JPS6142966A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6142966A
JPS6142966A JP16522984A JP16522984A JPS6142966A JP S6142966 A JPS6142966 A JP S6142966A JP 16522984 A JP16522984 A JP 16522984A JP 16522984 A JP16522984 A JP 16522984A JP S6142966 A JPS6142966 A JP S6142966A
Authority
JP
Japan
Prior art keywords
layer
gate
gaas
metal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16522984A
Other languages
Japanese (ja)
Other versions
JPH0217932B2 (en
Inventor
Koji Tomita
孝司 富田
Mitsunori Yoshikawa
吉川 光憲
Yasuhito Nakagawa
中川 泰仁
Tatsuya Yamashita
山下 達哉
Jiyunkou Takagi
高木 ▲じゆん▼公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16522984A priority Critical patent/JPS6142966A/en
Publication of JPS6142966A publication Critical patent/JPS6142966A/en
Publication of JPH0217932B2 publication Critical patent/JPH0217932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To accelerate by forming in advance an N type channel layer on a semi-insulating GaAs substrate surface, sequentially depositing Ta, Pt, Au as gate metals and an insulating layer thereon, and then lifting off the GaAs layer and the Au-Ge layer to form source and drain. CONSTITUTION:After Si ions are implated to channel layer regions 3, 4 on the surface of a GaAs substrate 1 with a mask 2, the mask 2 is removed. A plasma CVDSiN film 5 is coated on the surface of the substrate 1, implanting atoms are activated, the film 5 is then removed, and a Ta layer 6, a Pt layer 7, an Au layer 8 and an SiO2 film are sequentially deposited. Then, a resist pattern 10 is formed, with the pattern as a mask the SiO2 layer 9 and the Au layer 8 are etched, and then the layers 6, 7 are ion etched to form a gate pattern. Subsequently, an N<+> type GaAs layer is grown on the surface of the substrate 1. Then, an Au-Ge, Ni film 14, an n<+> type GaAs layer 12 are selectively removed on the region 15 except the FET region, and an electric connection is performed by wiring electrode 6 made of Ta, Pt, Au.

Description

【発明の詳細な説明】 く技術分野〉 本発明は金属−半導体接合によるショットキーバリアゲ
ートを有するFET等の半導体装置の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a semiconductor device such as an FET having a Schottky barrier gate formed by a metal-semiconductor junction.

〈従来技術〉 GaASはSjに較べ電子の易動度が4〜5倍と大きく
かつ半絶縁性の高抵抗基板が得られることから高周波F
ETや高速メモリICの材料として期待されている。し
かしGaAsはホールの易動度が小さく、かつ、表面準
位密度が大きいためフェルミレベルのとンニング効果に
より、バイポーラトランジスタやMOSFETの作製に
適しておらず、むしろ金属−半導体接合によるショット
キーバリアゲートを有するF E T (Metal−
5en+1conductorFET以下MESFET
と略す、)が数多く試作、製造されている。MBSFE
Tをもちいて高周波トランジスタや高速メモリICを作
成する場合、カットオフ周波数はゲート容量とソース抵
抗の積で決定されるので、高速性を高めるにはゲート容
量とソース抵抗の低減化を図る必要がある。ゲート容量
は基板キャリア濃度、ゲート中、ゲート長で決定される
が、基板キャリア濃度及びゲー!・巾ばFETの動作特
性から決められることになる。従ってゲート長の短縮化
が課題となるがプロセス上の制約やゲート抵抗増大への
配慮から極端なゲート長短縮化は行えない。一方、ソー
ス抵抗の低減化を図るにはゲート近傍に、高濃度層を形
成しソースゲート間チャンネル層の抵抗とコンタクト抵
抗の低減化を図る必要がある。
<Prior art> GaAS has an electron mobility 4 to 5 times greater than that of Sj, and a semi-insulating high-resistance substrate can be obtained.
It is expected to be used as a material for ET and high-speed memory ICs. However, GaAs has low hole mobility and high surface state density, so it is not suitable for manufacturing bipolar transistors and MOSFETs due to the Fermi level tunneling effect, but rather Schottky barrier gates using metal-semiconductor junctions. F ET (Metal-
5en+1conductorFET or less MESFET
) have been prototyped and manufactured. MBSFE
When creating high-frequency transistors or high-speed memory ICs using T, the cutoff frequency is determined by the product of gate capacitance and source resistance, so it is necessary to reduce gate capacitance and source resistance to improve high speed. be. The gate capacitance is determined by the substrate carrier concentration, gate length, and gate length.・The width is determined from the operating characteristics of the FET. Therefore, shortening the gate length is an issue, but extreme shortening of the gate length cannot be achieved due to process constraints and consideration of increased gate resistance. On the other hand, in order to reduce the source resistance, it is necessary to form a highly doped layer near the gate to reduce the resistance of the source-gate channel layer and the contact resistance.

