JPS63253671A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63253671A
JPS63253671A JP8801487A JP8801487A JPS63253671A JP S63253671 A JPS63253671 A JP S63253671A JP 8801487 A JP8801487 A JP 8801487A JP 8801487 A JP8801487 A JP 8801487A JP S63253671 A JPS63253671 A JP S63253671A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
gate electrode
onto
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8801487A
Other languages
Japanese (ja)
Inventor
Kuniaki Koyama
小山 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8801487A priority Critical patent/JPS63253671A/en
Publication of JPS63253671A publication Critical patent/JPS63253671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To remove anisotropic etching, controllability of which is difficult, to simplify a process and to improve reliability by forming a high melting-point metallic silicide layer onto the surface of an element forming region, using an silicon nitride film coating only a polycrystalline silicon film selectively shaped as a mask. CONSTITUTION:A gate insulating film 3 is formed onto the surface of an element forming region shaped to one main surface of a P-type silicon substrate 1. A polycrystalline silicon film 4 is formed selectively onto the film 3, and an silicon nitride film 5 is shaped only onto the surface of the film 4 through a method of thermal nitridation. A polycrystalline silicon film 6 as a control gate electrode is formed choicely onto the film 5. The gate insulating film 3 is removed through etching, employing the silicon nitride film 5 as a mask to expose the surface of the element forming region. A titanium film is deposited onto the whole surface through a sputtering method, and a titanium silicide film 8 is shaped through heat treatment. An unreacted titanium film 7 is gotten rid of. A polycrystalline silicon film 4 is formed and used as a floating gate electrode, and an N-type diffusion region 9 is shaped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に浮遊ゲート
電極を有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having a floating gate electrode.

〔従来の技術〕[Conventional technology]

浮遊ゲート電極を有するMO3構造のEPROM (e
rasable programmable read
 only memory)は、装置メーカで容易にデ
ータの書込みが行え、かつ簡単にデータの内容が変更で
きる利点を有している。
MO3 structure EPROM with floating gate electrode (e
rasable programmable read
only memory) has the advantage that data can be easily written by the device manufacturer and the contents of the data can be easily changed.

第2図(a)〜(h)は従来の半導体装置の製造方法を
説明するための工程順に示した半導体チップの断面図で
ある。
FIGS. 2(a) to 2(h) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a semiconductor device.

第2図(a)に示すように、P型シリコン基板1の一主
面に素子分離用のフィールド絶縁膜2を形成して素子形
成領域を区画し、該素子形成領域の表面にゲート絶縁膜
3を形成し、ゲート絶縁膜3の上に膜厚0.4μmの多
結晶シリコン膜4を選択的に形成して熱酸化法で400
人の酸化シリコン膜10を形成する。
As shown in FIG. 2(a), a field insulating film 2 for element isolation is formed on one principal surface of a P-type silicon substrate 1 to define an element formation region, and a gate insulating film is formed on the surface of the element formation region. A polycrystalline silicon film 4 with a thickness of 0.4 μm is selectively formed on the gate insulating film 3, and a polycrystalline silicon film 4 with a thickness of 400 μm is formed by thermal oxidation.
A silicon oxide film 10 is formed.

次に、第2図(b)に示すように、全面に多結晶シリコ
ン膜6を0.4μmの膜厚に堆積し、多結晶シリコン膜
6の上にホトレジスト膜11を選択的に設ける。
Next, as shown in FIG. 2(b), a polycrystalline silicon film 6 is deposited on the entire surface to a thickness of 0.4 μm, and a photoresist film 11 is selectively provided on the polycrystalline silicon film 6.

