JPS63255959A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63255959A
JPS63255959A JP62091212A JP9121287A JPS63255959A JP S63255959 A JPS63255959 A JP S63255959A JP 62091212 A JP62091212 A JP 62091212A JP 9121287 A JP9121287 A JP 9121287A JP S63255959 A JPS63255959 A JP S63255959A
Authority
JP
Japan
Prior art keywords
transistor
output terminal
turned
substrate bias
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62091212A
Other languages
Japanese (ja)
Inventor
Hideyuki Ozaki
尾崎 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62091212A priority Critical patent/JPS63255959A/en
Publication of JPS63255959A publication Critical patent/JPS63255959A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To prevent the occurrence of a latch-up phenomenon even when a power source is turned on by a method wherein the output terminal of a substrate bias generating circuit is short-circuited to a grounding level for the prescribed period after the power source has been turned on. CONSTITUTION:An N-channel type MOS transistor Q3 and a resistor R5, which is inserted between the gate of the transistor Q3 and the output terminal PBB of a substrate bias generating circuit, are provided. At this point, a high level pulse signal is generated for the prescribed period after a power source is turned on. As voltage is applied to the gate of the transistor Q3 through the intermediary of a capacitor C2, the transistor Q3 is brought into a conductive state for the prescribed period immediately after the power source is turned on, and the main section (time t2-t3), in which the potential VPB of the output terminal PBB shows a positive value, is forcedly clamped to an 0V. Consequently, the occurrence of a latch-up phenomenon can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路装置に関し、特に0MO3
構造の半導体集積回路装置の電源投入時のラップアップ
の防止に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor integrated circuit device, and in particular to a 0MO3
The present invention relates to prevention of wrap-up when power is turned on in a semiconductor integrated circuit device having a structure.

〔従来の技術〕[Conventional technology]

第5図は従来のCMOS型ダイナミックRAM等の半導
体集積回路装置の断面図である。同図において1はP型
半導体基板であり、このP型半導体基板1上にN−ウェ
ル領域2が形成される。このN−ウェル領域2内にP+
型半導体領域3,4を形成し、P+型¥導体領域3,4
間のN−ウェル領!42上方にベース電極5を設け、P
+型半導体領域3.4は各々電源V。。、出力端子OU
Tに接続し、ベースミル5に入力端子INを接続するこ
とで、Pチャネル型MOSトランジスタ6を形成してい
る。なお、7はN+型半尋体領域で、N−ウェル領域2
を電源Vcoレベルにバイアスするために設けられてい
る。
FIG. 5 is a sectional view of a conventional semiconductor integrated circuit device such as a CMOS type dynamic RAM. In the figure, 1 is a P-type semiconductor substrate, and an N-well region 2 is formed on this P-type semiconductor substrate 1. In this N-well region 2, P+
type semiconductor regions 3 and 4 are formed, and P+ type conductor regions 3 and 4 are formed.
N-well territory in between! A base electrode 5 is provided above P
The +-type semiconductor regions 3 and 4 are each connected to a power supply V. . , output terminal OU
By connecting the input terminal IN to the base mill 5, a P-channel MOS transistor 6 is formed. In addition, 7 is an N+ type hemihyposome region, and N- well region 2
It is provided to bias the voltage to the power supply Vco level.

