JPS61222318A - Power-on reset circuit - Google Patents

Power-on reset circuit

Info

Publication number
JPS61222318A
JPS61222318A JP6253385A JP6253385A JPS61222318A JP S61222318 A JPS61222318 A JP S61222318A JP 6253385 A JP6253385 A JP 6253385A JP 6253385 A JP6253385 A JP 6253385A JP S61222318 A JPS61222318 A JP S61222318A
Authority
JP
Japan
Prior art keywords
voltage
power supply
turned
power
reset signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6253385A
Other languages
Japanese (ja)
Inventor
Tadahiro Saito
斉藤 忠弘
Kunihiko Goto
邦彦 後藤
Seiichi Hasegawa
清一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6253385A priority Critical patent/JPS61222318A/en
Publication of JPS61222318A publication Critical patent/JPS61222318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To generate a reset signal even when the leading of a power supply is slow by connecting an element which is turned on and then causes a prescribed voltage drop with a power supply rising to a voltage and a capacitor generating a reset signal in series between power supplies. CONSTITUTION:A MOS transistor (TR) Q5 turned on when the power supply rises to a voltage and causing a prescribed voltage drop further, a resistor R and a capacitor C are connected in series between power supplies. When a power supply voltage Vcc reaches the threshold value Vth of the TR Q5 at application of power, the TR Q5 is turned on and the capacitor C is charged through the resistor R. When a voltage VA exceeds the threshold voltage of an inverter I1, a TR Q1 is turned off, a TR Q2 is turned on and a voltage VB goes to an L level, then a TR Q3 is turned on, a TR Q4 is turned off and a voltage Vc at an output terminal C goes to an H level in an inverter I2, but the voltage Vc is at L level until that time and the voltage Vc being at an L level becomes a reset signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リセット端子のない集積回路において電源投
入時に内部の論理回路を初期状態に設定するリセット信
号を発生するパワーオンリセット回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power-on reset circuit that generates a reset signal for setting an internal logic circuit to an initial state when power is turned on in an integrated circuit without a reset terminal.

〔従来の技術〕[Conventional technology]

論理回路に含まれるフリップフロップなどは電源を投入
されて論理回路が動作を開始する前にリセットしておき
、そのリセットされている状態から動作を開始させるの
が一般的である。論理回路が集積回路(IC)として構
成されていると、リセット信号を外部より与える方式で
は端子ピンが1つ増えて得策でないので、IC内部(チ
ップ内で)電源投入時に自動的に発生させるようにして
おり、これがパワーオンリセット回路である。
Generally, flip-flops and the like included in a logic circuit are reset before the power is turned on and the logic circuit starts operating, and the operation is started from the reset state. If the logic circuit is configured as an integrated circuit (IC), applying the reset signal externally would increase the number of terminal pins by one, which is not a good idea. This is the power-on reset circuit.

この種リセット回路には幾つかの形式があるが第4図は
その一例を示す、これは抵抗RとコンデンサCの直列接
続回路を電源Vccに接続してなり、その直列接続点A
よりリセット信号を出力させる。
There are several types of reset circuits of this kind, and FIG. 4 shows one example. This is made up of a series connection circuit of a resistor R and a capacitor C connected to the power supply Vcc, and the series connection point A
output a reset signal.