次に、第2図(c)に示すように、ホトレジスト膜11
をマスクとして多結晶シリコン膜6と酸化シリコン膜1
0および多結晶シリコン膜4を順次エツチングで除去し
、多結晶シリコン膜6を制御ゲート電極に、多結晶シリ
コン膜4を浮遊ゲート電極とする。次に、ホトレジスト
膜11とフィールド絶縁膜2をマスクとしてヒ素を加速
エネルギー70keV、ドーズ量5X10”cm−2で
イオン注入し前記素子形成領域にN型拡散領域9を形成
し、ホトレジスト膜11を除去する。
Next, as shown in FIG. 2(c), the photoresist film 11
polycrystalline silicon film 6 and silicon oxide film 1 using as a mask.
0 and polycrystalline silicon film 4 are sequentially removed by etching, and polycrystalline silicon film 6 is used as a control gate electrode and polycrystalline silicon film 4 is used as a floating gate electrode. Next, using the photoresist film 11 and the field insulating film 2 as masks, arsenic is ion-implanted at an acceleration energy of 70 keV and a dose of 5 x 10"cm-2 to form an N-type diffusion region 9 in the element formation region, and the photoresist film 11 is removed. do.

次に、第2図(d)に示すように、CVD法により全面
に酸化シリコン膜12を0.1μmの厚さに堆積する。
Next, as shown in FIG. 2(d), a silicon oxide film 12 is deposited to a thickness of 0.1 μm over the entire surface by CVD.

次に、第2図(e)に示すように、異方性エツチングに
より多結晶シリコン膜4と酸化シリコン膜10および多
結晶シリコン膜6かなる積層の側壁にのみ酸化シリコン
膜12を残し、且つ、N型拡散領域9の表面を露出させ
る。
Next, as shown in FIG. 2(e), by anisotropic etching, the silicon oxide film 12 is left only on the sidewalls of the laminated layer consisting of the polycrystalline silicon film 4, the silicon oxide film 10, and the polycrystalline silicon film 6, and , exposing the surface of the N-type diffusion region 9.

次に、第2図(f)に示すように、全面にチタニウムJ
]5j7をスパッタリング法により0.1μmの膜厚に
堆積する。
Next, as shown in Figure 2(f), titanium J was applied to the entire surface.
]5j7 is deposited to a thickness of 0.1 μm by sputtering.

次に、第2図(g)に示すように、600℃で60分間
の熱処理を行い多結晶シリコン膜6およびN型拡散領域
9と接触してチタニウムWA7とを反応させて硅化チタ
ニウム膜8を形成する。
Next, as shown in FIG. 2(g), a heat treatment is performed at 600° C. for 60 minutes to contact the polycrystalline silicon film 6 and the N-type diffusion region 9 and react with the titanium WA 7 to form a titanium silicide film 8. Form.

次に、第2図(h)に示すように、未反応のチタニウム
膜7を過酸化水素系のエツチング液で除去する。
Next, as shown in FIG. 2(h), the unreacted titanium film 7 is removed using a hydrogen peroxide based etching solution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法は、ソースおよび
ドレイン領域となるべき拡散領域の抵抗を低減させるた
め拡散領域表面に高融点金属硅化物膜を形成しているが
、浮遊ゲート電極と高融点金属硅化物膜との短絡を防ぐ
ため浮遊ゲート電極側壁に酸化シリコン膜を形成する必
要がある。
In the conventional semiconductor device manufacturing method described above, a high melting point metal silicide film is formed on the surface of the diffusion region in order to reduce the resistance of the diffusion region to become the source and drain regions. It is necessary to form a silicon oxide film on the sidewalls of the floating gate electrode to prevent short circuits with the silicide film.

しかしながら、浮遊ゲート電極側壁に酸化シリコン膜を
形成するためにはCVD法で形成した酸化シリコン膜を
制御性の難しい異方性エツチングで浮遊ゲート側壁にの
みに酸化シリコン膜を残すという工程の難しさと、金属
硅化物膜を堆積させるためのスパッタリング工程により
CVD法で形成した酸化シリコン膜が痛めつけられて膜
質が低下するという問題点がある。
However, in order to form a silicon oxide film on the side walls of the floating gate electrode, the silicon oxide film formed by the CVD method is subjected to anisotropic etching that is difficult to control, leaving the silicon oxide film only on the side walls of the floating gate. However, there is a problem in that the silicon oxide film formed by the CVD method is damaged by the sputtering process for depositing the metal silicide film, resulting in a decrease in film quality.