一方、P型半導体基板1上にN+型平手導体領域89を
設け、N″型半導体領1a8.9間のP型半導体基板1
上方にベース電揄10を設け、トビ型半導体領域8.9
は各々接地レベルvS3、出力端子OUTに接続し、ベ
ース電極10を入力端子INに接続することでNチャネ
ル型MO8I−ランジスタ11を形成している。なお、
12はP゛型半導体領域であり、P型半導体基板1をバ
イアス電位VBBレベルにバイアスするために設けられ
ている。このバイアス電位VBBは、通常のRAM等で
は、同一基数1上に設りられたオンチップの電圧発生回
路より給電される負の電圧(−3V程度)である。
On the other hand, an N+ type flat conductor region 89 is provided on the P type semiconductor substrate 1, and the P type semiconductor substrate 1 is provided between the N'' type semiconductor regions 1a8.9.
A base electrode 10 is provided above, and a gap-shaped semiconductor region 8.9 is formed.
are connected to the ground level vS3 and the output terminal OUT, respectively, and the base electrode 10 is connected to the input terminal IN, thereby forming an N-channel type MO8I-transistor 11. In addition,
Reference numeral 12 denotes a P' type semiconductor region, which is provided to bias the P type semiconductor substrate 1 to the bias potential VBB level. In a normal RAM or the like, this bias potential VBB is a negative voltage (approximately -3V) supplied from an on-chip voltage generation circuit provided on the same radix 1.

ところで、第5図で示したような半導体集積回路装置で
は、ラッチアップと呼ばれる現象が発生し易い。ラッチ
アップは第5図の破線矢印で丞したJ、うに電源V。C
から接地レベルv3sに向けて、定常的に数十mAもの
大きな電流が流れる現象である。以下、このラッチアッ
プ発生原因について説明する。
Incidentally, in a semiconductor integrated circuit device as shown in FIG. 5, a phenomenon called latch-up is likely to occur. Latch-up is indicated by the broken line arrow in Figure 5, J, and power supply V. C
This is a phenomenon in which a large current of several tens of mA constantly flows from the ground level to the ground level v3s. The cause of this latch-up occurrence will be explained below.

第6図は第5図で示した構造の半導体集積回路装置の奇
生バイポーラトランジスタの等価回路を示した回路図で
ある。同図においてR1はP゛型半導体領143の拡散
抵抗、R2はN+型半導体領域7の拡散抵抗、R3はバ
イアス電位vBBの出力端子の抵抗とP+型半導体領1
llt12の拡散抵抗の合成抵抗、R4はN+型半導体
領1iit8の拡散抵抗である。また、QlはP+型半
導体領域3.N−ウェル領域2.P型半導体基板1によ
り構成される寄生PNP型バイポーラトランジスタ、Q
2はN−ウェル領域2.P型半導体基板1.N+型半導
体領域8により構成される奇生NPN型バイポーラトラ
ンジスタである。この寄生トランジスタQ1.Q2が存
在するため、点P1の電位が、ある瞬間に正の値を示し
寄生トランジスタQ2のオン電圧を越えると、寄生トラ
ンジスタQ2が導通する。その結束、抵抗R2,奇生ト
ランジスタQ2、抵抗R4を介して電源V。0から接地
レベル■33に電流が流れることにより、寄生トランジ
スタQ1のベース電圧が低下して、該奇生1ヘランジス
タQ1が導通する。すると、さらに奇生トランジスタQ
2のベース電位が上昇して、寄生トランジスタQ2に流
れる電流が増加する。このように寄生トランジスタQ1
.Q2による正帰還ループか形成されると、定常的に電
源V。0から接地レベルv88に大きな電流が流れ、最
悪の場合、破壊に至ることがある。このようなラッチア
ップ現象は、前述したようにバイアス電位vBBを負の
電圧にバイアスするため、奇生トランジスタQ2は導通
することはなく、通常は起らない。
FIG. 6 is a circuit diagram showing an equivalent circuit of the parasitic bipolar transistor of the semiconductor integrated circuit device having the structure shown in FIG. In the same figure, R1 is the diffused resistance of the P゛ type semiconductor region 143, R2 is the diffused resistance of the N+ type semiconductor region 7, and R3 is the resistance of the output terminal of the bias potential vBB and the P+ type semiconductor region 1.
The combined resistance of the diffused resistances of llt12 and R4 are the diffused resistances of the N+ type semiconductor region 1iit8. Moreover, Ql is a P+ type semiconductor region 3. N-well region 2. A parasitic PNP type bipolar transistor formed by a P type semiconductor substrate 1, Q
2 is the N-well region 2. P-type semiconductor substrate 1. This is an anomalous NPN bipolar transistor composed of an N+ type semiconductor region 8. This parasitic transistor Q1. Because Q2 exists, when the potential at point P1 takes a positive value at a certain moment and exceeds the on-voltage of parasitic transistor Q2, parasitic transistor Q2 becomes conductive. The power supply V is connected through the connection, resistor R2, strange transistor Q2, and resistor R4. When a current flows from 0 to ground level 33, the base voltage of the parasitic transistor Q1 decreases, and the parasitic transistor Q1 becomes conductive. Then, even more strange transistor Q
The base potential of Q2 increases, and the current flowing through the parasitic transistor Q2 increases. In this way, the parasitic transistor Q1
.. When a positive feedback loop is formed by Q2, the power supply V constantly increases. A large current flows from 0 to ground level v88, and in the worst case, it may lead to destruction. Such a latch-up phenomenon does not normally occur because the bias potential vBB is biased to a negative voltage as described above, so that the parasitic transistor Q2 does not become conductive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、電源■。0とバイアス電位VBB間には
P型半導体基板1上に形成されている多くの接合容量に
より、第6図に示したキャパシタC1が形成されてしま
う。
However, the power supply■. 0 and the bias potential VBB due to many junction capacitances formed on the P-type semiconductor substrate 1, a capacitor C1 shown in FIG. 6 is formed.

