JPS63255958A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63255958A
JPS63255958A JP62091211A JP9121187A JPS63255958A JP S63255958 A JPS63255958 A JP S63255958A JP 62091211 A JP62091211 A JP 62091211A JP 9121187 A JP9121187 A JP 9121187A JP S63255958 A JPS63255958 A JP S63255958A
Authority
JP
Japan
Prior art keywords
transistor
output terminal
turned
generation circuit
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62091211A
Other languages
Japanese (ja)
Inventor
Hideyuki Ozaki
尾崎 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62091211A priority Critical patent/JPS63255958A/en
Publication of JPS63255958A publication Critical patent/JPS63255958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the occurrence of a latch-up phenomenon even when a power source is turned on by a method wherein the output terminal of a substrate bias generating circuit is short-circuited to a grounding level for the prescribed period after the power source has been turned on. CONSTITUTION:The title integrated circuit has the first N-channel type MOS transistor Q3 and the second N-channel type MOS transistor Q4 having the threshold voltage lower than that of the transistor Q3. At this point, a high level pulse signal is generated during the prescribed period after a power source is turned on. As high level voltage is applied to the gate of the first transistor Q3 through the intermediary of a capacitor 2, the first transistor Q3 becomes conductive for the prescribed period immediately after the power source is turned on, and the main section (time t2-t3), in which the potential VPB of an output terminal PBB indicates a positive value, is forcedly clamped 0V. Consequently, the occurrence of a latch-up phenomenon can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路装置に関し、特に0MO8
構造の半導体集積回路装置の電源投入時のラッチアップ
の防止に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to a 0MO8
The present invention relates to prevention of latch-up when power is turned on in a semiconductor integrated circuit device having a structure.

〔従来の技術〕[Conventional technology]

第5図は従来のCMOS型ダイナミックRAM等の半導
体集積回路装置の断面図である。同図において1はP型
半尋体基板であり、このP型半導体基板1上にN−ウェ
ル領域2が形成される。このN−ウェル領域2内にP+
型半導体領13.4を形成し、P+型半導体領域3,4
間のN−ウェル領域2上方にベース電極5を設け、P+
型半導体領域3.4は各々電源V。o1出力端子OUT
に接続し、ベース電極5に入力端子INを接続すること
で、Pチャネル型MOSトランジスタ6を形成している
。なお、7はN+型半導体領域で、N−ウェル領域2を
電源Vccレベルにバイアスするために設けられている
FIG. 5 is a sectional view of a conventional semiconductor integrated circuit device such as a CMOS type dynamic RAM. In the figure, reference numeral 1 denotes a P-type semicircular substrate, and an N-well region 2 is formed on this P-type semiconductor substrate 1. In this N-well region 2, P+
A type semiconductor region 13.4 is formed, and a P+ type semiconductor region 3,4 is formed.
A base electrode 5 is provided above the N-well region 2 between the P+
The type semiconductor regions 3.4 are each connected to a power supply V. o1 output terminal OUT
By connecting the input terminal IN to the base electrode 5, a P-channel MOS transistor 6 is formed. Note that 7 is an N+ type semiconductor region, which is provided to bias the N- well region 2 to the power supply Vcc level.

一方、P型半導体基板1上にN+型半導体領域8.9を
設け、N+型半導体領域8.9間のP型半導体基板1上
方にベース電極10@設け、N゛型半導体領域8.9は
各々接地レベルv83、出力端子OUTに接続し、ベー
ス電極10を入力端子INに接続することでNチャネル
型MOSトランジスタ11を形成している。なお、12
はP+型半導体領域であり、P型半導体基板1をバイア
ス電位VBBレベルにバイアスするために設けられてい
る。このバイアス電位■BBは、通常のRAM等では、
同一基板1上に設けられたオンチップの電圧発生回路よ
り給電される負の電圧(−3V程度)である。
On the other hand, an N+ type semiconductor region 8.9 is provided on the P type semiconductor substrate 1, a base electrode 10@ is provided above the P type semiconductor substrate 1 between the N+ type semiconductor regions 8.9, and the N゛ type semiconductor region 8.9 is Each of them is connected to the ground level v83 and the output terminal OUT, and the base electrode 10 is connected to the input terminal IN, thereby forming an N-channel MOS transistor 11. In addition, 12
is a P+ type semiconductor region, which is provided to bias the P type semiconductor substrate 1 to the bias potential VBB level. This bias potential ■BB is, in a normal RAM, etc.
This is a negative voltage (approximately -3V) supplied from an on-chip voltage generation circuit provided on the same substrate 1.