そこで従来像ソース抵抗GaAsMESFIETの製作
法としては二つの方法に大別される。一つはエピタキシ
ャルウェハを用いる方法であり、他方は選択イオン注入
法を用いる方法である。前者の方法は予め半絶縁性Ga
As基板上に気相成長法、有機金属成長法、液相成長法
1分子線エピタキシャル法等を用いてアンドープ層+ 
 nJ=、  n+ Jt5を順次エピタキシャル成長
したウェハを用いる方法である。この様にQ O+YI
されたウェハを用いて該n“層表面上にA u −Q 
eオーミック電極を選択的に形成し、続いてホトリソブ
ラフィ法を用いソースとドレイン間の一部を化学エツチ
ング法やドライエツチング法を用いてn+眉を選択的に
除去した後、露出したn’Nにゲート電極を形成する。
Therefore, conventional methods for manufacturing image source resistors of GaAs MESFETs are roughly divided into two methods. One is a method using an epitaxial wafer, and the other is a method using selective ion implantation. The former method uses semi-insulating Ga in advance.
An undoped layer +
This method uses a wafer on which nJ=, n+ Jt5 are sequentially epitaxially grown. Like this Q O+YI
A u -Q on the surface of the n'' layer using a
After selectively forming an e-ohmic electrode, and then using photolithography to selectively remove a portion between the source and drain using chemical etching or dry etching, the exposed n'N Form a gate electrode.

この様な手法によるFETの構造はリセス構造と呼ばれ
、通常店(知られた方法である。しかしリセス構造FE
Tを作成する場合、サブミクロンから2μm程度の極め
て狭い、該n4層の局所領域を制御性よく、かつ、ウェ
ハ面内均一性良く選択エツチングすることは極めて難し
いのでFETのピンチオフ電圧の制御性や素子特性の均
−性並びに歩留の向上環の点で問題が多く、優れた製造
法とはいえない。
The structure of an FET based on this method is called a recessed structure, and is usually a known method. However, a recessed structure FE
When creating T, it is extremely difficult to selectively etching an extremely narrow local region of the N4 layer from submicron to about 2 μm with good controllability and uniformity within the wafer surface, so the controllability of the pinch-off voltage of the FET There are many problems in terms of uniformity of device characteristics and improvement in yield, and it cannot be said to be an excellent manufacturing method.

従って、特に論理素子等の閾値電圧の厳密な制御を必要
とする素子の作成には、リセス構造MESFETはあま
り用いられない。−力選択イオン注入法はピンチオフ電
圧の制御や闇値電圧の制御に優れた方法として、考えら
れる。この方法ではソース抵抗を低減するためにはn4
層を選択的に形成する際n1層とn[の境界は出来るだ
けゲートに近い方が好ましい、しかしソース、ドレイン
間隔が短く、かつサブミクロンから1ミクロン程度のゲ
ートを形成する際には、ソース側のn”liと、ドレイ
ン側のn4層の間隙にゲート形成の為のマスクアライメ
ントを行なうことは極めて難しく、特性の再現性や歩留
向上を期待出来ないのが実情である。
Therefore, recessed MESFETs are not often used, especially in the production of devices such as logic devices that require strict control of threshold voltage. -Force-selective ion implantation is considered as an excellent method for controlling pinch-off voltage and dark value voltage. In this method, to reduce the source resistance, n4
When selectively forming layers, it is preferable that the boundary between the n1 layer and n[ is as close to the gate as possible. The reality is that it is extremely difficult to perform mask alignment for gate formation in the gap between the n''li layer on the side and the n4 layer on the drain side, and it is difficult to expect reproducibility of characteristics or improvement in yield.

