JPS63261767A - Manufacture of superconducting transistor - Google Patents
Manufacture of superconducting transistorInfo
- Publication number
- JPS63261767A JPS63261767A JP62095119A JP9511987A JPS63261767A JP S63261767 A JPS63261767 A JP S63261767A JP 62095119 A JP62095119 A JP 62095119A JP 9511987 A JP9511987 A JP 9511987A JP S63261767 A JPS63261767 A JP S63261767A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- superconducting
- control electrode
- film
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 17
- 239000010408 film Substances 0.000 abstract description 23
- 239000000758 substrate Substances 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 239000002887 superconductor Substances 0.000 abstract description 9
- 239000010409 thin film Substances 0.000 abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 238000001020 plasma etching Methods 0.000 abstract description 4
- 238000010894 electron beam technology Methods 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000000313 electron-beam-induced deposition Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000001994 activation Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910020174 Pb-In Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、極低温で動作する超伝導トランジスタ及びそ
の製造方法に係り、特に加工精度を高め、デバイス特性
の均一性と再現性を向上させ、回路利得を高めるのに好
適な超伝導トランジスタ及びその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting transistor that operates at extremely low temperatures and a method for manufacturing the same, and particularly to a superconducting transistor that operates at extremely low temperatures and a method for manufacturing the same. , relates to a superconducting transistor suitable for increasing circuit gain and a method for manufacturing the same.
半導体に接して設けられた2つの超伝導電極間に流れる
超伝導電流の値を、制御電極に印加した電圧により超伝
導近傍効果を変化されることによって制御することを動
作原理とする超伝導トランジスタについては、ジャーナ
ル・オブ・アプライド・フィジクス、51巻2736ペ
ージ(1980年)(Journal of Appl
ied Physics vo Q 、 51 (19
80))に論じられている。A superconducting transistor whose operating principle is to control the value of superconducting current flowing between two superconducting electrodes provided in contact with a semiconductor by changing the superconducting near-field effect by applying a voltage to a control electrode. For more information, see Journal of Applied Physics, Vol. 51, p. 2736 (1980) (Journal of Appl.
ied Physics vo Q, 51 (19
80)).
上記従来技術は電界効果型の超伝導素子の実現を目的と
している。すなわち制御電極にゲート絶縁膜を介して電
界を加えることで半導体チャネル中のキャリア濃度を変
化させ、超伝導近接効果を変調することによりソース・
ドレイン電極の間に電圧零の状態で流れる超伝導電流を
制御するというものである。超伝導近接効果を生じさせ
るためには、ソース・ドレイン電極となる2つの超伝導
体間の距離を超伝導体の電子対コヒーレンス長の10倍
程度、すなわち0.2μm以下に近接させる必要がある
。この範囲よりも小さいと超伝導電極間の結合が強すぎ
て、制御電極による制御が行いにくくなり、例えば超伝
導トランジスタの利得が低下するなどの問題がある。一
方、この範囲より大きいと超伝導弱結合が形成されず、
超伝導電流が流れない。この距離を確保し、ここにゲー
ト絶縁膜を形成し、その上にゲート電極を設置すること
が困難であった。The above conventional technology aims at realizing a field effect type superconducting element. That is, by applying an electric field to the control electrode through the gate insulating film, the carrier concentration in the semiconductor channel is changed, and the superconducting proximity effect is modulated, thereby increasing the source
The idea is to control the superconducting current that flows between the drain electrodes when the voltage is zero. In order to generate the superconducting proximity effect, the distance between the two superconductors that form the source and drain electrodes must be approximately 10 times the electron pair coherence length of the superconductors, that is, 0.2 μm or less. . If it is smaller than this range, the coupling between the superconducting electrodes will be too strong, making it difficult to control the control electrode, leading to problems such as a decrease in the gain of the superconducting transistor, for example. On the other hand, if it is larger than this range, superconducting weak bonds will not be formed;
Superconducting current does not flow. It was difficult to secure this distance, form a gate insulating film here, and place a gate electrode thereon.
本発明の目的はデバイス特性の均一性、再現性さらには
回路利得の向上を図る高集積化に適した超伝導トランジ
スタの製造方法を提供することにある。An object of the present invention is to provide a method for manufacturing a superconducting transistor that is suitable for high integration and improves uniformity and reproducibility of device characteristics as well as circuit gain.