即ちIC電源の投入でVccはOvより例えば5vまで
一般には急速に立上るが、A点電圧即ちコンデンサ電圧
vAはRC時定数で徐々に立上るのでVccより遅れる
。第5図で説明すると電源Vccは(a)に示すように
急速に立上り、これに対してコンデンサ電圧vAは伽)
に示すように緩やかに立上り、期間tの間がVccのH
(ハイ)レベル(回路は動作可能)に対してL(ロー)
レベルとなり、フリップフロップなどはこのLレベルの
電圧vAによりリセットされる(Lレベルリセット型)
。電圧vAもやがてはVcc(5V)まで立上り、リセ
ット機能を持たなくなるから、vAがHレベルになった
後は論理回路はフリップフロップ等がリセットされた状
態から動作可能になる。
That is, when the IC power is turned on, Vcc generally rises rapidly from Ov to, for example, 5V, but the A point voltage, that is, the capacitor voltage vA, gradually rises with the RC time constant and lags behind Vcc. To explain with Figure 5, the power supply Vcc rises rapidly as shown in (a), whereas the capacitor voltage vA rises rapidly.)
As shown in FIG.
(high) level (circuit is operational) and low (low)
level, and flip-flops etc. are reset by this L level voltage vA (L level reset type)
. The voltage vA eventually rises to Vcc (5V) and no longer has a reset function, so after vA reaches the H level, the logic circuit can operate from the state in which the flip-flops and the like have been reset.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこの第4図の従来回路では、次に述べるよ
うな欠点がある。!IIち、電源回路の時定数が大きく
、第5図(C)のように緩やかに立上る場合は、コンデ
ンサ電圧vAの立上りがVccと同様になり、Vccが
Hレベルになる(論理回路が動作可能になる)時点では
VA:bHレベル(リセット機能を持たないレベル)に
なり、リセット信号は発生しないことになる。
However, the conventional circuit shown in FIG. 4 has the following drawbacks. ! II. If the power supply circuit has a large time constant and rises slowly as shown in Figure 5 (C), the rise of the capacitor voltage vA will be similar to Vcc, and Vcc will become H level (the logic circuit will not operate). When this becomes possible, the VA:bH level (level without a reset function) is reached, and no reset signal is generated.

またICの電源には第6図に示すように最初は低電圧例
えば2v、その後高電圧例えば6vに変るものがあり、
このようなものでは電源電圧が増加する毎に第4図の回
路ではリセット信号を発生する。しかしリセットは電源
投入時t1つまり動作開始時にのみ行ない、動作中は電
源電圧が変ってもリセットはしない(初期状態へは戻さ
ない)のが普通で、従って後の(期間t2の)リセット
は不都合である。つまり、−4図の回路では電源電圧の
使用範囲が狭い、電話用ICは電源を電話線からとるの
で大きな電圧変動が有り得るが、この電圧変動でリセッ
トがか−ってしまうのは避けねばならない。
Also, as shown in Figure 6, some IC power supplies start out at a low voltage, say 2V, and then change to a high voltage, say 6V.
In such a device, the circuit of FIG. 4 generates a reset signal every time the power supply voltage increases. However, the reset is performed only when the power is turned on t1, that is, when the operation starts, and the reset is not normally performed even if the power supply voltage changes during operation (it does not return to the initial state), so the later reset (during the period t2) is inconvenient. It is. In other words, in the circuit shown in Figure 4, the usable range of power supply voltage is narrow.Since telephone ICs derive their power from the telephone line, there can be large voltage fluctuations, but it is necessary to avoid resets due to these voltage fluctuations. .

電源電圧の増加時に発生するリセ7)は第7図に示すよ
うにインバータを用いれば、回避できる。
Recess 7) that occurs when the power supply voltage increases can be avoided by using an inverter as shown in FIG.

この図でQl、Q2はトランジスタで、CMOSインバ
ータを構成する。このインバータの閾値を1■に選んで
おけば、RC回路の出力電圧vAが1vになる迄はLと
判定され、インバータ出力電圧VaはH(= V cc
) 、I V以上になるとHと判定されてVaはL(は
−′グランドレベル)になる。
In this figure, Ql and Q2 are transistors that constitute a CMOS inverter. If the threshold value of this inverter is selected as 1■, it will be determined as L until the output voltage vA of the RC circuit reaches 1V, and the inverter output voltage Va will be H (= V cc
), IV or more, it is determined to be H and Va becomes L (-' ground level).

電源Vccが2vから6vに変ったときは、VAは依然
Hと判定されるだけでVB−Lに変化はない。
When the power supply Vcc changes from 2v to 6v, VA is still determined to be H, and VB-L remains unchanged.

即ち期間t2でリセット信号が発生することはない。That is, no reset signal is generated during period t2.

第4図の回路の第3の欠点は、電源瞬断時にリセット信
号を発生しないことである。これは、コンデンサCの電
荷が急には放電されないことによる。電源瞬断即ち電源
が一時的に切れて直ぐまた投入された場合でも、論理回
路のフリップフロップなどは部分的に出力状態が変って
いることが有り得るから、リセットして初期状態に戻し
そこから動作再開するのが好ましく、この電源瞬断時に
リセット信号を発生しないのは不具合である。第7図の
回路でも、電源瞬断時にはリセット信号を出力しない。
A third drawback of the circuit of FIG. 4 is that it does not generate a reset signal when the power supply is momentarily cut off. This is because the charge in the capacitor C is not suddenly discharged. Even if the power is momentarily interrupted, that is, the power is turned off temporarily and then turned on again, the output state of flip-flops in logic circuits may have partially changed, so it is necessary to reset them to their initial state and operate from there. It is preferable to resume operation, and it is a problem that a reset signal is not generated at the moment of power interruption. The circuit shown in FIG. 7 also does not output a reset signal when the power supply is momentarily cut off.