また、バイアス電位VBBはP型半導体基板1上に形成
されているオンチップの電源発生回路により給電される
ため、電源投入時にはOになっており、所定の電位(−
3V)になるためには、数百μsecを要する。この様
子を第7図のt、に示すが、同図は電源■。0の経時変
化および、点P1にかかる電位v、1の経時変化を示す
タイミング図である。同図に示すように、点P1にかか
る電位■P1が電源投入直後に正の値を示しているのは
、第6図で示したキャパシタC1による容量結合のため
である。この正の電圧値が第6図の寄生トランジスタQ
2のオン電圧を越えた場合に前述したラッチアップ現象
が起こる。その結果、点P1の電位VP1は第7図の破
線で示したように正の電圧値を保持し続け、この半導体
集積回路装置は正常な動作を行なえないばかりか、破壊
に至ってしまう等の問題点があった。
Furthermore, since the bias potential VBB is supplied by an on-chip power generation circuit formed on the P-type semiconductor substrate 1, it is O when the power is turned on, and a predetermined potential (-
3V), it takes several hundred μsec. This situation is shown in t in Figure 7, which shows the power supply ■. FIG. 2 is a timing chart showing the temporal change of 0 and the temporal change of the potential v, 1 applied to the point P1. As shown in the figure, the reason why the potential P1 applied to the point P1 takes a positive value immediately after the power is turned on is due to capacitive coupling by the capacitor C1 shown in FIG. This positive voltage value is the parasitic transistor Q in Figure 6.
When the on-voltage exceeds No. 2, the latch-up phenomenon described above occurs. As a result, the potential VP1 at point P1 continues to maintain a positive voltage value as shown by the broken line in FIG. 7, and this semiconductor integrated circuit device not only cannot operate normally, but also has problems such as destruction. There was a point.

この発明は上記のような問題点を解決するためになされ
たもので、電源没入時においてもラッチアップが生じる
ことのない半導体集積回路装置を得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a semiconductor integrated circuit device that does not cause latch-up even when the power is turned off.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にがかる半導体集積回路装置は、同一半導体基
板上に形成された基板バイアス発生回路を有し、ソース
が前記基板バイアス発生回路の出力端、ドレインが接地
レベルにそれぞれ接続されたNチャネル型MO8I−ラ
ンジスタと、前記トランジスタのゲートと前記基板バイ
アス回路の出力端との間に挿入された抵抗と、電源投入
後の所定期間ハイレベルになるパルス信号をキャパシタ
を介し前記トランジスタのゲートに印加するようにした
パルス信号発生手段とを備えている。
A semiconductor integrated circuit device according to the present invention has a substrate bias generation circuit formed on the same semiconductor substrate, and has a source connected to an output terminal of the substrate bias generation circuit, and a drain connected to a ground level. - a transistor, a resistor inserted between the gate of the transistor and the output terminal of the substrate bias circuit; and pulse signal generating means.