上記目的は、ゲート絶縁膜及び制御電極作製工程を、超
伝導体からなるソース・ドレイン電極形成工程よりも先
に行うことで、ソース・ドレイン電極間を好適な範囲の
距離に確保し、ゲート絶縁膜の厚さを薄くシ、かつ半導
体中の不純物を好適な分布に形成することにより達成さ
れる。The above purpose is to perform the gate insulating film and control electrode manufacturing process before the source/drain electrode formation process made of superconductor, thereby ensuring a suitable distance between the source and drain electrodes and gate insulation. This is achieved by reducing the thickness of the film and forming the impurities in the semiconductor in a suitable distribution.
ゲート絶縁膜、制御電極をあらかじめ形成しておき、必
要な寸法で一度に加工すれば、ゲート絶縁膜の厚さを最
小限にできるため1回路利得が向上し、さらにゲート絶
縁膜を1000℃以上高温の熱酸化で形成する場合この
プロセスエ稈を用いれば、超伝導電極の特性の劣化を防
止することができる。また、制御電極をマスクとして不
純物を導入することができるため、好適な分布の不純物
導入が容易となる。さらにソース・トレイン電極と制御
電極の絶縁性を保って、ソース・ドレイン間の距離をコ
ヒーレンス長の10倍程度にすることができるため、信
頼性を向上し、高利得化、高速化が可能となる。By forming the gate insulating film and control electrode in advance and processing them all at once to the required dimensions, the thickness of the gate insulating film can be minimized, improving single circuit gain, and furthermore, the gate insulating film can be heated to temperatures of 1000°C or higher. If this process is used when forming superconducting electrodes by high-temperature thermal oxidation, deterioration of the characteristics of the superconducting electrode can be prevented. Further, since impurities can be introduced using the control electrode as a mask, it becomes easy to introduce impurities with a suitable distribution. Furthermore, by maintaining the insulation between the source/train electrode and the control electrode, the distance between the source and drain can be made approximately 10 times the coherence length, which improves reliability and enables higher gain and higher speed. Become.
以下、本発明を実施例を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図を用いて本発明の第1の実施例を説明する。第1
図(a)〜(h)は順に作製工程を示し、(h)は完成
した超伝導トランジスタの構造を示す。A first embodiment of the present invention will be described using FIG. 1st
Figures (a) to (h) show the manufacturing steps in order, and (h) shows the structure of the completed superconducting transistor.
第1図(a)に示すように、1×1014a11−δ以
下の不純物を含むSiの半導体基板1の表面を1200
℃の酸素雰囲気中で熱酸化を行い、Jグさ約80nmの
絶縁膜2を形成する。続いて厚さ約1100nで制御電
極となるべきNbからなる超伝導体3をDCマグネトロ
ンスパッタ法で形成しく第1図(b)) 、その上にP
MMA等の電子線用レジスト4を約500nm塗布した
。次に電子線描画法を用いて幅0.2μmの空隙をもつ
レジストパターンを形成する0次にこの上にAQよりな
る厚さ30nmの金属薄膜5を抵抗加熱法によって堆積
させ(第1図(d)) 、アセトンの溶液にひたしてリ
フトオフを行って第1図(e)に示すように幅0.2μ
m以下の金属マスクを形成した。続いてこれをマスクと
して、CFcガスを用いたプラズマエツチングを施し、
Si基板1を200nmエツチングで除去し、幅0.2
μm以下の突起状に加工してゲート絶縁膜7.制御電極
8を形成する。その後ただちに金属薄膜5をマスクとし
てイオン打込法によりPイオンを半導体基板1に導入し
、不純物濃度1×1018G−8以上の高濃度不純物導
入層9を形成し、活性化処理を行う。この場合には高濃
度不純物導入層9はセルファライン的に形成されるため
、この端部は、制御電極8の直下の半導体まで達してい
て、この部分が素子の利得に対して有効に働く。なお、
半導体の突起部の中央には、不純物濃度1×1018■
−3以下のチャネル6が形成されている(第1図(f)
)。As shown in FIG. 1(a), the surface of a Si semiconductor substrate 1 containing impurities of 1×1014a11-δ or less is
Thermal oxidation is performed in an oxygen atmosphere at a temperature of 0.degree. C. to form an insulating film 2 with a J width of approximately 80 nm. Next, a superconductor 3 made of Nb to be a control electrode with a thickness of about 1100 nm is formed by DC magnetron sputtering (Fig. 1(b)), and then P is deposited on top of it.