本発明はか−る点を改善し、電源の立上りが遅くてもリ
セット信号を発生するパワーオンリセット回路を提供し
ようとするものである。また本発明は、それに加えて、
電源電圧の変動ではリセット信号を発生せず、電源瞬断
があればリセット信号を発生するパワーオンリセット回
路を提供しようとするものである。
The present invention aims to improve these points and provide a power-on reset circuit that generates a reset signal even if the power supply rises slowly. In addition, the present invention also provides:
The present invention aims to provide a power-on reset circuit that does not generate a reset signal when the power supply voltage fluctuates, but generates a reset signal when there is a momentary power interruption.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、集積回路チップ内に搭載され、該集積回路の
電源が投入されるときリセット信号を発生するパワーオ
ンリセット回路において、電源がある電圧値まで立上る
ときオンになり、以後一定の電圧降下を生じる素子と、
抵抗と、コンデンサとを電源間に直列に接続し、該コン
デンサの電圧でリセット信号を発生させるようにしてな
ることを特徴とするものである。
The present invention relates to a power-on reset circuit that is mounted in an integrated circuit chip and generates a reset signal when the power of the integrated circuit is turned on. an element that causes a drop;
The device is characterized in that a resistor and a capacitor are connected in series between a power supply, and a reset signal is generated by the voltage of the capacitor.

〔作用及び実施例〕 第1図は本発明の実施例を示す。この図でR及びCは前
述の抵抗及びコンデンサで、電源Vccに接続されて電
圧V^を出力する。QlとQ2、Q3とQ4はCMOS
インバータを構成するトランジスタで、これらのインバ
ータI1.I2は2段縦続接続される。Qs、Qsはp
チャネルMO3)ランジスタで、C5は図示のようにド
レインとゲートが短絡されて閾値vthだけの電圧降下
を生じる素子として働ら<、トランジスタQ6は電源V
ccと出力端Aとの間に接続され、ゲートはインバータ
I+の出力端Bに接続される。またDはダイオードで、
電源Vccと出力端Aとの間に図示極性で接続される。
[Operation and Examples] FIG. 1 shows an example of the present invention. In this figure, R and C are the aforementioned resistors and capacitors, which are connected to the power supply Vcc and output a voltage V^. Ql and Q2, Q3 and Q4 are CMOS
These inverters I1. I2 is connected in two stages in cascade. Qs, Qs is p
In the channel MO3) transistor, C5 works as an element whose drain and gate are short-circuited as shown in the figure to cause a voltage drop of the threshold value vth, and the transistor Q6 is connected to the power supply V.
cc and output terminal A, and its gate is connected to output terminal B of inverter I+. Also, D is a diode,
It is connected between the power supply Vcc and the output terminal A with the illustrated polarity.

この回路で゛は電源投入でVcc電圧が立上ると、該V
ccがトランジスタQIIのvth以上になるとき該ト
ランジスタQ5がオンなり、抵抗Rを通してコンデンサ
Cが充電される。従って電圧vAは立上り、インバータ
11の閾値を越えるとQ+オフ、Q2オン、電圧Vaは
Lになり、従ってインバータ■2ではQ3オン、Q4オ
フ、出力端Cの電圧VcはHとなるが、この時まではし
てあり、このLであるVcがリセット信号になる。
In this circuit, when the power is turned on and the Vcc voltage rises, the
When cc exceeds vth of transistor QII, transistor Q5 is turned on and capacitor C is charged through resistor R. Therefore, the voltage vA rises, and when it exceeds the threshold of the inverter 11, Q+ is turned off, Q2 is turned on, and the voltage Va becomes L. Therefore, in inverter ■2, Q3 is turned on, Q4 is turned off, and the voltage Vc at the output terminal C becomes H. This low level Vc becomes the reset signal.

