the stationary blade 3. Is efficiently sucked into the drain suction slit 8.

通常、26インチ程度までの最終段動翼では先端から75%
高さまでの範囲がドレンとの衝突速度が大きく浸蝕が激
しい。本実施例では、ドレン捕獲溝4を形成することに
よってこの範囲は少なくとも保護される。
Normally, 75% from the tip for the final stage blade up to about 26 inches
In the range up to the height, the collision speed with the drain is large and the erosion is severe. In this embodiment, at least this area is protected by forming the drain trap groove 4.

上記のようにして、動翼に衝突するときの衝突速度が充
分小さくなる内周側の部分に静翼3の表面で発生するド
レンを導くことによって、動翼の浸蝕は大幅に低減で
き、信頼性が向上すると共にタービンの補修費用を減ら
すことができる。また、動翼への衝突損失は小さくなる
ので、タービンの段落効率が向上する。本実施例では、
ドレン及び蒸気を流路外へ流出することがないので、蒸
気の損失もなくなる。
As described above, by guiding the drain generated on the surface of the stationary blade 3 to the inner peripheral side portion where the collision velocity when colliding with the moving blade is sufficiently small, the erosion of the moving blade can be significantly reduced, and the reliability can be improved. And the cost of repairing the turbine can be reduced. Further, since the collision loss on the moving blade is small, the paragraph efficiency of the turbine is improved. In this embodiment,
Since the drain and steam do not flow out of the flow path, there is no steam loss.

さらに、最終段静翼では静翼流出蒸気速度は内周側にな
ればなるほど大きくなるので、ドレンを内周側に導いて
から流出させることは静翼後縁から飛散するドレン粒子
をより微細化することになり、動翼の浸蝕をさらに低減
できるという効果が得られる。
Further, in the final stage stationary blade, the steam velocity flowing out of the stationary blade increases toward the inner peripheral side, so guiding the drain to the inner peripheral side before flowing it out further reduces the size of the drain particles scattered from the trailing edge of the stationary blade. Therefore, the effect of further reducing the erosion of the moving blade can be obtained.

本発明によれば、静翼3の表面に溝を設けるだけの簡単
な構造であるので、湿り蒸気を作動流体とするタービン
のコストを低減できるばかりでなく、既存設備にも簡単
に適用でき動翼の浸蝕防止及び性能向上を安価に実現す
ることができる。
According to the present invention, since the structure is simple in that the grooves are provided on the surface of the vane 3, not only can the cost of the turbine using wet steam as a working fluid be reduced, but it can also be easily applied to existing equipment. Prevention of blade erosion and performance improvement can be realized at low cost.

次に、本発明の他の実施例について第4図及び第5図を
参照して説明する。なお、第5図は第4図に示した静翼
3のV−V断面図である。
Next, another embodiment of the present invention will be described with reference to FIGS. Note that FIG. 5 is a VV cross-sectional view of the stationary blade 3 shown in FIG.

第4図において、静翼3の背・腹側両面には複数のドレ
ン捕獲溝4が形成されている。すべての溝4の外周側端
部は流路外周壁1から第1図と同様して距離Dだけ隔て
られており、溝4の長さは下流に位置するものほど短く
なるように、かつ背・腹側含めてすべての溝4の内周側
端部の半径方向位置が異なるように形成されている。
In FIG. 4, a plurality of drain capturing grooves 4 are formed on both the back and ventral sides of the stationary blade 3. The outer peripheral side ends of all the grooves 4 are separated from the outer peripheral wall 1 of the flow path by a distance D in the same manner as in FIG. 1, and the lengths of the grooves 4 become shorter toward the downstream side, and The radial positions of the inner peripheral side end portions of all the grooves 4 including the ventral side are different.

このように構成することによって、一本の溝4だけでは
捕獲しきれなかったドレンや一本目の溝4の下流で新た
に発生したドレンを確実に捕獲でき、ドレンが流出する
半径方向の位置を分散させ低速といえども集中して動翼
にドレンが衝突するのを防止することができる。
With this configuration, it is possible to reliably capture the drain that could not be captured by the single groove 4 and the drain that is newly generated downstream of the first groove 4, and to control the radial position where the drain flows out. It is possible to prevent the drain from colliding with the rotor blades even if it is dispersed at low speed.

また、第6図及び第7図を参照して他の実施例について
説明する。なお、第7図は第6図の静翼のVI−VI断面図
である。
Another embodiment will be described with reference to FIGS. 6 and 7. 7 is a sectional view of the vane of FIG. 6 taken along line VI-VI.