〔作用〕[Effect]

この発明におけるパルス発生回路は、電源投入後の所定
期間のみハイレベルのパルス信号を発生するため、キャ
パシタを介して前記トランジスタのゲートに電圧が印加
されることで、該トランジスタが電源投入直後の所定期
間だけ導通し、基板バイアス発生回路の出力端が接地レ
ベルに短絡されることにより、その期間中基板バイアス
発生回路の出力端が正の値を示すことはない。
The pulse generating circuit of the present invention generates a high-level pulse signal only for a predetermined period after power is turned on. Therefore, by applying a voltage to the gate of the transistor via a capacitor, the transistor is activated at a predetermined level immediately after power is turned on. Since the output terminal of the substrate bias generation circuit is conductive for only a period and the output terminal of the substrate bias generation circuit is short-circuited to the ground level, the output terminal of the substrate bias generation circuit does not show a positive value during that period.

〔実施例〕〔Example〕

第1図はこの発明の一実施例である半導体集積回路装置
を示し、特に接地レベルv88、基板バイアス発生回路
の出力端子188間の短絡回路を示す回路図である。同
図において、Q3はドレインを1妄地レベルvss、ソ
ースを図示しない基板バイアス発生回路の出力端子PB
Bにそれぞれ接続したNチャネル型MOSトランジスタ
であり、R5はトランジスタQ3のゲート及び前記基板
バイアス発生回路の出力端子P8−に挿入された抵抗で
ある。
FIG. 1 shows a semiconductor integrated circuit device according to an embodiment of the present invention, and is a circuit diagram particularly showing a short circuit between a ground level v88 and an output terminal 188 of a substrate bias generation circuit. In the same figure, Q3 has a drain at a ground level vss, and a source at an output terminal PB of a substrate bias generation circuit (not shown).
R5 is a resistor inserted into the gate of the transistor Q3 and the output terminal P8- of the substrate bias generation circuit.

また、PORは電源V。0の投入時に、第2図に示すパ
ルス発生回路により発生されるワンショットパルスであ
る。この信号FORはキャパシタC2を介し、トランジ
スタQ3のゲートに供給されている。
Also, POR is the power supply V. This is a one-shot pulse generated by the pulse generation circuit shown in FIG. 2 when a zero is input. This signal FOR is supplied to the gate of transistor Q3 via capacitor C2.

第2図は信号PORのパルス発生回路を示す回路図であ
る。同図に示すようにPチャネル型MOSトランジスタ
Q5とNチャネルlMOSトランジスタQ6よりなるイ
ンバータG1の出力信号がP、ORである。また、イン
バータG1の入力端子P2、電源V。。間に抵抗R6が
、この入力端子P2、tI地レしルv88間にキャパシ
タC3が挿入され、この抵抗R6とキャパシタC3が端
子P2にかかる電圧を決定する時定数となる。
FIG. 2 is a circuit diagram showing a pulse generation circuit for signal POR. As shown in the figure, the output signal of an inverter G1 consisting of a P-channel MOS transistor Q5 and an N-channel IMOS transistor Q6 is P and OR. In addition, the input terminal P2 of the inverter G1 and the power supply V. . A resistor R6 is inserted between them, and a capacitor C3 is inserted between this input terminal P2 and the tI ground level v88, and this resistor R6 and capacitor C3 serve as a time constant that determines the voltage applied to the terminal P2.