本発明の目的は、工程を簡素化し、且つ信頼性のすぐれ
た半導体装置の1!i!遣方法を提供することにある。
An object of the present invention is to provide a semiconductor device that simplifies the process and has excellent reliability! i! The goal is to provide a way to send money.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、 (A)  一導電型の半導体基板の一主面に素子分離用
のフィールド絶縁膜を選択的に形成して素子形成領域を
区画し、該素子形成領域の表面にゲート絶縁膜を形成し
、該ゲート絶縁膜上に第1の多結晶シリコン膜を堆積し
選択的にエツチングして浮遊ゲート電極を形成し、該浮
遊ゲート電極のみを被覆する窒化シリコン膜を形成する
工程、 (B)  前記窒化シリコン膜を含む全表面に第2の多
結晶シリコン膜を堆積し選択エツチングして制御ゲート
電極を形成し、前記窒化シリコン膜をマスクとして前記
ゲート絶縁膜をエツチングして除去し、前記素子形成領
域の表面を露出させる工 程、 (C)  全面に高融点金属膜を堆積した後熱処理を行
い前記第2の多結晶シリコン膜および前記素子形成領域
と接触している前記高融点金属膜を反応させて高融点金
属硅化物膜を形成し、未反応の高融点金属膜を除去する
工程、 (D)  前記高融点金属硅化物膜およびフィールド絶
縁膜をマスクとして前記窒化シリコン膜および前記第1
の多結晶シリコン膜を順次エツチングして前記第2の多 結晶シリコン膜のパターンと自己整合 された前記浮遊ゲート電極を形成する工程、 (E)  前記制御ゲート電極と前記フィールド絶縁膜
とをマスクとして不純物をイオン注入し、前記素子形成
領域に逆導電型の拡散領域を形成する工程、 を含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes: (A) selectively forming a field insulating film for element isolation on one principal surface of a semiconductor substrate of one conductivity type to define an element formation region; A gate insulating film is formed on the surface, a first polycrystalline silicon film is deposited on the gate insulating film and selectively etched to form a floating gate electrode, and a silicon nitride film is formed to cover only the floating gate electrode. (B) depositing a second polycrystalline silicon film on the entire surface including the silicon nitride film, selectively etching it to form a control gate electrode, and etching the gate insulating film using the silicon nitride film as a mask; (C) Depositing a high melting point metal film over the entire surface and then heat-treating it so that it is in contact with the second polycrystalline silicon film and the element formation region; a step of reacting the high melting point metal film to form a high melting point metal silicide film and removing the unreacted high melting point metal film; (D) using the high melting point metal silicide film and field insulating film as a mask to form a high melting point metal silicide film; silicon film and the first
(E) forming the floating gate electrode self-aligned with the pattern of the second polycrystalline silicon film by sequentially etching the polycrystalline silicon film; (E) using the control gate electrode and the field insulating film as a mask; The method includes a step of ion-implanting impurities to form a diffusion region of an opposite conductivity type in the element formation region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(g>は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1A to 1G are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
の一主面に素子分離用のフィールド絶縁膜2を形成して
素子形成領域を区画し、該素子形成領域の表面にゲート
絶縁WA3を形成し、ゲート絶縁膜3の上に膜厚0.4
μmの多結晶シリコン膜4を選択的に形成して熱窒化法
により多結晶シリコン膜4の表面にのみ膜厚400人の
窒化シリコン膜5を形成する。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
A field insulating film 2 for element isolation is formed on one principal surface to define an element forming region, a gate insulating WA3 is formed on the surface of the element forming region, and a film thickness of 0.4 mm is formed on the gate insulating film 3.
A polycrystalline silicon film 4 having a thickness of 400 μm is selectively formed, and a silicon nitride film 5 having a thickness of 400 μm is formed only on the surface of the polycrystalline silicon film 4 by thermal nitriding.

次に、第1図(b)に示すように、窒化シリコン膜5の
上に制御ゲート電極となるべき多結晶シリコン膜6を選
択的に設ける。
Next, as shown in FIG. 1(b), a polycrystalline silicon film 6 to become a control gate electrode is selectively provided on the silicon nitride film 5.