ところで、第5図で示したような半導体集積回路装置で
は、ラッチアップと呼ばれる現象が発生し易い。ラッチ
アップは第5図の破線矢印で示したように電源■ から
接地レベル■83に向けて、C 定常的に数十mAもの大きな電流が流れる現象である。
Incidentally, in a semiconductor integrated circuit device as shown in FIG. 5, a phenomenon called latch-up is likely to occur. Latch-up is a phenomenon in which a large current of several tens of milliamps (C) constantly flows from the power source (1) to the ground level (83) as shown by the broken line arrow in FIG.

以下、このラッチアップ発生原因について説明する。The cause of this latch-up occurrence will be explained below.

第6図は第5図で示した構造の半導体集積回路装置の寄
生バイポーラトランジスタの等価回路を示した回路図で
ある。同図においてR1はP+型半導体領域3の拡散抵
抗、R2はN+型半導体領11117の拡散抵抗、R3
はバイアス電位■BBの出力端子の抵抗とP+型半導体
領hit12の拡散抵抗の合成抵抗、R4はN+型半導
体領域8の拡散抵抗である。また、QlはP+型半導体
領域3.N−「シェル領域2.P型半導体基板1により
構成される奇生PNP型バイポーラトランジスタ、Q2
はN−ウェル領域2.P型半導体基板1.N+型半導体
領域8により構成される奇生NPN型バイポーラトラン
ジスタである。この奇生トランジスタQ1.Q2が存在
するため、点P1の電位が、ある瞬間に正の値を示し寄
生トランジスタQ2のオン電圧を越えると、寄生トラン
ジスタQ2が導通する。その結果、抵抗R2,寄生トラ
ンジスタQ2、抵抗R4を介して電源V。0から接地レ
ベルV88に電流が流れることにより、奇生トランジス
タQ1のベース電圧が低下して、該寄生トランジスタQ
1が導通する。すると、さらに奇生トランジスタQ2の
ベース電位が上昇して、寄生トランジスタQ2に流れる
電流がせ増加する。このように寄生トランジスタQ1.
Q2による正帰還ループが形成されると、定常的に電源
■。0から接地レベルVS8に大きな電流が流れ、最悪
の場合、破壊に至ることがある。このようなラッチアッ
プ現象は、前述したようにバイアス電位■BBを負の電
圧にバイアスするため、寄生トランジスタQ2は導通す
ることはなく、通常は起らない。
FIG. 6 is a circuit diagram showing an equivalent circuit of the parasitic bipolar transistor of the semiconductor integrated circuit device having the structure shown in FIG. In the figure, R1 is the diffused resistance of the P+ type semiconductor region 3, R2 is the diffused resistance of the N+ type semiconductor region 11117, and R3 is the diffused resistance of the N+ type semiconductor region 11117.
is the combined resistance of the resistance of the output terminal of the bias potential BB and the diffused resistance of the P+ type semiconductor region hit12, and R4 is the diffused resistance of the N+ type semiconductor region 8. Moreover, Ql is a P+ type semiconductor region 3. N-"Shell region 2. Strange PNP type bipolar transistor formed by P type semiconductor substrate 1, Q2
is the N-well region 2. P-type semiconductor substrate 1. This is an anomalous NPN bipolar transistor composed of an N+ type semiconductor region 8. This strange transistor Q1. Because Q2 exists, when the potential at point P1 takes a positive value at a certain moment and exceeds the on-voltage of parasitic transistor Q2, parasitic transistor Q2 becomes conductive. As a result, the power supply V is applied via the resistor R2, the parasitic transistor Q2, and the resistor R4. 0 to the ground level V88, the base voltage of the parasitic transistor Q1 decreases, and the parasitic transistor Q
1 is conductive. Then, the base potential of the parasitic transistor Q2 further increases, and the current flowing through the parasitic transistor Q2 increases. In this way, the parasitic transistor Q1.
When a positive feedback loop is formed by Q2, the power supply ■ continues. A large current flows from 0 to ground level VS8, and in the worst case, it may lead to destruction. Such a latch-up phenomenon does not normally occur because the bias potential BB is biased to a negative voltage as described above, so that the parasitic transistor Q2 does not become conductive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、電源vccとバイアス電位vBB間には
P型半導体基板1上に形成されている多くの接合容量に
より、第6図に示したキャパシタC1が形成されてしま
う。
However, due to many junction capacitances formed on the P-type semiconductor substrate 1, a capacitor C1 shown in FIG. 6 is formed between the power supply vcc and the bias potential vBB.