第3図は第2図の回路の動作を示すタイミング図である
。電源V が時刻t1で立上がると、端C 子P2の電圧MV は時刻t1より時定数CRに従い、
電源■ccよりもゆるやかに上昇する。しかる後、時刻
t2において電源■。0の電圧値がインバータG1の駆
動電圧■drを越えると、インバータG1は駆動される
。この時、端子P2の電位V、2は未だ゛L″レベル(
VF6〈VGl(インバータG1の閾値電圧))なので
、トランジスタQ5が導通していることにより信号PO
Rは電源V。0の値に等しくなり、以降時刻t3まで電
源■。0と同じ変化をする。
FIG. 3 is a timing diagram showing the operation of the circuit of FIG. 2. When the power supply V rises at time t1, the voltage MV at terminal C2 follows the time constant CR from time t1,
Power supply ■ Increases more slowly than cc. After that, at time t2, the power supply ■ is turned on. When the voltage value of 0 exceeds the drive voltage ■dr of the inverter G1, the inverter G1 is driven. At this time, the potential V,2 of terminal P2 is still at the "L" level (
Since VF6<VGl (threshold voltage of inverter G1)), the signal PO
R is the power supply V. It becomes equal to the value of 0, and thereafter the power supply ■ is turned on until time t3. Makes the same change as 0.

そして、時刻t3でv、2〉Volになると、インバー
タG1の出力が反転して、信号PORは“L”レベル(
OV)となり、以降、信号PORの電位レベルは変化し
ない。
Then, at time t3, when v, 2>Vol is reached, the output of inverter G1 is inverted, and signal POR is at "L" level (
OV), and the potential level of the signal POR does not change thereafter.

第4図は第1図の回路の動作を示したタイミング図であ
る。以下、第1図、第4図を参照しつつ動作の説明をす
る。時刻t1で電源V。0が立上がり、第3図で示した
ように時刻t2で信号PORが立上る。この信号POR
が゛°H″レベルになればキャパシタC2に゛′Hパが
印加され、容量結合により点P3の電位は立上るが、同
時に抵抗R5を通して、点P3の電荷は放゛電される。
FIG. 4 is a timing diagram showing the operation of the circuit of FIG. 1. The operation will be explained below with reference to FIGS. 1 and 4. Power supply V at time t1. 0 rises, and the signal POR rises at time t2 as shown in FIG. This signal POR
When the voltage reaches the "H" level, a "H" voltage is applied to the capacitor C2, and the potential at the point P3 rises due to capacitive coupling, but at the same time, the charge at the point P3 is discharged through the resistor R5.

このとき抵抗R5の抵抗値を大きく設定することで、信
号PORのパルス発生に応答して、トランジスタQ3の
閾値電圧を越える電圧が点P3に現われるようにするこ
とができる。
At this time, by setting the resistance value of the resistor R5 to a large value, it is possible to cause a voltage exceeding the threshold voltage of the transistor Q3 to appear at the point P3 in response to the pulse generation of the signal POR.

また、一般に電源■。0の立上がりが怠激な程、ラッチ
アップが生じ易いが、この場合信号PORの立上りのタ
イミングは早くなりかつその波i tlfiも高くなる
ので、使用上の問題はない。
In addition, the power supply is generally ■. The slower the rise of 0, the more latch-up is likely to occur, but in this case, the timing of the rise of the signal POR becomes earlier and its wave i tlfi also becomes higher, so there is no problem in use.

上述した理由から、信号PORが立上がると、トランジ
スタQ3が導通し、図示しない基板バイアス発生回路の
出力端子PBBと接地レベルV88が短絡されるため、
該出力端子P の電位■PBは強B 制的にOvにクランプされる。以降、実線で示す如くO
Vを信号PORが時刻t3で立下るまで保つ。参考まで
に従来(短絡回路がない場合)の出力端子PBBの電位
変化を破線で示す。
For the reason mentioned above, when the signal POR rises, the transistor Q3 becomes conductive, and the output terminal PBB of the substrate bias generation circuit (not shown) and the ground level V88 are short-circuited.
The potential ■PB of the output terminal P is forcibly clamped to Ov. From then on, as shown by the solid line, O
V is maintained until the signal POR falls at time t3. For reference, the potential change of the output terminal PBB in the conventional case (when there is no short circuit) is shown by a broken line.