次に、第1図(c)に示すように、窒化シリコンM5を
マスクとしてゲート絶縁膜3をエツチングで除去し、前
記素子形成領域の表面を露出させる。
Next, as shown in FIG. 1(c), the gate insulating film 3 is removed by etching using the silicon nitride M5 as a mask to expose the surface of the element formation region.

次に、第1図(d)に示すように、スパッタリング法に
より全面に0.1μmのチタニウム膜を堆積させる。
Next, as shown in FIG. 1(d), a 0.1 μm titanium film is deposited on the entire surface by sputtering.

次に、第1図(e)に示すように、600℃で60分間
の熱処理を行い多結晶シリコン膜6および前記露出した
素子形成領域表面と接触しているチタニウム膜7とを反
応させて硅化チタニウム膜8を形成する。
Next, as shown in FIG. 1(e), a heat treatment is performed at 600° C. for 60 minutes to cause the polycrystalline silicon film 6 and the titanium film 7 in contact with the exposed surface of the element formation region to react and become silicide. A titanium film 8 is formed.

次に、第1図(f)に示すように、未反応のチタニウム
膜7を過酸化水素系のエツチング液により除去する。
Next, as shown in FIG. 1(f), the unreacted titanium film 7 is removed using a hydrogen peroxide-based etching solution.

次に、第1図(g)に示すように、硅化チタニウム膜8
をマスクとして窒化シリコン膜5および多結晶シリコン
膜4を順次エツチングして多結晶シリコン膜6と自己整
合された多結晶シリコン膜4を形成して浮遊ゲート電極
とする。
Next, as shown in FIG. 1(g), a titanium silicide film 8
Using as a mask, silicon nitride film 5 and polycrystalline silicon film 4 are sequentially etched to form polycrystalline silicon film 4 that is self-aligned with polycrystalline silicon film 6 to form a floating gate electrode.

次に、多結晶シリコン膜6およびフィールド絶縁M2を
マスクとしてヒ素を′加速エネルギー7゜keV、ドー
ズ量5X10” ’ cm−2でイオン注入し、前記素
子形成領域にN型拡散領域9を形成する。
Next, using the polycrystalline silicon film 6 and the field insulation M2 as a mask, arsenic is ion-implanted at an acceleration energy of 7° keV and a dose of 5×10 cm −2 to form an N-type diffusion region 9 in the element formation region. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、選択的に形成された第一
の多結晶シリコン膜のみを被覆する窒化シリコン膜をマ
スクとして素子形成領域表面に高融点金属硅化物膜を形
成することにより従来のような制御性の難°しい異方性
エツチング工程をなくすことができるという効果を有す
る。
As explained above, the present invention can be achieved by forming a high melting point metal silicide film on the surface of the element formation region using the silicon nitride film that covers only the selectively formed first polycrystalline silicon film as a mask. This has the effect of eliminating such anisotropic etching process which is difficult to control.

また、高融点金属を堆積させるためのスパッタリング工
程の影響を受けた改質の悪い窒化シリコン膜が除去でき
、高信頼性の半導体装置が製造できる効果を有する。
In addition, a poorly modified silicon nitride film affected by the sputtering process for depositing a high melting point metal can be removed, and a highly reliable semiconductor device can be manufactured.

また、制御ゲート電極を構成する第2の多結晶シリコン
膜の側面にも高融点金属硅化物膜が形成できるため制御
ゲート電極の導電性が高くなる効果を有する。
Furthermore, since a high melting point metal silicide film can be formed on the side surfaces of the second polycrystalline silicon film constituting the control gate electrode, the control gate electrode has the effect of increasing its conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図(a
)〜(h)は従来の半導体装置の製造方法を説明するた
めの工程順に示した半導体チップの断面図である。 1・・・P型シリコン基板、2・・・フィールド絶縁膜
、3・・・ゲート絶縁膜、4・・・多結晶シリコン膜、
5・・・窒化シリコン膜、6・・・多結晶シリコン膜、
7・・・チタニウム膜、8・・・硅化チタニウム膜、9
・・・N型拡散領域、10・・・酸化シリコン膜、11
・・・ホトレジスト膜、12・・・酸化シリコン膜。 ¥1田 猶2語
1(a) to 1(g) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
) to (h) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a semiconductor device. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field insulating film, 3... Gate insulating film, 4... Polycrystalline silicon film,
5... Silicon nitride film, 6... Polycrystalline silicon film,
7...Titanium film, 8...Titanium silicide film, 9
... N-type diffusion region, 10 ... silicon oxide film, 11
... Photoresist film, 12... Silicon oxide film. ¥1 2 words