また、バイアス電位V8BはP型半導体基板1上に形成
されているオンチップの電源発生回路により給電される
ため、電源投入時にはO■になっており、所定の電位(
−3V)になるためには、数百μsecを要する。この
様子を第7図のt、に示すが、同図は電源V。0の経時
変化および、点P1にかかる電位■P1の経時変化を示
すタイミング図である。同図に示すように、点P1にか
かる電位■P1が電源投入直後に正の値を示しているの
は、第6図で示したキャパシタC1による古川結合のた
めである。この正の電圧値が第6図の寄生トランジスタ
Q2のオン電圧を越えた場合に前述したラッチアップ現
象が起こる。その結果、点P1の電位■、1は第7図の
破線で示したように正の電圧値を保持し続け、この半導
体集積回路装置は正常な動作を行なえないばかりか、破
壊に至ってしまう等の問題点があった。
In addition, since the bias potential V8B is supplied by an on-chip power generation circuit formed on the P-type semiconductor substrate 1, it is O■ when the power is turned on, and the predetermined potential (
-3V), it takes several hundred μsec. This situation is shown at t in FIG. 7, which shows the power supply V. 2 is a timing chart showing the temporal change of the voltage 0 and the temporal change of the potential ■P1 applied to the point P1. FIG. As shown in the figure, the reason why the potential ■P1 applied to the point P1 takes a positive value immediately after the power is turned on is due to the Furukawa coupling caused by the capacitor C1 shown in FIG. When this positive voltage value exceeds the on-voltage of the parasitic transistor Q2 shown in FIG. 6, the latch-up phenomenon described above occurs. As a result, the potential ■, 1 at point P1 continues to maintain a positive voltage value as shown by the broken line in FIG. 7, and this semiconductor integrated circuit device not only cannot operate normally, but may even be destroyed. There was a problem.

この発明は上記のような問題点を解決するためになされ
たもので、電源投入時においてもラッチアップが生じる
ことのない半導体集積回路装置を得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a semiconductor integrated circuit device that does not cause latch-up even when the power is turned on.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる半導体集積回路装置は、同一半導体基
板上に形成された基板バイアス発生回路を有し、ソース
を前記基板バイアス発生回路の出力端、トレインを接地
レベルにそれぞれ接続した第1のNヂャネル型MO3t
−ランジスタと、ソースを前記基板バイアス発生回路の
出力端、ドレインを前記第1のトランジスタのゲート、
ゲートを接地レベルにそれぞれ接続した前記第1のトラ
ンジスタより閾値電圧が低い第2のNチャネル型MOS
トランジスタと、電源投入後の所定期間ハイレベルにな
るパルス信号をキャパシタを介し前記第1のトランジス
タのゲートに印加するようにしたパルス発生回路とを具
備して構成されている。
A semiconductor integrated circuit device according to the present invention has a substrate bias generation circuit formed on the same semiconductor substrate, and a first N channel in which a source is connected to an output terminal of the substrate bias generation circuit, and a train is connected to a ground level. Type MO3t
- a transistor, whose source is the output terminal of the substrate bias generation circuit, and whose drain is the gate of the first transistor;
a second N-channel MOS whose threshold voltage is lower than that of the first transistor, each having its gate connected to a ground level;
The first transistor is configured to include a transistor and a pulse generation circuit that applies a pulse signal that remains at a high level for a predetermined period of time after power is turned on to the gate of the first transistor via a capacitor.