これに対して、予め耐熱性のゲー1−’M極としてWS
ix、 WTix等の高融点金属を形成し、該ゲートを
マスクとして自己整合的にn0層の選択イオン注入を行
なう方法が提案されている。しかしn+層形成の為のイ
オン注入原子の活性化するアニール温度領域は800°
C近傍にあり、高融点金属を用いた場合でもショットキ
ーバリアゲートの特性を劣化させずに再現性よ<n”J
Wのアニールを行なうことは難しい。また、n9層形成
の為のイオン注入を行なう際、注入原子は一般にLSS
理論に従って深さ方向に分布するだけでなく、横方向へ
も投影飛程程度の領域に分布するためゲート直下へ、注
入原子が回りこみ、ゲー;・耐圧の低下や闇値電圧の変
動をおこすので製造上極めて不都合である。更に2度の
熱処理行程による絶縁基板の劣化による素子特性劣化も
問題となる。
On the other hand, WS is used as a heat-resistant Ge1-'M pole in advance.
A method has been proposed in which a high melting point metal such as ix or WTix is formed and selective ion implantation of the n0 layer is performed in a self-aligned manner using the gate as a mask. However, the annealing temperature range for activating ion-implanted atoms to form the n+ layer is 800°.
It is close to C, and even when high-melting point metals are used, the characteristics of the Schottky barrier gate are not deteriorated and the reproducibility is maintained <n”J.
It is difficult to perform W annealing. Furthermore, when performing ion implantation to form the n9 layer, the implanted atoms are generally LSS
According to the theory, they are distributed not only in the depth direction, but also in the lateral direction in an area comparable to the projected range, so the implanted atoms wrap around directly under the gate, causing a decrease in breakdown voltage and fluctuations in dark value voltage. This is extremely inconvenient in terms of manufacturing. Furthermore, deterioration of element characteristics due to deterioration of the insulating substrate caused by the two-time heat treatment process also poses a problem.

く目的〉 本発明は上記従来技術の欠点を解消し、低ソース抵抗で
高速度の動作ができる半導体装置の製造方法の提供を目
的とする。
OBJECTIVES> An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and provide a method for manufacturing a semiconductor device that can operate at high speed with low source resistance.

く構成〉 本発明は予め半絶縁性GaAS基板表面にn型チャンネ
ル層を形成し、該基板上にゲート金属として高融点金属
、バリア金属、貴金属と、その上に絶縁膜を順次蒸着形
成したのち、前記絶縁膜をマスクとしてゲート領域以外
の前記高融点金属。
Structure> The present invention involves forming an n-type channel layer on the surface of a semi-insulating GaAS substrate in advance, and then sequentially depositing a high melting point metal, a barrier metal, and a noble metal as a gate metal on the substrate, and then forming an insulating film thereon. , the high melting point metal other than the gate region using the insulating film as a mask.

バリア金属、貴金属の金属多層膜をエツチング除去し、
且つ前記高融点金属及びバリア金属をアンダカットして
ショットキーゲートを形成し、更に露出したQ a ’
、A sチャンネル層表面に分子線エピタキシャル法を
用いてn” QaAsJiを低温で成長させ、続いてA
u−Geオーミフク電極層を蒸着したのち、前記絶縁膜
をエツチングして該絶縁膜上のG a A s層及びA
 u −G e Nをリフトオフして自己整合的にソー
ス及びドレインを形成することを特徴とする半導体装置
の製造方法である。
Etching and removing barrier metal and precious metal multilayer films,
The high melting point metal and the barrier metal are undercut to form a Schottky gate, and the exposed Q a '
, n” QaAsJi was grown on the surface of the A s channel layer at low temperature using molecular beam epitaxial method, and then A
After depositing the u-Ge Ohmifuku electrode layer, the insulating film is etched to form the GaAs layer and A
This is a method for manufacturing a semiconductor device characterized by forming a source and a drain in a self-aligned manner by lifting off u-G e N.

〈実施例〉 第1図から第6図は本発明の実施方法の各工程における
半導体装置の断面図である。
<Example> FIGS. 1 to 6 are cross-sectional views of a semiconductor device in each step of the implementation method of the present invention.