そして、時刻t3で信号PORが立下り、その結果、点
P3はOvとなるため、トランジスタQ3は非導通状態
となり、出力端子PBBと接地レベルVSSは遮断され
る。この後、オンチップの基板バイアス発生回路の正常
な駆動が出力端子PBBに伝わり、端子P の電位VP
Bは第4図で示すようB な変化をし、最終的にはV88(−3V)に近づいてい
く。
Then, at time t3, the signal POR falls, and as a result, the point P3 becomes Ov, so the transistor Q3 becomes non-conductive, and the output terminal PBB and the ground level VSS are cut off. After this, the normal drive of the on-chip substrate bias generation circuit is transmitted to the output terminal PBB, and the potential VP of the terminal P
B changes as shown in Figure 4, and eventually approaches V88 (-3V).

この間、トランジスタQ3のゲート電位がその間値電圧
を越えて高くなることはないため、トランジスタQ3が
導通することはなく、再び出力端子P と接地レベルV
88が短絡されることはないB ので、出力端子P の電位vPBはバイアス電位VB 88(−3V )に達する。
During this time, the gate potential of transistor Q3 does not rise above the voltage value during that time, so transistor Q3 does not become conductive, and the output terminal P and the ground level V are connected again.
Since B 88 is never short-circuited, the potential vPB of the output terminal P reaches the bias potential VB 88 (-3V).

このように、出力端子P の電位VPBが正の値B を示す主要区間(旧制t  ”’−t3)を強制的に0
■にクランプするため、ラッチアップ現象が起こること
はない。しかも第1図の短絡回路、第2図のパルス発生
回路で示したような比較的簡単な回路構成で実現できて
いる。
In this way, the main section (old system t''-t3) where the potential VPB of the output terminal P shows a positive value B is forced to 0.
(2) Since it is clamped at 1, no latch-up phenomenon occurs. Moreover, it can be realized with a relatively simple circuit configuration as shown in the short-circuit circuit shown in FIG. 1 and the pulse generation circuit shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、電源投入後の
所定期間基板バイアス発生回路の出力端が接地レベルに
短絡されるため、電源投入時においてもラッチアップ現
象が生じないCMO3型半導体集積回路装置を得ること
ができる。
As explained above, according to the present invention, the output terminal of the substrate bias generation circuit is short-circuited to the ground level for a predetermined period after the power is turned on, so that the latch-up phenomenon does not occur even when the power is turned on. You can get the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である半導体集積回路装置
の接地レベル■38、基板バイアス発生回路の出力端子
288間の短絡回路を示す回路図、第2図はこの発明の
一実施例である半導体集積回路装置のパルス発生回路の
回路図、第3図は第2図の回路の動作を示すタイミング
図、第4図は第1図の回路の動作を示すタイミング図、
第5図は従来のCMOS型ダイナミックRA M 8の
半導体集積回路装置の断面図、第6図は第5図の半導体
集積回路装置の奇生バイポーラトランジスタの等価回路
を示した回路図、第7図は第6図の回路における電源投
入直後の動作を示すタイミング図である。 図において03はNチャネル型MO8t−ランジスタ、
■ は接地レベル、P8B1.を基板バイアス発S 主回路出力端子、PORはパルス信号、C2はキ1?パ
シタ、R5は抵抗である。 なお、各図中同−符舅は同一または相当部分を示す。
FIG. 1 is a circuit diagram showing a short circuit between the ground level 38 of a semiconductor integrated circuit device according to an embodiment of the present invention and the output terminal 288 of a substrate bias generation circuit, and FIG. A circuit diagram of a pulse generation circuit of a certain semiconductor integrated circuit device, FIG. 3 is a timing diagram showing the operation of the circuit in FIG. 2, FIG. 4 is a timing diagram showing the operation of the circuit in FIG. 1,
FIG. 5 is a cross-sectional view of a conventional CMOS type dynamic RAM 8 semiconductor integrated circuit device, FIG. 6 is a circuit diagram showing an equivalent circuit of the anomalous bipolar transistor of the semiconductor integrated circuit device of FIG. 5, and FIG. 7 is a timing diagram showing the operation of the circuit of FIG. 6 immediately after power is turned on; FIG. In the figure, 03 is an N-channel type MO8t-transistor;
■ is the ground level, P8B1. is the substrate bias source S main circuit output terminal, POR is the pulse signal, and C2 is the key 1? pacita, R5 is a resistor. Note that in each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)同一半導体基板上に形成された基板バイアス発生
回路を備えたCMOS型半導体集積回路装置において、 ソースが前記基板バイアス発生回路の出力端、ドレイン
が接地レベルにそれぞれ接続されたNチャネル型MOS
トランジスタと、 前記トランジスタのゲートと前記基板バイアス回路の出
力端との間に挿入された抵抗と、 電源投入後の所定期間ハイレベルになるパルス信号をキ
ャパシタを介し前記トランジスタのゲートに印加するよ
うにしたパルス信号発生手段とを備えたことを特徴とす
る半導体集積回路装置。
(1) In a CMOS type semiconductor integrated circuit device including a substrate bias generation circuit formed on the same semiconductor substrate, an N-channel MOS whose source is connected to the output terminal of the substrate bias generation circuit and whose drain is connected to the ground level.
a transistor; a resistor inserted between the gate of the transistor and the output end of the substrate bias circuit; and a pulse signal that is at a high level for a predetermined period after power is turned on and is applied to the gate of the transistor via a capacitor. A semiconductor integrated circuit device comprising a pulse signal generating means.
JP62091212A 1987-04-13 1987-04-13 Semiconductor integrated circuit device Pending JPS63255959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62091212A JPS63255959A (en) 1987-04-13 1987-04-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62091212A JPS63255959A (en) 1987-04-13 1987-04-13 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63255959A true JPS63255959A (en) 1988-10-24