An electron beam resist 4 such as MMA was applied to a thickness of about 500 nm. Next, a resist pattern with a gap of 0.2 μm in width is formed using an electron beam lithography method. Next, a metal thin film 5 made of AQ with a thickness of 30 nm is deposited on this resist pattern using a resistance heating method (see Fig. 1). d)) Soaked in an acetone solution and lifted off to a width of 0.2μ as shown in Figure 1(e).
A metal mask with a diameter of less than m was formed. Next, using this as a mask, plasma etching using CFc gas was performed.
The Si substrate 1 was removed by etching 200 nm, and the width was 0.2 nm.
Gate insulating film 7. Processed into a protrusion shape of μm or less. A control electrode 8 is formed. Immediately thereafter, P ions are introduced into the semiconductor substrate 1 by an ion implantation method using the metal thin film 5 as a mask to form a high concentration impurity introduction layer 9 having an impurity concentration of 1×10 18 G −8 or more, and an activation process is performed. In this case, since the high-concentration impurity-introduced layer 9 is formed in a self-aligned manner, this end reaches the semiconductor directly below the control electrode 8, and this portion effectively affects the gain of the device. In addition,
In the center of the semiconductor protrusion, there is an impurity concentration of 1×1018■
−3 or less channels 6 are formed (Fig. 1(f)
).
次に電子ビーム蒸着法で厚さ200nmのNbからなる
超伝導薄膜を形成した後、金属薄膜5から上層をエツチ
ングして除去することによりソース電極10.ドレイン
電極11を形成し、第1図(h)に示す構造の超伝導ト
ランジスタを得ることができた。Next, a superconducting thin film made of Nb with a thickness of 200 nm is formed by electron beam evaporation, and then the upper layer of the metal thin film 5 is etched and removed to form the source electrode 10. A drain electrode 11 was formed, and a superconducting transistor having the structure shown in FIG. 1(h) could be obtained.
以上述べた方法で作製した超伝導トランジスタは、ゲー
ト絶縁膜、ゲート電極を先に作製することによりソース
・ドレイン電極と制御電極との絶縁性を保ちつつ、チャ
ネルの幅を精度良く形成することができ、ゲート絶縁膜
の厚さを最小限に薄くでき、超伝導電極を設置の後に、
高温プロセス工程が入ることがない。このため再現性、
均一性。In the superconducting transistor manufactured by the method described above, by forming the gate insulating film and the gate electrode first, it is possible to maintain the insulation between the source/drain electrode and the control electrode while forming the channel width with high precision. The thickness of the gate insulating film can be minimized, and after installing the superconducting electrode,
No high-temperature process steps are involved. Therefore, reproducibility,
Uniformity.
信頼性が向上する。また回路利得、動作速度等のデバイ
ス特性も向上した。Improved reliability. Device characteristics such as circuit gain and operating speed have also been improved.
次に第2図を用いて本発明の第2の実施例を説明する。Next, a second embodiment of the present invention will be described using FIG.
第2図(a)〜(g)は順に作製工程を示し、(g)は
完成した超伝導トランジスタの構造を表わす。2(a) to 2(g) sequentially show the manufacturing steps, and FIG. 2(g) shows the structure of the completed superconducting transistor.
第2図(a)に示すようにlXl0”m″′8′8以下
物を含むSiの半導体基板1の表面を1200℃の酸素
雰囲気中で熱酸化を行い、厚さ約80nmの絶縁膜2を
形成する。続いて厚さ約200nmの制御電極となるべ
きNbの超伝導体3をDCマグネトロンスパッタ法で形
成し、その上にPMMA等の電子線用レジスト4を約5
00nm塗布した。(第2図(b))
次に電子線描画法を用いて幅0.2μmのレジストパタ
ーンを形成しこれをマスクとしてプラズマエツチングを
施しゲート電極8を形成した。次にこれをマスクとして
イオン打込み法でPイオンを半導体基板1に導入し、不
純物濃度1×10180−8以上の高濃度不純物導入層
9を形成し、活性化処理を行う。この場合には高濃度不
純物導入層9はセルファライン的に形成されるためこの
端部は、制御電極8の直下の半導体まで達しているので
、素子の利得向上に有効に働く。なお、制御電極8の中
央直下には不純物濃度lX1018■−3以下のチャネ
ル6が形成されている。次に制御電極8の側壁を酸素プ
ラズマ中で酸化して層間絶縁膜12を形成したのち、制
御電極8の下部以外の絶縁膜を除去するために、レジス
ト4をマスクとして、CF4ガスでプラズマエツチング
を行う(第2図(e))、続いて電子ビーム蒸着法で厚
さ200nmのNbよりなる超伝導薄膜を堆積した後、
アセトンに浸してリフトオフを行い、ソース電極10と
ドレイン電w1.8を形成し、第2図(g)に示す構造
の超伝導トランジスタを得ることができた。As shown in FIG. 2(a), the surface of a Si semiconductor substrate 1 containing less than lXl0"m"'8'8 is thermally oxidized in an oxygen atmosphere at 1200°C, and an insulating film 2 with a thickness of about 80 nm is formed. form. Next, a Nb superconductor 3 to be a control electrode with a thickness of about 200 nm is formed by DC magnetron sputtering, and an electron beam resist 4 such as PMMA is applied on top of the Nb superconductor 3 with a thickness of about 5 nm.