本実施例ではnチャンネル層の形成にはウェハ面内でキ
ャリア濃度の均一性に優れたイオン注入法を用いた。用
いたGaAs基板1はLEL法<100 >方位アンド
ープGaAs基板である。n眉の選択イオン注入に先立
って基板1は予め化学エツチングを行い、研磨等による
損傷層と汚染物質を除去した後純水で洗浄し乾燥した。
In this example, the n-channel layer was formed using an ion implantation method that provides excellent uniformity of carrier concentration within the wafer surface. The GaAs substrate 1 used is an LEL method <100> orientation undoped GaAs substrate. Prior to the selective ion implantation of the n eyebrows, the substrate 1 was chemically etched in advance to remove a layer damaged by polishing or the like and contaminants, and then washed with pure water and dried.

しかる後、ホトレジストマスク2を用いてFETのチャ
ンネル層となる所望領域3及び4にStイオンを選択イ
オン注入したのち、ホトレジストマスク2を酸素プラズ
マを用いて除去する。イオン注入時の加速エネルギは1
00keVで、ノーマリオフ型FET領域3及びノーマ
リオン型FET領域4へのSLイオンのドーズ量はそれ
ぞれ、1.5 XIO”cIII−z、及び+ 3 X
l012ca+−”とした。しかる後回2″゛に示す様
に、プラズマCVD5=Nx膜5を500人〜700人
の厚さで基板1表面に被覆し、soo  ’c。
Thereafter, using the photoresist mask 2, St ions are selectively implanted into desired regions 3 and 4 that will become the channel layer of the FET, and then the photoresist mask 2 is removed using oxygen plasma. The acceleration energy during ion implantation is 1
At 00 keV, the doses of SL ions to the normally-off FET region 3 and the normally-on FET region 4 are 1.5 XIO"cIII-z and +3X, respectively.
Then, as shown in Section 2'', the surface of the substrate 1 was coated with a plasma CVD 5=Nx film 5 to a thickness of 500 to 700 layers, and soo'c.

20分、N2気流中でアニールを行い注入原子の活性化
を行った。nチャンネル層の形成後、アニールで硬貨し
た該プラズマCVD5jN膜5を緩衝HFで除去し、図
3に示す様に露出した基板表面にスパックリング法を用
いてTaFt6.PtJLi+7゜AuFf8.S= 
029をそれぞれ膜厚+ 0.3 #I11+0.3μ
m 、 0.6μtrr 、 0.4μmで順次蒸着す
る。
Annealing was performed for 20 minutes in a N2 stream to activate the implanted atoms. After forming the n-channel layer, the annealed plasma CVD 5jN film 5 is removed using buffered HF, and as shown in FIG. 3, TaFt6. PtJLi+7°AuFf8. S=
029 respectively film thickness + 0.3 #I11 + 0.3μ
m, 0.6 μtrr, and 0.4 μm.