この静翼3は中空構造であり、その内部は空洞11になっ
ており、表面圧力がほぼ等しい背側前縁近くと腹側後縁
近くには、外部と空洞11とを連通するドレン吸込スリッ
ト10が形成されている。スリット10は静翼3の長手方向
に沿いかつ流れに直交するように形成され、静翼3の強
度を低下させないように3つに分割されている(第6図
参照)。空洞11に連通するドレン回収室5は流路外周壁
1の内部に設けられ、この回収室5はより低圧なたとえ
ば復水器などの部分へつながっている。また、静翼3の
後縁近くの背側面上には後縁と平行にドレン捕獲溝4が
形成されている。
The vane 3 has a hollow structure and has a cavity 11 inside, and a drain suction slit 10 that communicates the outside and the cavity 11 is provided near the back front edge and the ventral rear edge where the surface pressures are almost equal. Are formed. The slit 10 is formed along the longitudinal direction of the vane 3 and orthogonal to the flow, and is divided into three so as not to reduce the strength of the vane 3 (see FIG. 6). A drain recovery chamber 5 communicating with the cavity 11 is provided inside the outer peripheral wall 1 of the flow path, and the recovery chamber 5 is connected to a lower pressure part such as a condenser. Further, a drain capturing groove 4 is formed on the back side surface near the trailing edge of the stationary blade 3 in parallel with the trailing edge.

このように構成した蒸気タービン静翼においては、翼の
表面上を流れるドレンは上記ドレン吸込スリット10から
空洞11内に吸込まれ、ドレン回収室5を経て、上記低圧
の部分へ排出される。ところで背側の静翼ドレン吸込ス
リット10は前縁近くに形成されているので、例えここで
すべてのドレンを吸込んだとしてもその下流では凝縮に
よってドレンが発生する。このドレンを背側後縁近くの
ドレン捕獲溝4が捕えて半径方向の位置が充分小さい位
置までドレンを導く。本実施例では、ドレンの吸込みと
溝4によるドレンの移動を併用するので、特に湿り度が
高くドレンの多いタービン段落に有効であり、従来の吸
込スリットだけの中空状静翼では防止できなかった背側
下流に発生するドレンによる浸蝕を有効に防止すること
ができる。
In the steam turbine stationary blade configured as described above, the drain flowing on the surface of the blade is sucked into the cavity 11 through the drain suction slit 10, passes through the drain recovery chamber 5, and is discharged to the low pressure portion. By the way, since the stationary blade drain suction slit 10 on the back side is formed near the leading edge, even if all the drains are sucked in here, the drains are generated by condensation in the downstream thereof. This drain is caught by the drain catching groove 4 near the rear edge of the back side, and the drain is guided to a position where the radial position is sufficiently small. In the present embodiment, since the suction of drain and the movement of drain by the groove 4 are used together, it is particularly effective for a turbine stage where the degree of wetness is high and there is a large amount of drain, which cannot be prevented by the conventional hollow stationary blade having only the suction slit. It is possible to effectively prevent erosion due to the drain generated on the downstream side.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば、静翼
の背側面または腹側面の少なくとも一方の面に形成され
たドレン捕獲溝を介して静翼の表面上のドレンを動翼に
浸蝕を与えない半径方向の位置まで導くようにしたの
で、動翼の浸蝕を防止できると共に、タービン段落の効
率を向上させることができる。
As is apparent from the above description, according to the present invention, the drain on the surface of the stationary blade is eroded by the drain through the drain capturing groove formed on at least one of the back surface and the ventral surface of the stationary blade. Since it is guided to a position in the radial direction that does not give the effect, it is possible to prevent erosion of the moving blade and improve the efficiency of the turbine stage.