A thickness of 00 nm was applied. (FIG. 2(b)) Next, a resist pattern with a width of 0.2 μm was formed using an electron beam lithography method, and plasma etching was performed using this as a mask to form the gate electrode 8. Next, using this as a mask, P ions are introduced into the semiconductor substrate 1 by an ion implantation method to form a high concentration impurity introduction layer 9 having an impurity concentration of 1×10 180 −8 or more, and an activation process is performed. In this case, since the high-concentration impurity-introduced layer 9 is formed in a self-aligned manner, its end reaches the semiconductor directly below the control electrode 8, which effectively works to improve the gain of the device. Note that a channel 6 having an impurity concentration of 1X1018<-3> or less is formed directly below the center of the control electrode 8. Next, the side wall of the control electrode 8 is oxidized in oxygen plasma to form an interlayer insulating film 12, and then, in order to remove the insulating film other than the lower part of the control electrode 8, plasma etching is performed with CF4 gas using the resist 4 as a mask. (Fig. 2(e)). Then, after depositing a superconducting thin film of Nb with a thickness of 200 nm by electron beam evaporation,
Lift-off was performed by immersing it in acetone to form a source electrode 10 and a drain electrode w1.8, and a superconducting transistor having the structure shown in FIG. 2(g) could be obtained.
以上述べた方法で作製した超伝導トランジスタは、チャ
ネルの幅を精度良く形成でき、ソース・ドレイン両電極
と制御電極との電気的分離が図れる。このため再現性、
均一性、信頼性が高く、回路利得、動作速度等のデバイ
ス特性も向上した。In the superconducting transistor manufactured by the method described above, the width of the channel can be formed with high accuracy, and the source/drain electrodes and the control electrode can be electrically separated. Therefore, reproducibility,
It has high uniformity and reliability, and has improved device characteristics such as circuit gain and operating speed.
本実施例においては超伝導電極の材料にNbを用いたが
、N b N、 N bas i 、 N baG e
等のNb化合物、P b 、 P b −A u 、
P b −I n 。In this example, Nb was used as the material of the superconducting electrode, but Nb N, N bas i , N baG e
Nb compounds such as Pb, Pb-Au,
Pb-In.
Pb−In−Au、Pb−B1などのpb金合金用いた
場合でも同様の効果を得ることができる。Similar effects can be obtained even when pb gold alloys such as Pb-In-Au and Pb-B1 are used.
また半導体基板にはSi半導体の他にG e 。In addition to the Si semiconductor, the semiconductor substrate also contains G e.
G a A s 、 I n A s 、 I n P
、 I n S bなどを用いてよい。マスクとなる
金属薄膜としてAQを用いたが、Au、タングステンシ
リサイド、モリブデンシリサイド等のシリサイドを用い
ても同様の効果が得られる。Ga As, In As, In P
, I n S b, etc. may be used. Although AQ was used as the metal thin film serving as a mask, similar effects can be obtained by using silicides such as Au, tungsten silicide, and molybdenum silicide.
以上述べたように本発明によれば、超伝導トランジスタ
を再現性、均一性よく高精度で作製できる。さらにゲー
ト酸化膜の厚さを最小限にでき、チャネル部を好適な寸
法に制御すること、半導体の不純物分布を制御すること
も容易となるため、回路利得、動作速度が向上する。従
って高集積超伝導論理回路を容易に提供できる効果が得
られる。As described above, according to the present invention, superconducting transistors can be manufactured with high reproducibility, uniformity, and high precision. Furthermore, the thickness of the gate oxide film can be minimized, and it becomes easier to control the channel portion to a suitable size and the impurity distribution of the semiconductor, thereby improving circuit gain and operating speed. Therefore, it is possible to easily provide a highly integrated superconducting logic circuit.