’l’a、  P t、 Auの蒸着時スパッタ圧力は
7 X 10−”tonでArが2を用いた。5tO2
はスパッタ圧力5XIQtonでAr+02  (5層
%)を用い化成スパッタを行った。しかるのちホトリソ
グラフィ法を用いてゲート電極形成の為にレジストパタ
ーン10を形成した。ホトレジストはA Z −135
0Jを用いた。ゲートの長さは1μR1,ゲートの長さ
は1μm、ゲート中は20μmとした。続いて第4図に
示す様に、該ホトレジストパターン10をマスクとして
CF4+02ガスを用いて5L02層9をリアクティブ
エツチングしたのちB cz3ガスを用いてAu層8を
エツチングし、続いてCF4+Q2ガスを用いてpt層
17.TaJFi6をリアクティブインオエソチングし
てゲートバクーン形成する。pt層7.TaJi6はエ
ツチングする際マスクとなるA u N8 、  S 
= 02 N 9に対して0.2μmずつアンダカット
されている。アンダカットの量はエツチング時間で制御
可能である。かくして、表面に5L02を形成したTa
 / P t / A uゲートがQa7!1.s基板
1上に形成されることになる。続いてGa A S基板
1表面を洗浄後、図5に示すように、分子線エピタキシ
ャル法を用いてQaAs基板1表面にn+GaAsJt
ifを0.3 μmの厚さで成長する。成長温度は54
0’Cとし、AsのGaに対するフラフクス化は10と
した。成長速度は1μm/hである。ドーパントにはS
iを用いた。n1層のキャリア濃度は5X10IPcJ
11’である。分子線エピタキシャル成長の場合、露出
したG5As基板1表面11にはn ” Ga A s
 I* 12がエビクキシャル成長されるが、ゲート上
の5tO2層a上には多結晶G a A s J響13
が成長する。Ga。
The sputtering pressure during vapor deposition of 'l'a, Pt, and Au was 7 x 10-'' tons and Ar was 2.5 tO2.
Chemical sputtering was performed using Ar+02 (5% layer) at a sputtering pressure of 5×IQton. Thereafter, a resist pattern 10 was formed using photolithography to form a gate electrode. Photoresist is AZ-135
0J was used. The length of the gate was 1 μR1, the length of the gate was 1 μm, and the inside of the gate was 20 μm. Subsequently, as shown in FIG. 4, the 5L02 layer 9 is reactively etched using CF4+02 gas using the photoresist pattern 10 as a mask, the Au layer 8 is etched using Bcz3 gas, and then the Au layer 8 is etched using CF4+Q2 gas. PT layer 17. TaJFi6 is reactively etched to form a gate bomb. pt layer7. TaJi6 serves as a mask during etching A u N8, S
= 02 N 9 is undercut by 0.2 μm. The amount of undercut can be controlled by the etching time. Thus, Ta with 5L02 formed on the surface
/ P t / A u gate is Qa7!1. It will be formed on the s-substrate 1. Subsequently, after cleaning the surface of the GaAs substrate 1, as shown in FIG.
If grown to a thickness of 0.3 μm. Growth temperature is 54
The temperature was set to 0'C, and the flux of As to Ga was set to 10. The growth rate is 1 μm/h. S for dopant
i was used. The carrier concentration of the n1 layer is 5X10IPcJ
11'. In the case of molecular beam epitaxial growth, the exposed surface 11 of the G5As substrate 1 has n ” GaAs
I*12 is grown evixically, but on the 5tO2 layer a on the gate is a polycrystalline G a A s J Hibiki 13
grows. Ga.

As、SLの分子線は指向性が強く、かつ”1”a6゜
Pt7がアンダカットされているので、5L02層9.
Au層8のシャドウ効果によりn+GaAs層12は、
TaJ’#6.Pt層7と接触することなく、かつ金属
近傍に精度よく形成出来る。
The As and SL molecular beams have strong directivity, and "1" a6°Pt7 is undercut, so the 5L02 layer 9.
Due to the shadow effect of the Au layer 8, the n+GaAs layer 12 is
TaJ'#6. It can be formed accurately near the metal without contacting the Pt layer 7.

また550°C以下の成長温度ではTa、Pt。In addition, Ta and Pt are grown at a growth temperature of 550°C or lower.