【図面の簡単な説明】 第1図は本発明の一実施例を示す蒸気タービン最終段の
縦断面図、第2図は第1図のII−II断面図、第3図は第
1図のIII−III断面とIV−IV断面における静翼のプロフ
ィル表面静圧分布図、第4図は他の実施例を示す蒸気タ
ービン最終段静翼の縦断面図、第5図は第4図のV−V
断面図、第6図は他の実施例を示す蒸気タービン最終段
の縦断面図、第7図は第6図のVII−VII断面図、第8図
は従来の蒸気タービン最終段の縦断面図、第9図は第8
図のIX−IX断面図である。 1……流路外周壁、2……静翼内輪、3……静翼、4…
…ドレン捕獲溝、5……ドレン回収空洞、6……連通
孔、7……動翼、8……ドレン吸込スリット、10……静
翼ドレン吸込スリット、11……静翼空洞、Fd……ドレン
の流れ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of a steam turbine final stage showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. Profile surface static pressure distribution diagram of the vane in III-III cross section and IV-IV cross section, FIG. 4 is a vertical cross sectional view of a steam turbine final stage vane showing another embodiment, and FIG. 5 is VV of FIG.
Sectional drawing, FIG. 6 is a longitudinal sectional view of a final stage of a steam turbine showing another embodiment, FIG. 7 is a sectional view of a VII-VII section of FIG. 6, and FIG. 8 is a longitudinal sectional view of a conventional steam turbine final stage. , Fig. 9 shows 8
FIG. 9 is a sectional view taken along line IX-IX in the figure. 1 ... Outer wall of flow passage, 2 ... Inner ring of vane, 3 ... Vane, 4 ...
… Drain catching groove, 5 …… Drain recovery cavity, 6 …… Communication hole, 7 …… Movement blade, 8 …… Drain suction slit, 10 …… Static vane drain suction slit, 11 …… Static vane cavity, Fd …… Drain flow.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−108806(JP,A) 特開 昭58−176404(JP,A) 特開 昭57−44706(JP,A) 特開 昭63−183205(JP,A) 実開 昭53−132506(JP,U) 実開 昭51−141702(JP,U) 実開 昭60−73801(JP,U) 特公 昭49−9522(JP,B1) 実公 昭52−27282(JP,Y1) 実公 昭51−20322(JP,Y1) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-61-108806 (JP, A) JP-A-58-176404 (JP, A) JP-A-57-44706 (JP, A) JP-A-63- 183205 (JP, A) Actual Open Sho 53-132506 (JP, U) Actual Open Sho 51-141702 (JP, U) Actual Open Sho 60-73801 (JP, U) Japanese Patent Sho 49-9522 (JP, B1) Actual Public Sho 52-27282 (JP, Y1) Actual Public Sho 51-20322 (JP, Y1)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】外周側端部を流路外周壁に、内周側端部を
静翼内輪にそれぞれ支持した静翼を有し、この静翼の背
側面または腹側面の少なくとも一方の面に上記流路外周
壁から間隔を隔てた位置より上記静翼内輪側へ向けて長
手方向へ延びるドレン捕獲溝を形成したことを特徴とす
る蒸気タービンの静翼。
1. A stator blade having an outer peripheral side end supported by a flow passage outer peripheral wall and an inner peripheral side end supported by a stationary vane inner ring, and at least one of a back side surface and a ventral side surface of the stationary blade. A stationary blade of a steam turbine, characterized in that a drain trap groove extending in the longitudinal direction is formed from a position spaced from the outer peripheral wall of the flow path toward the inner ring side of the stationary blade.
【請求項2】上記溝は、溝の外周側端部が上記流路外周
壁より少なくとも3mm以上隔てられ、溝の内周側端部が
上記静翼内輪の外周面を基準とする静翼高さの75%以下
の位置へ達するよう形成されていることを特徴とする特
許請求の範囲第1項記載の蒸気タービンの静翼。
2. The above-mentioned groove is such that an outer peripheral side end of the groove is separated from the outer peripheral wall of the flow path by at least 3 mm or more, and an inner peripheral side end of the groove is a stator vane height based on an outer peripheral surface of the stationary vane inner ring. The stator blade of the steam turbine according to claim 1, wherein the stator blade is formed so as to reach a position of 75% or less of the height.
【請求項3】上記溝は背側面の後縁近くに後縁とほぼ平
行に形成されていることを特徴とする特許請求の範囲第
1項記載の蒸気タービンの静翼。
3. The vane of a steam turbine according to claim 1, wherein the groove is formed near the trailing edge of the back side surface and substantially parallel to the trailing edge.
【請求項4】上記溝は溝の外周側端部がプロフィル前縁
寄りに、かつ溝の内周側端部がプロフィル後縁寄りに位
置するよう形成され、上記外周側端部から上記内周側端
部へ向かって上記溝内の静圧が低くなるようにしたこと
を特徴とする特許請求の範囲第1項記載の蒸気タービン
の静翼。
4. The groove is formed such that an outer peripheral side end of the groove is located closer to a profile front edge and an inner peripheral side end of the groove is located closer to a profile rear edge, and the groove is formed from the outer peripheral side end to the inner peripheral side. The static blade of the steam turbine according to claim 1, wherein the static pressure in the groove is lowered toward the side end portion.
【請求項5】上記静翼の背側面または腹側面の同一面内
に2本以上の溝を並列状に形成し、溝の長さは後縁近く
にある溝ほど短くなるよう形成したことを特徴とする特
許請求の範囲第1項記載の蒸気タービンの静翼。
5. The two or more grooves are formed in parallel on the same plane of the back surface or ventral surface of the stationary blade, and the length of the groove is shorter as the groove is closer to the trailing edge. A stationary blade of a steam turbine according to claim 1, characterized in that.
【請求項6】上記静翼は中空構造に形成し、蒸気圧力が
同じになる背側面内のプロフィル前縁側と腹側面内のプ
ロフィル後縁側とに蒸気静翼の長手方向に沿いかつ蒸気
の流れに直交するスリット状のドレン吸込口を形成する
と共に、上記背側面の後縁の近くには上記溝を後縁とほ
ぼ平行に形成したことを特徴とする特許請求の範囲第1
項記載の蒸気タービンの静翼。
6. The stator vane is formed in a hollow structure, and along the longitudinal direction of the steam stator vane along the profile leading edge side in the back side and the profile trailing edge side in the ventral side where the steam pressure becomes the same, and in the steam flow. A slit-shaped drain suction port that is orthogonal to each other is formed, and the groove is formed near the rear edge of the back side surface substantially parallel to the rear edge.
The stationary blade of the steam turbine according to the item.
JP11429287A 1987-05-11 1987-05-11 Steam turbine vane Expired - Lifetime JPH0791961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11429287A JPH0791961B2 (en) 1987-05-11 1987-05-11 Steam turbine vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11429287A JPH0791961B2 (en) 1987-05-11 1987-05-11 Steam turbine vane