この回路は、電源Vccの立上りが緩やかでもリセット
信号を発生する。これを第2図(alで説明すると、ト
ランジスタQ5は最初オフであるから電源Vccが立上
っても節点りの電圧vDはグランドレベルであり、Qs
がオンになると前記vthになり、以後Vccと同様に
上昇する。コンデンサCはトランジスタQ5がオンにな
った以後充電開始され、電圧vAは次第に立上る。この
vAがインバータ1+によりLと判定される間、電源V
ccは相当に立上っているのにVcはLレベルとなり、
この期間taのVcがリセット信号になる。
This circuit generates a reset signal even if the power supply Vcc rises slowly. To explain this with reference to FIG.
When turned on, it becomes the above-mentioned vth, and thereafter increases in the same way as Vcc. Capacitor C starts charging after transistor Q5 turns on, and voltage vA gradually rises. While this vA is determined to be L by inverter 1+, the power supply V
Although cc has risen considerably, Vc is at L level,
Vc during this period ta becomes a reset signal.

また第1図の回路は、電源電圧の変動ではリセット信号
を発生しない、これを第2図(b)で説明すると、電源
VccがOvから2vに変ったときく電源が投入された
とき)前述の動作で期間taO間リセリセット信号生す
るが、その終了時即ちvAが11によりH判定されてQ
+オフ、02オン、VB−Lになったときpチャネルト
ランジスタQ6はオンになり、出力端Aを電源Vccへ
直結する。
In addition, the circuit in Figure 1 does not generate a reset signal when the power supply voltage fluctuates. To explain this with Figure 2 (b), when the power supply Vcc changes from Ov to 2V (when the power is turned on), the above-mentioned During the operation, a reset signal is generated during the period taO, but at the end of the period taO, vA is determined to be H by 11 and Q
+off, 02on, and when VB-L, the p-channel transistor Q6 is turned on, and the output terminal A is directly connected to the power supply Vcc.

従って以後V A = V CC5V B #01Vc
#Vccになり、インバータII、I2の出力状態は変
らず、リセット信号は発生しない。
Therefore, from now on V A = V CC5V B #01Vc
#Vcc, the output states of inverters II and I2 do not change, and no reset signal is generated.

更に第1図の回路は、電源瞬断時にはリセット信号を発
生する。これを第2図(C)で説明すると、電源Vcc
が6vからOvになると、該6vに充電されていたコン
デンサCは該コンデンサから見れば順方向であるダイオ
ードDを介して電源Vccへ放電し、電圧vAは急速に
Ovになる。短時間復電源Vccがある電圧本例では2
vに戻ると前記と同様な動作でリセット信号が発生する
。なお第1図の回路で抵抗Rは必らずしも必要ではない
Further, the circuit shown in FIG. 1 generates a reset signal when the power supply is momentarily cut off. To explain this with reference to FIG. 2(C), the power supply Vcc
When the voltage changes from 6V to Ov, the capacitor C charged to 6V discharges to the power supply Vcc via the diode D, which is in the forward direction as seen from the capacitor, and the voltage vA quickly becomes Ov. In this example, the short-time return power supply Vcc has a voltage of 2
When the voltage returns to v, a reset signal is generated in the same manner as described above. Note that the resistor R is not necessarily necessary in the circuit shown in FIG.

本発明の他の実施例を第3図(a)(b>に示す、第3
図中)は、第1図の抵抗Rを削除した回路方式である。
Another embodiment of the present invention is shown in FIGS.
(in the figure) is a circuit system in which the resistor R in FIG. 1 is removed.

すなわち第1図の抵抗RをトランジスタQ5で形成する
ものであり、トランジスタQ5のβを小さくすることに
よりON抵抗が太き(なる、よってトランジスタQ5の
ON抵抗を第1図の抵抗R相当にON抵抗を設計してや
れば第1図相当のパワーオンリセット回路となる。電源
電圧の使用範囲が2v〜6vでなく、下限がもう少し高
い場合は、電源Vccが前記より更に立上った状態にな
るまでリセット信号を発生させてもよく、この場合はト
ランジスタQ5を複数個直列にするとよい。
In other words, the resistor R in Figure 1 is formed by the transistor Q5, and by reducing the β of the transistor Q5, the ON resistance becomes thicker (thus, the ON resistance of the transistor Q5 becomes ON equivalent to the resistor R in Figure 1). If you design a resistor, it will become a power-on reset circuit equivalent to Figure 1.If the power supply voltage range used is not 2v to 6v and the lower limit is a little higher, the power supply voltage should be turned on until the power supply Vcc rises further than above. A reset signal may be generated, and in this case, it is preferable to connect a plurality of transistors Q5 in series.