Family

ID=14020113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62091212A Pending JPS63255959A (en) 1987-04-13 1987-04-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63255959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332468B1 (en) * 1998-06-29 2002-08-21 주식회사 하이닉스반도체 Substrate bias voltage control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332468B1 (en) * 1998-06-29 2002-08-21 주식회사 하이닉스반도체 Substrate bias voltage control device

Similar Documents

Publication Publication Date Title
KR940001251B1 (en) Voltage control circuit
US6075404A (en) Substrate biasing circuit and semiconductor integrated circuit device
EP0751621A1 (en) Bootstrap line power supply regulator with no filter capacitor
JP2772522B2 (en) Power-on signal generation circuit
CA1199688A (en) Current source circuit having reduced error
US4556804A (en) Power multiplexer switch and method
US4454571A (en) Circuit for generating a substrate bias voltage
US4578694A (en) Inverter circuit provided with gate protection
US4443720A (en) Bootstrap circuit
JPS63279491A (en) Semiconductor dynamic ram
JPH0152906B2 (en)
JPH03166816A (en) Semiconductor integrated circuit device
JPS61222318A (en) Power-on reset circuit
JP4124562B2 (en) RC time constant circuit
JPS63255959A (en) Semiconductor integrated circuit device
US4503344A (en) Power up reset pulse generator
JP2787918B2 (en) Semiconductor integrated circuit device
JPS63255957A (en) Semiconductor integrated circuit device
JP2672023B2 (en) Substrate voltage generation circuit
JPS63255958A (en) Semiconductor integrated circuit device
JPH086653A (en) Reference voltage generating circuit
JPH0212867A (en) Semiconductor integrated circuit
JPH0245380B2 (en)
JPH03248619A (en) Semiconductor output circuit
JPH0753308Y2 (en) Initial clear circuit