Publications (2)

Publication Number Publication Date
JPS63280801A JPS63280801A (en) 1988-11-17
JPH0791961B2 true JPH0791961B2 (en) 1995-10-09

Family

ID=14634202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11429287A Expired - Lifetime JPH0791961B2 (en) 1987-05-11 1987-05-11 Steam turbine vane

Country Status (1)

Country Link
JP (1) JPH0791961B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592216B2 (en) * 2001-05-31 2010-12-01 株式会社東芝 Steam turbine equipment
US8568090B2 (en) 2009-12-07 2013-10-29 General Electric Company System for reducing the level of erosion affecting a component
JP6415338B2 (en) * 2015-01-28 2018-10-31 三菱日立パワーシステムズ株式会社 Stator blades and steam turbines
JP7378970B2 (en) * 2019-06-10 2023-11-14 三菱重工業株式会社 Steam turbine stationary blade, steam turbine and steam turbine stationary blade manufacturing method

Also Published As

Publication number Publication date
JPS63280801A (en) 1988-11-17

Similar Documents

Publication Publication Date Title
JP5824208B2 (en) System for reducing the effects of erosion on parts
US3039736A (en) Secondary flow control in fluid deflecting passages
KR101378236B1 (en) Systems for moisture removal in steam turbine engines
CZ305769B6 (en) Steam turbine
US7296964B2 (en) Apparatus and methods for minimizing solid particle erosion in steam turbines
JP2016166569A (en) Steam turbine
JP3786458B2 (en) Axial turbine blade
JPH04259604A (en) Honeycomb type sealing device and moisture content draining device
JPH0791961B2 (en) Steam turbine vane
KR20160023876A (en) Moisture removal device for steam turbine
JP3093479B2 (en) Steam turbine moisture separator
US5112187A (en) Erosion control through reduction of moisture transport by secondary flow
JP2753237B2 (en) Stationary structure of steam turbine
JP3815143B2 (en) Steam turbine
US6375417B1 (en) Moisture removal pocket for improved moisture removal efficiency
JPS63117104A (en) Moisture separating device for steam turbine
CN210977610U (en) Sawtooth type movable blade front edge water erosion prevention groove structure
JP3950308B2 (en) Moisture removal device in steam turbine
JPH04140401A (en) Nozzle of steam turbine
JPH08121107A (en) Steam turbine nozzle
JPH0742506A (en) Drain discharging structure of steam turbine
JPH0326803A (en) Moist steam turbine stage
JP2723334B2 (en) Steam turbine nozzle water droplet removal equipment
JPH0711243B2 (en) Honeycomb labyrinth seals for steam turbines
US20130323019A1 (en) Apparatus for minimizing solid particle erosion in steam turbines

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20071009