第3図(a)はこの場合の実施例回路を示し、トランジ
スタQ5はC7とQsの2個直列にされる。なおこの回
路ではダイオードDを省略しているが、該ダイオードD
の機能はトランジスタQ6により代行させている。
FIG. 3(a) shows an example circuit in this case, in which two transistors Q5, C7 and Qs, are connected in series. Although the diode D is omitted in this circuit, the diode D
This function is performed by transistor Q6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電源電圧の立上り
が、ゆるやかでもリセット信号を発生することができる
など、好ましい特性を持つパワーオンリセット回路を提
供することができる。
As described above, according to the present invention, it is possible to provide a power-on reset circuit having favorable characteristics such as being able to generate a reset signal even if the power supply voltage rises slowly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図、第2図は動作説
明用のグラフ、第3図は本発明の他の実施例を示す回路
図、第4図は従来例を示す回路図、第5図及び第6図は
その動作説明図、第7図は他の従来例を示す回路図であ
る。 図面で、Vccは電源、Qllはゲート、ドレイン短絡
のpチャネルMO3)ランジスタ、Rは抵抗、Cはコン
デンサである。 vcc           Vcc 本発明の詳細な説明する回路 第1図 −e+ 1−e−’J t−y トイ島“う゛イト生t
へ 動作4光明図 第6図 Vcc      Vcc イtnダ、朱停jを示す回路図 第7図 】トー発Bロー)イt、r>*Hヒイ子り L第31!
1 イL東イ刊配ホ10!各日 第4図 r11回外 勤イ乍 1父、BfJ  凹4 第51!1
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a graph for explaining operation, Fig. 3 is a circuit diagram showing another embodiment of the invention, and Fig. 4 is a circuit diagram showing a conventional example. , FIG. 5 and FIG. 6 are explanatory diagrams of its operation, and FIG. 7 is a circuit diagram showing another conventional example. In the drawing, Vcc is a power supply, Qll is a p-channel MO3) transistor with gate and drain shorted, R is a resistor, and C is a capacitor. vcc Vcc Detailed explanation circuit of the present invention Fig. 1-e+ 1-e-'J ty
To operation 4 light figure Figure 6 Vcc Vcc itn da, red stop j Figure 7] To from B low) It, r>*H Hiikori L No. 31!
1 Lee L Toi Kan Haiho 10! Each day Figure 4 r 11th outside shift I 1 father, BfJ concave 4th 51st!1

Claims (3)

【特許請求の範囲】[Claims] (1)電源がある電圧値まで立上るときオンになり、以
後一定の電圧降下を生じる素子と、コンデンサとを電源
間に直列に接続し、該コンデンサの電圧でリセット信号
を発生させるようにして、集積回路の電源が投入される
とき集積回路チップ内でリセット信号を発生することを
特徴とするパワーオンリセット回路。
(1) Connect an element in series between the power supply and a capacitor that turns on when the power supply rises to a certain voltage value and thereafter causes a constant voltage drop, and use the voltage of the capacitor to generate a reset signal. , a power-on reset circuit characterized in that it generates a reset signal within an integrated circuit chip when the integrated circuit is powered on.
(2)前記電圧降下を生じる素子とコンデンサとの間に
抵抗を直列に接続し、該コンデンサの電圧でリセット信
号を発生させるようにしてなることを特徴とする特許請
求の範囲第1項記載のパワーオンリセット回路。
(2) A resistor is connected in series between the element that causes the voltage drop and the capacitor, and the reset signal is generated by the voltage of the capacitor. Power-on reset circuit.
(3)前記電圧降下を生じる素子はゲート、ドレインを
短絡したpチャネルMOSトランジスタであことを特徴
とする特許請求の範囲第1項記載のパワーオンリセット
回路。
(3) The power-on reset circuit according to claim 1, wherein the element that causes the voltage drop is a p-channel MOS transistor whose gate and drain are short-circuited.
JP6253385A 1985-03-27 1985-03-27 Power-on reset circuit Pending JPS61222318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6253385A JPS61222318A (en) 1985-03-27 1985-03-27 Power-on reset circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6253385A JPS61222318A (en) 1985-03-27 1985-03-27 Power-on reset circuit