〔作用〕[Effect]

この発明におけるパルス発生回路は、電源投入後の所定
期間のみハイレベルのパルス信号を発生するため、キャ
パシタを介し第1のトランジスタのゲートにハイレベル
の電圧が印加されることで、第1のトランジスタが電極
投入直後の所定期間だけ専通し、基板バイアス発生回路
の出力端が接地レベルに短絡されることより、その期間
中基板バイアス発生回路の出力端が正の値を示すことは
ない。
Since the pulse generation circuit of the present invention generates a high-level pulse signal only for a predetermined period after power is turned on, a high-level voltage is applied to the gate of the first transistor via the capacitor, and the first transistor lasts only for a predetermined period immediately after the electrode is applied, and since the output terminal of the substrate bias generation circuit is short-circuited to the ground level, the output terminal of the substrate bias generation circuit does not show a positive value during that period.

〔実施例〕〔Example〕

第1図はこの発明の一実施例である半導体集積回路装置
を示し、特に接地レベルvS8、基板バイアス発生回路
の出力端子P、−の短絡回路を示す回路図である。同図
において、Q3はドレインを接地レベルV、8、ソース
を図示しない基板バイアス発生回路の出力端子P88に
それぞれ接続した第1のNチャネル型MOSトランジス
タであり、Q4はソースを基板バイアス発生回路の出力
端子PBB1 ドレインをトランジスタQ3のゲート、
ゲートを接地レベルV、Sにそれぞれ接続した閾値電圧
がトランジスタQ3より低い第2のNチャネル型MOS
トランジスタである。また、PORは電源■oCの投入
時に、第2図に示すパルス発生回路により発生されるワ
ンショットパルスである。この信号FORはキャパシタ
C2を介し、トランジスタQ3のゲート及びトランジス
タQ4のトレインに供給されている。
FIG. 1 shows a semiconductor integrated circuit device according to an embodiment of the present invention, and is a circuit diagram showing, in particular, a short circuit between the ground level vS8 and the output terminals P and - of the substrate bias generation circuit. In the figure, Q3 is a first N-channel MOS transistor whose drain is connected to the ground level V,8 and its source is connected to the output terminal P88 of a substrate bias generation circuit (not shown), and Q4 is a first N-channel MOS transistor whose source is connected to the output terminal P88 of a substrate bias generation circuit (not shown). Output terminal PBB1 drain is connected to the gate of transistor Q3,
a second N-channel MOS whose threshold voltage is lower than that of transistor Q3, whose gates are connected to ground levels V and S, respectively;
It is a transistor. Further, POR is a one-shot pulse generated by the pulse generating circuit shown in FIG. 2 when the power supply (i)oC is turned on. This signal FOR is supplied to the gate of transistor Q3 and the train of transistor Q4 via capacitor C2.

第2図は信号PORのパルス発生回路を示す回路図であ
る。同図に示すようにPヂャネル型MOSトランジスタ
Q5とN:fヤネル型MOSトランジスタQ6よりなる
インバータG1の出力信号がPORである。また、イン
バータG1の入力端子P2、電源V。0間に抵抗R5が
、この入力端子P2、接地レベルV、S間にキャパシタ
C3が挿入され、この抵抗R5とキャパシタC3が端子
P2にかかる電圧を決定する時定数となる。
FIG. 2 is a circuit diagram showing a pulse generation circuit for signal POR. As shown in the figure, the output signal of an inverter G1 consisting of a P channel type MOS transistor Q5 and an N:f channel type MOS transistor Q6 is POR. In addition, the input terminal P2 of the inverter G1 and the power supply V. A resistor R5 is inserted between the input terminal P2 and the ground level V, and a capacitor C3 is inserted between the input terminal P2 and the ground level V, and the capacitor C3 becomes a time constant that determines the voltage applied to the terminal P2.