Auの各層6,7.“8は安定で、イオン注入により形
成されたnGaAs層3及び4への電極金属の拡散は認
められず、従ってショットキーゲートの熱的劣化は認め
られない。n” GaAs層12成長後、該GaAs基
板1を分子線エピタキシャル装置より取出し、ソース、
ドレインとなるオーミック電極の形成を行なう。オーミ
ック電極14はAu−Ge  (12wt%)、NLを
それぞれ0.15μm、  0.05μmの膜厚で電子
ビーム蒸着法を用いて蒸着形成される。しかる後、緩衝
HF(HF:NH4F:H20=5:35:60)を用
いてゲート上の5tO2層9を溶解する。熔解する際5
j02層9上の多結晶GaAs層13及びオーミック電
極14層のAu−Geは同時にリフトオフされる。また
緩衝HFはHFの濃度が低いのでTaゲートをfff 
f&することはない。5L02層9を除去後、純粋でP
;G a A s基板1を洗浄し続いて、Au  Ge
、N= N14とn+GaAsJW12のオーミック性
を得るため430°C1分間N2気流中で熱処理を施こ
す。続いて図6に示すように、ポi・リソグラフィ法、
及び、Arイオンミリング法を用いてFET領域以外の
領域15上のA u −Ge、N= 14.n” Ga
A’sJ#12を選択的に除去し、各FETの電気的分
離を行なう。各FETの電気的接続は電子ビーム蒸着法
とリフトオフ法を用いて形成したTa、Pt、Auから
なる配線用電極16を用いて行なうことが出来る。
Each layer of Au 6, 7 . "8 is stable, and no diffusion of electrode metal into the nGaAs layers 3 and 4 formed by ion implantation is observed, so no thermal deterioration of the Schottky gate is observed.n" After the growth of the GaAs layer 12, The GaAs substrate 1 is taken out from the molecular beam epitaxial apparatus, and the source,
An ohmic electrode that will become a drain is formed. The ohmic electrode 14 is formed by depositing Au-Ge (12 wt%) and NL to film thicknesses of 0.15 μm and 0.05 μm, respectively, using an electron beam evaporation method. Thereafter, the 5tO2 layer 9 on the gate is dissolved using buffered HF (HF:NH4F:H20=5:35:60). When melting 5
The polycrystalline GaAs layer 13 on the j02 layer 9 and the Au-Ge layer of the ohmic electrode 14 are lifted off at the same time. In addition, buffered HF has a low concentration of HF, so the Ta gate is
There is no f&. After removing the 5L02 layer 9, pure P
; After cleaning the GaAs substrate 1, Au Ge
, N=N14 and n+In order to obtain ohmic properties of GaAsJW12, heat treatment is performed at 430°C for 1 minute in a N2 stream. Subsequently, as shown in FIG. 6, the polylithography method,
And A u -Ge on the region 15 other than the FET region using the Ar ion milling method, N=14. n”Ga
A'sJ#12 is selectively removed to electrically isolate each FET. Electrical connections between the FETs can be made using wiring electrodes 16 made of Ta, Pt, and Au formed by electron beam evaporation and lift-off.

以上に述べた製造方法を用いた場合、ゲートとソース距
離をほぼ自己整合的に制御出来、かつ、01層のために
電極の接触抵抗を低減化することが出来る。実施例では
ノーマリオフ型FET及びノーマリオン型FETのソー
ス抵抗は、単位ゲート当り、それぞれ0.2Ω/mm及
び0.1 Ω/mmと極めて小さく、かつ、ウェハ面内
の歩留も優れている。実施例においてゲート電極にGa
八へと熱膨張係数が近いTaを用いたが、n″′層成長
温度程度でショットキー特性が劣化しない程度のW、T
L等の一般的な高融点金属をもちいることが可能であり
、800°C近傍のインオ注入後のアニールに耐える様
な極めて特殊な高融点金属合金や珪素化物を使用する必
要はない。
When the manufacturing method described above is used, the distance between the gate and the source can be controlled in a substantially self-aligned manner, and the contact resistance of the electrode can be reduced due to the 01 layer. In the example, the source resistance of the normally-off type FET and the normally-on type FET is extremely small, 0.2 Ω/mm and 0.1 Ω/mm per unit gate, respectively, and the yield within the wafer surface is also excellent. In the example, Ga is used for the gate electrode.
Ta, which has a coefficient of thermal expansion close to that of Ta, was used, but W and T were used to the extent that the Schottky characteristics did not deteriorate at about the n″′ layer growth temperature.
It is possible to use a general high melting point metal such as L, and there is no need to use a very special high melting point metal alloy or silicide that can withstand annealing after ion implantation at around 800°C.

〈効果〉 本発明は以上の構成よりなり、ゲートとソース距離を自
己整合的に制御できる。また比較的低温でゲート電極を
マスクとして該ゲート近傍に高濃度n−“一層を形成で
き、且つFET特性の基板面内の分散を抑制できる。よ
って高速動作の半導体装置を歩留まりよく、且つ安定し
た品質で提供することができる。
<Effects> With the above configuration, the present invention can control the distance between the gate and the source in a self-aligned manner. In addition, a high-concentration n-layer can be formed in the vicinity of the gate using the gate electrode as a mask at a relatively low temperature, and dispersion of FET characteristics within the substrate plane can be suppressed.Therefore, high-speed semiconductor devices can be produced with high yield and stability. We can provide quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図はそれぞれ本発明の実施方法における
各製造工程での半導体装置の断面図である。 1・−・GaAs基板  3,4−・−チャンネル層6
−T a層    7−P t N 8・−Au 層9−5 b O2R 12−−−n”  G a A s層 13−・・多結晶GaAs層 14−・−オーミック電極 牙゛
1 to 6 are cross-sectional views of a semiconductor device at each manufacturing step in the method of implementing the present invention. 1.--GaAs substrate 3, 4-.-channel layer 6
-Ta layer 7-PtN 8--Au layer 9-5 b O2R 12--n'' Ga As layer 13--polycrystalline GaAs layer 14--Ohmic electrode tooth