Publications (1)

Publication Number Publication Date
JPS61222318A true JPS61222318A (en) 1986-10-02

Family

ID=13202938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6253385A Pending JPS61222318A (en) 1985-03-27 1985-03-27 Power-on reset circuit

Country Status (1)

Country Link
JP (1) JPS61222318A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212024A (en) * 1988-02-18 1989-08-25 Sanyo Electric Co Ltd Power-on reset circuit
US4994689A (en) * 1988-12-05 1991-02-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
US5166546A (en) * 1991-01-23 1992-11-24 Siemens Aktiengesellschaft Integrated circuit for generating a reset signal
US5528184A (en) * 1992-06-26 1996-06-18 Sgs-Thomson Microelectronics, S.R.L. Power-on reset circuit having a low static power consumption
US5703510A (en) * 1996-02-28 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Power on reset circuit for generating reset signal at power on
US5734281A (en) * 1996-04-16 1998-03-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit for outputting an intermediate potential
EP1078465A1 (en) * 1998-05-20 2001-02-28 Maxim Integrated Products, Inc. Zero dc current power-on reset circuit
JP2002298594A (en) * 2001-03-30 2002-10-11 Fujitsu Ltd Address generating circuit
EP0700160B1 (en) * 1994-08-05 2003-04-09 Advanced Micro Devices, Inc. Power-on reset circuit
JP2017208636A (en) * 2016-05-17 2017-11-24 新日本無線株式会社 Power-on reset circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212024A (en) * 1988-02-18 1989-08-25 Sanyo Electric Co Ltd Power-on reset circuit
US4994689A (en) * 1988-12-05 1991-02-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
US5166546A (en) * 1991-01-23 1992-11-24 Siemens Aktiengesellschaft Integrated circuit for generating a reset signal
US5528184A (en) * 1992-06-26 1996-06-18 Sgs-Thomson Microelectronics, S.R.L. Power-on reset circuit having a low static power consumption
EP0700160B1 (en) * 1994-08-05 2003-04-09 Advanced Micro Devices, Inc. Power-on reset circuit
US5703510A (en) * 1996-02-28 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Power on reset circuit for generating reset signal at power on
US5734281A (en) * 1996-04-16 1998-03-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit for outputting an intermediate potential
EP1078465A1 (en) * 1998-05-20 2001-02-28 Maxim Integrated Products, Inc. Zero dc current power-on reset circuit
EP1078465A4 (en) * 1998-05-20 2001-05-30 Maxim Integrated Products Zero dc current power-on reset circuit
JP2002298594A (en) * 2001-03-30 2002-10-11 Fujitsu Ltd Address generating circuit
JP2017208636A (en) * 2016-05-17 2017-11-24 新日本無線株式会社 Power-on reset circuit

Similar Documents

Publication Publication Date Title
US6710634B2 (en) Power on reset circuit
JP3756961B2 (en) Chip initialization signal generation circuit for semiconductor memory device
US4902907A (en) Reset signal generating circuit
JPH0474015A (en) Semiconductor integrated circuit
KR100237623B1 (en) Current sense start up circuit
KR100302589B1 (en) Start-up circuit for voltage reference generator
JPH07230331A (en) Reference-voltage generating circuit having starting circuit
JP3005169B2 (en) Reset circuit
KR100593565B1 (en) Power-on detection and enabling circuit with very fast detection of power-off
JP2575956B2 (en) Substrate bias circuit
US7482847B2 (en) Power-on reset circuit
JPS6323417A (en) Cmos power-on resetting circuit
JPH05175811A (en) Power-on reset circuit
JPS61222318A (en) Power-on reset circuit
JP3820913B2 (en) Power on / off reset circuit
JPS5948567B2 (en) schmitt trigger circuit
US6346835B1 (en) Power-on reset signal preparing circuit
EP0468210A2 (en) Circuit for driving a floating circuit in response to a digital signal
US7262646B2 (en) Power-on reset circuit
KR100231139B1 (en) Reset signal generating circuit
JPH0446011B2 (en)
JP2645117B2 (en) Reset circuit for semiconductor integrated circuit
JP4080696B2 (en) Semiconductor integrated circuit
JP2689622B2 (en) Power-on reset circuit
JPH11145808A (en) Power-on-reset circuit and semiconductor integrated circuit device using the same