第3図は第2図の回路の動作を示すタイミング図である
。電源■ が時刻t1で立上がると、喘C 子P2の電圧(+Q V  は時刻t1より時定数CR
に従い、電源■ccよりもゆるやかに上昇する。しかる
後、時刻[において電源■。0の電圧値がインバークG
1の駆動電圧■drを越えると、インバータG]は駆動
される。この時、端子P2の電位V、2は末だ゛L″レ
ベル(Vp2<Vol(インバータG1の閾値電圧))
なので、トランジスタQ5が導通していることにより信
号PORは電源■。0の値に等しくなり、以降時刻t3
まで電源■。0と同じ変化をする。
FIG. 3 is a timing diagram showing the operation of the circuit of FIG. 2. When the power supply ■ starts up at time t1, the voltage of the output terminal P2 (+Q V is the time constant CR from time t1
Accordingly, the voltage rises more slowly than the power supply ■cc. After that, turn on the power at the time [■. The voltage value of 0 is invert G
1, the inverter G] is driven. At this time, the potential V,2 of terminal P2 is at the lowest level (Vp2<Vol (threshold voltage of inverter G1))
Therefore, since the transistor Q5 is conductive, the signal POR becomes the power supply ■. becomes equal to the value of 0, and thereafter at time t3
Power until ■. Makes the same change as 0.

そして、時刻t でV、2〉V61になると、インバー
クG1の出力が反転して、信号PORは゛L″レベル(
OV)となり、以降、信号PORの電位レベルは変化し
ない。
Then, at time t, when V,2>V61, the output of invert G1 is inverted, and signal POR is at the "L" level (
OV), and the potential level of the signal POR does not change thereafter.

第4図は第1図の回路の動作を示したタイミング図であ
る。以下、第1図、第4図を参照しつつ動作の説明をす
る。時刻t1で電源V。0が立上がり、第3図で示した
ように時刻t2で信号FORが立上る。この信号FOR
が“HQレベルになればキャパシタC2に“H”が印加
され、点P3の電位vP3は容量結合により信号POR
とほぼ同じ値を示すため、トランジスタQ3が導通し、
図示しない基板バイアス発生回路の出力端子PBBと接
地レベルv、8が短絡されるため、該出力端子PBBの
電位■、8は強制的にOVにクランプされる。以降、実
線で示す如くOvを信号PORが時刻t3で立下るまで
保つ。参考までに従来(短絡回路がない場合)の出力端
子PB8の電位VPB変化を破線で示す。なおトランジ
スタQ4のベース電位はOVに固定され、そのソース電
位すなわち■、Bは時刻t 〜t3の間、負になること
はないので、その間トランジスタQ4は非導通状態を保
つ。
FIG. 4 is a timing diagram showing the operation of the circuit of FIG. 1. The operation will be explained below with reference to FIGS. 1 and 4. Power supply V at time t1. 0 rises, and the signal FOR rises at time t2 as shown in FIG. This signal FOR
When the voltage reaches the HQ level, “H” is applied to the capacitor C2, and the potential vP3 at the point P3 becomes the signal POR due to capacitive coupling.
Since it shows almost the same value as , transistor Q3 becomes conductive and
Since the output terminal PBB of the substrate bias generation circuit (not shown) and the ground level v, 8 are short-circuited, the potentials (1), 8 of the output terminal PBB are forcibly clamped to OV. Thereafter, as shown by the solid line, Ov is maintained until the signal POR falls at time t3. For reference, the change in potential VPB of the output terminal PB8 in the conventional case (in the case of no short circuit) is shown by a broken line. Note that the base potential of the transistor Q4 is fixed at OV, and its source potential, ie, ■, B, does not become negative during the time period t-t3, so the transistor Q4 remains non-conductive during that time.

そして、時刻t3で信号PORが立下り、点P3はOV
となるため、トランジスタQ3は非導通状態となり、出
力端子PBBと接地レベルv88は遮断される。この後
、オンチップの基板バイアス発生回路の正常な駆動が出
力端子P8Bに伝わり、端子P の電位VPBはOvよ
り下りはじめ、vBBB (−3V)に近づいていく。
Then, at time t3, the signal POR falls, and the point P3 becomes OV.
Therefore, the transistor Q3 becomes non-conductive, and the output terminal PBB and the ground level v88 are cut off. After this, the normal drive of the on-chip substrate bias generation circuit is transmitted to the output terminal P8B, and the potential VPB of the terminal P begins to fall below Ov and approaches vBBB (-3V).