第1図、第2図はそれぞれ本発明の実施例を示す超伝導
トランジスタ製造工程説明のための断面図である。
1・・・半導体基板、2・・・絶縁膜、3・・・超伝導
体、4・・・レジスト、5・・・金属薄膜、6・・・チ
ャネル、7・・・ゲート絶ana、8・・・制御電極、
9・・・高濃度不純物導入層、10・・・ソース電極、
11・・・ドレイン電極、12・・・層間絶縁膜。FIG. 1 and FIG. 2 are cross-sectional views for explaining the manufacturing process of a superconducting transistor showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Insulating film, 3... Superconductor, 4... Resist, 5... Metal thin film, 6... Channel, 7... Gate isolation ana, 8 ...control electrode,
9... High concentration impurity introduced layer, 10... Source electrode,
11...Drain electrode, 12...Interlayer insulating film.
Claims (1)
の超伝導電極と、該半導体の表面に該超伝導電極と接し
て該超伝導電極の端部から対向部分の内側へ延在する2
つの高濃度不純物層と、該高濃度不純物層にはさまれ、
それより低濃度の不純物が導入されたチャネル部と、該
超伝導電極の対向部分の半導体のチャネル上部に覆つて
設けられた制御電位を有する超伝導素子において、少な
くとも該制御電極を形成する工程、該高濃度不純物層を
形成する工程、該2つの超伝導電極を形成する工程を順
次備えたことを特徴とする超伝導トランジスタの製造方
法。1. At least two superconducting electrodes formed facing each other in contact with the semiconductor, and 2.
sandwiched between one high concentration impurity layer and the high concentration impurity layer,
A step of forming at least the control electrode in a superconducting element having a channel portion into which an impurity at a lower concentration is introduced, and a control potential provided over the upper portion of the channel of the semiconductor in the opposing portion of the superconducting electrode; A method for manufacturing a superconducting transistor, comprising sequentially forming the high concentration impurity layer and forming the two superconducting electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62095119A JPS63261767A (en) | 1987-04-20 | 1987-04-20 | Manufacture of superconducting transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62095119A JPS63261767A (en) | 1987-04-20 | 1987-04-20 | Manufacture of superconducting transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63261767A true JPS63261767A (en) | 1988-10-28 |
Family
ID=14128948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62095119A Pending JPS63261767A (en) | 1987-04-20 | 1987-04-20 | Manufacture of superconducting transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63261767A (en) |
-
1987
- 1987-04-20 JP JP62095119A patent/JPS63261767A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6292481A (en) | Manufacture of semiconductor device | |
JPS63261767A (en) | Manufacture of superconducting transistor | |
JPS62122287A (en) | Superconductive transistor | |
JPS62131588A (en) | Manufacture of superconductive transistor | |
JPH09246536A (en) | Semiconductor element | |
JPS60165764A (en) | Manufacture of compound semiconductor device | |
JPH01135080A (en) | Superconducting transistor | |
JPH0529613A (en) | Manufacture of quantum fine line element | |
JPS6257260A (en) | Superconducting transistor | |
JPS61110479A (en) | Structure of superconductive transistor | |
JPS63281482A (en) | Superconducting transistor | |
JPS6190470A (en) | Manufacture of compound semiconductor device | |
JPS6329593A (en) | Superconducting transistor and manufacture thereof | |
JPS61206277A (en) | Superconductive transistor | |
JPS628573A (en) | Semiconductor device and manufacture thereof | |
JPH0722606A (en) | Manufacture of semiconductor device | |
KR0163741B1 (en) | Method for fabricating the ohmic contact electrode of semiconductor devices | |
JPS58153365A (en) | Two terminal type semiconductor constant current device | |
JPS61110481A (en) | Superconductive transistor | |
JPS60780A (en) | Manufacture of field effect transistor | |
JPS6142966A (en) | Manufacture of semiconductor device | |
JPS6346786A (en) | Superconducting transistor | |
JPS6195571A (en) | Manufacture of semiconductor device | |
JPS61289670A (en) | Manufacture of semiconductor device | |
JPS6260268A (en) | Manufacture of field effect transistor |