Claims (1)

【特許請求の範囲】[Claims]  予め半絶縁性GaAs基板表面にn型チャンネル層を
形成し、該基板上にゲート金属として高融点金属、バリ
ア金属、貴金属と、その上に絶縁膜を順次蒸着形成した
のち、前記絶縁膜をマスクとしてゲート領域以外の前記
高融点金属、バリア金属、貴金属の金属多層膜をエッチ
ング除去し、且つ前記高融点金属及びバリア金属をアン
ダカットしてショットキーゲートを形成し、更に露出し
たGaAsチャンネル層表面に分子線エピタキシャル法
を用いてn^+GaAs層を低温で成長させ、続いてA
u−Geオーミック電極層を蒸着したのち、前記絶縁膜
をエッチングして該絶縁膜上のGaAs層及びAu−G
e層をリフトオフして自己整合的にソース及びドレイン
を形成することを特徴とする半導体装置の製造方法。
An n-type channel layer is formed in advance on the surface of a semi-insulating GaAs substrate, a high melting point metal, a barrier metal, and a noble metal are sequentially deposited on the substrate as a gate metal, and an insulating film is formed thereon, and then the insulating film is masked. As a step, the metal multilayer film of the high melting point metal, barrier metal, and noble metal other than the gate region is etched away, and the high melting point metal and barrier metal are undercut to form a Schottky gate, and the exposed surface of the GaAs channel layer is removed. The n^+ GaAs layer was grown at low temperature using the molecular beam epitaxial method, and then A
After depositing the u-Ge ohmic electrode layer, the insulating film is etched to remove the GaAs layer and Au-G on the insulating film.
1. A method of manufacturing a semiconductor device, comprising lifting off an e-layer to form a source and a drain in a self-aligned manner.
JP16522984A 1984-08-07 1984-08-07 Manufacture of semiconductor device Granted JPS6142966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16522984A JPS6142966A (en) 1984-08-07 1984-08-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16522984A JPS6142966A (en) 1984-08-07 1984-08-07 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6142966A true JPS6142966A (en) 1986-03-01
JPH0217932B2 JPH0217932B2 (en) 1990-04-24

Family

ID=15808309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16522984A Granted JPS6142966A (en) 1984-08-07 1984-08-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6142966A (en)

Also Published As

Publication number Publication date
JPH0217932B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
EP0119089B1 (en) Gaas semiconductor device and a method of manufacturing it
JPS59229876A (en) Manufacture of schottky gate type field effect transistor
JPH0260217B2 (en)
JPS6142966A (en) Manufacture of semiconductor device
JPS60165764A (en) Manufacture of compound semiconductor device
JPS6160591B2 (en)
JPS622666A (en) Field effect transistor
JPH0429225B2 (en)
JP4186267B2 (en) Method for manufacturing compound semiconductor device
JP3145881B2 (en) Method for manufacturing compound semiconductor device
JP2000353789A (en) Compound semiconductor device and manufacture thereof
JPH06204259A (en) Manufacture of compound semiconductor device
JPS6260268A (en) Manufacture of field effect transistor
JPH02234442A (en) Manufacture of field effect type semiconductor device
JPS61142776A (en) Manufacture of semiconductor device
JPS6143443A (en) Manufacture of semiconductor device
JPS6158274A (en) Manufacture of semiconductor device
JPS59229875A (en) Manufacture of schottky gate type field effect transistor
JPS6190470A (en) Manufacture of compound semiconductor device
JPH06232168A (en) Field effect transistor and its manufacture
JPH0758717B2 (en) Method for manufacturing field effect transistor
JPH07161736A (en) Manufacture of semiconductor device
JPH04350945A (en) Manufacture of field effect transistor
JPH03283627A (en) Manufacture of field-effect semiconductor device