電位VPBが下がるに従い、IV、81がトランジスタ
Q4の閾値電圧を越えるとトランジスタQ4が導通する
。その結果、点P3の電位VP3は電位VPBの変化に
追随して負の電位になり、最終的にはバイアス電位V8
8(−3V)になる。従ってトランジスタQ3が導通す
ることはなく、再び出力端子PBBと接地レベルv88
が短絡されることはない。これは、トランジスタQ4の
IaJ l直電圧がトランジスタQ3の閾tri電圧よ
り低く設定されているため、必ずトランジスタQ4が先
に導通状態となるからである。
As potential VPB decreases, transistor Q4 becomes conductive when IV, 81 exceeds the threshold voltage of transistor Q4. As a result, the potential VP3 at the point P3 becomes a negative potential following the change in the potential VPB, and finally the bias potential V8
8 (-3V). Therefore, transistor Q3 does not become conductive, and output terminal PBB and ground level v88 are connected again.
is never shorted. This is because the IaJ1 direct voltage of the transistor Q4 is set lower than the threshold tri voltage of the transistor Q3, so the transistor Q4 always becomes conductive first.

このよ′うに、出力端子P の電位vPBが正の値、B
B を示す主要区間(時刻12〜13)を強制的にOVにク
ランプするため、ラッチアップ現象が起こることはない
。しかも第1図の短絡回路、第2図のパルス発生回路で
示したような比較的簡単な回路構成で実現できている。
In this way, the potential vPB of the output terminal P has a positive value,
Since the main section (times 12 to 13) indicating B is forcibly clamped to OV, no latch-up phenomenon occurs. Moreover, it can be realized with a relatively simple circuit configuration as shown in the short-circuit circuit shown in FIG. 1 and the pulse generation circuit shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、電源投入後の
所定期間基板バイアス発生回路の出力端が接地レベルに
短絡されるため、電源投入時においてもラッチアップ現
象が生じないCMO3型半導体集積回路装置を得ること
ができる。
As explained above, according to the present invention, the output terminal of the substrate bias generation circuit is short-circuited to the ground level for a predetermined period after the power is turned on, so that the latch-up phenomenon does not occur even when the power is turned on. You can get the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である半導体集積回路装置
の接地レベルv38、基板バイアス発生回路の出力端子
188間の短絡回路を示す回路図、第2図はこの発明の
一実施例である半導体集積回路装置のパルス発生回路の
回路図、第3図は第2図の回路の動作を示すタイミング
図、第4図は第1図の回路の動作を示すタイミング図、
第5図は従来のCMOS型ダイナミックRAM等の半導
体集積回路装置の断面図、第6図は第5図の半導体集積
回路装置の寄生バイポーラトランジスタの等価回路を示
した回路図、第7図は第6図の回路における電源投入直
後の動作を示すタイミング図である。 図において03.C4はNチャネル型MOSトランジス
タ、■ は接地レベル、PBBは基板パイS アス発生回路出力端子、PORはパルス信号、C2はキ
ャパシタである。 なお、各図中同一符号は同一または相当部分を示す。 代理人   大  岩  増  雄 第1図 第2図 第3図 ′t11t21t3吟r 第4図 :;: t+t2t3            瞬間第5図 第6図 一一一且−Vss 第7図 手続補正書く自発)
FIG. 1 is a circuit diagram showing a short circuit between the ground level v38 of a semiconductor integrated circuit device and the output terminal 188 of a substrate bias generation circuit, which is an embodiment of the present invention, and FIG. 2 is an embodiment of the present invention. A circuit diagram of a pulse generation circuit of a semiconductor integrated circuit device, FIG. 3 is a timing diagram showing the operation of the circuit in FIG. 2, FIG. 4 is a timing diagram showing the operation of the circuit in FIG. 1,
FIG. 5 is a cross-sectional view of a conventional semiconductor integrated circuit device such as a CMOS type dynamic RAM, FIG. 6 is a circuit diagram showing an equivalent circuit of a parasitic bipolar transistor of the semiconductor integrated circuit device of FIG. 5, and FIG. 7 is a timing diagram showing the operation immediately after power is turned on in the circuit of FIG. 6. FIG. In the figure 03. C4 is an N-channel MOS transistor, 2 is a ground level, PBB is an output terminal of a substrate bias generation circuit, POR is a pulse signal, and C2 is a capacitor. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 't11t21t3ginr Figure 4: ;: t+t2t3 Moment Figure 5 Figure 6 111 and -Vss Figure 7 Self-motivated to write procedural amendments)

Claims (1)

【特許請求の範囲】[Claims] (1)同一半導体基板上に形成された基板バイアス発生
回路を備えたCMOS型半導体集積回路装置において、 ソースを前記基板バイアス発生回路の出力端、ドレイン
を接地レベルにそれぞれ接続した第1のNチャネル型M
OSトランジスタと、 ソースを前記基板バイアス発生回路の出力端、ドレイン
を前記第1のトランジスタのゲート、ゲートを接地レベ
ルにそれぞれ接続した前記第1のトランジスタより閾値
電圧が低い第2のNチャネル型MOSトランジスタと、 電源投入後の所定期間ハイレベルになるパルス信号をキ
ャパシタを介し前記第1のトランジスタのゲートに印加
するようにしたパルス発生回路とを備えたことを特徴と
する半導体集積回路装置。
(1) In a CMOS type semiconductor integrated circuit device having a substrate bias generation circuit formed on the same semiconductor substrate, a first N-channel whose source is connected to the output terminal of the substrate bias generation circuit and its drain is connected to the ground level. Type M
an OS transistor, and a second N-channel MOS having a lower threshold voltage than the first transistor, the source of which is connected to the output terminal of the substrate bias generation circuit, the drain to the gate of the first transistor, and the gate to a ground level. 1. A semiconductor integrated circuit device comprising: a transistor; and a pulse generation circuit configured to apply a pulse signal that remains at a high level for a predetermined period of time after power is turned on to the gate of the first transistor via a capacitor.
JP62091211A 1987-04-13 1987-04-13 Semiconductor integrated circuit device Pending JPS63255958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62091211A JPS63255958A (en) 1987-04-13 1987-04-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62091211A JPS63255958A (en) 1987-04-13 1987-04-13 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63255958A true JPS63255958A (en) 1988-10-24

Family

ID=14020085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62091211A Pending JPS63255958A (en) 1987-04-13 1987-04-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63255958A (en)

Similar Documents

Publication Publication Date Title
JP3135859B2 (en) Substrate bias circuit
JP2968200B2 (en) Electrostatic discharge and latch-up prevention circuit
KR970076808A (en) Output driver circuit for level shift and voltage protection
JPH09121560A (en) Bootstrap line power supply regulator without filter capacitor
US5594369A (en) Open-drain fet output circuit
US4649289A (en) Circuit for maintaining the potential of a node of a MOS dynamic circuit
JPS61222318A (en) Power-on reset circuit
US5488326A (en) Data output circuit for semiconductor integrated circuit device which prevents current flow from the output to supply voltage
JPS63255958A (en) Semiconductor integrated circuit device
JPS583325A (en) Inverter circuit
JPH01195719A (en) Semiconductor integrated circuit
JPH0983344A (en) Inverter circuit
JP3386661B2 (en) Output buffer
JP2926921B2 (en) Power-on reset circuit
JPH05175798A (en) Circuit reducing undershoot
JP2758735B2 (en) Logic circuit
JP2646786B2 (en) Semiconductor output circuit
JPS63255957A (en) Semiconductor integrated circuit device
JPH0555905A (en) Cmos logic gate
JPS5842658B2 (en) Level Henkan Kairono Hogo Kairo
JPS5854875A (en) Inverter circuit
JP2672023B2 (en) Substrate voltage generation circuit
JP2577127Y2 (en) Reset signal input circuit
JPH02134862A (en) Semiconductor integrated circuit device
JP2757632B2 (en) Test signal generation circuit