Claims (1)

【特許請求の範囲】 (A)一導電型の半導体基板の一主面に素子分離用のフ
ィールド絶縁膜を選択的に形成して素子形成領域を区画
し、該素子形成領域の表面にゲート絶縁膜を形成し、該
ゲート絶縁膜上に第1の多結晶シリコン膜を堆積し選択
的にエッチングして浮遊ゲート電極を形成し、該浮遊ゲ
ート電極のみを被覆する窒化シリコン膜を形成する工程
、 (B)前記窒化シリコン膜を含む全表面に第2の多結晶
シリコン膜を堆積し選択エッチングして制御ゲート電極
を形成し、前記窒化シリコン膜をマスクとして前記ゲー
ト絶縁膜をエッチングして除去し、前記素子形成領域の
表面を露出させる工程、 (C)全面に高融点金属膜を堆積した後熱処理を行い前
記第2の多結晶シリコン膜および前記素子形成領域と接
触している前記高融点金属膜を反応させて高融点金属硅
化物膜を形成し、未反応の高融点金属膜を除去する工程
、 (D)前記高融点金属硅化物膜およびフィールド絶縁膜
をマスクとして前記窒化シリコン膜および前記第1の多
結晶シリコン膜を順次エッチングして前記第2の多結晶
シリコン膜のパターンと自己整合された前記浮遊ゲート
電極を形成する工程、 (E)前記制御ゲート電極と前記フィールド絶縁膜とを
マスクとして不純物をイオン注入し、前記素子形成領域
に逆導電型の拡散領域を形成する工程、 を含むことを特徴とする半導体装置の製造方法。
[Scope of Claims] (A) A field insulating film for element isolation is selectively formed on one principal surface of a semiconductor substrate of one conductivity type to demarcate an element formation region, and gate insulation is provided on the surface of the element formation region. forming a floating gate electrode by depositing and selectively etching a first polycrystalline silicon film on the gate insulating film, and forming a silicon nitride film covering only the floating gate electrode; (B) A second polycrystalline silicon film is deposited on the entire surface including the silicon nitride film and selectively etched to form a control gate electrode, and the gate insulating film is etched and removed using the silicon nitride film as a mask. , exposing the surface of the element formation region; (C) depositing a high melting point metal film on the entire surface and then heat-treating the second polycrystalline silicon film and the high melting point metal in contact with the element formation region; a step of reacting the film to form a high melting point metal silicide film and removing the unreacted high melting point metal film; (E) forming the floating gate electrode self-aligned with the pattern of the second polycrystalline silicon film by sequentially etching the first polycrystalline silicon film; (E) etching the control gate electrode and the field insulating film; A method for manufacturing a semiconductor device, comprising the step of ion-implanting impurities as a mask to form a diffusion region of an opposite conductivity type in the element formation region.
JP8801487A 1987-04-10 1987-04-10 Manufacture of semiconductor device Pending JPS63253671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8801487A JPS63253671A (en) 1987-04-10 1987-04-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8801487A JPS63253671A (en) 1987-04-10 1987-04-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63253671A true JPS63253671A (en) 1988-10-20

Family

ID=13930989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8801487A Pending JPS63253671A (en) 1987-04-10 1987-04-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63253671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153144A (en) * 1988-05-10 1992-10-06 Hitachi, Ltd. Method of making tunnel EEPROM
US5445980A (en) * 1988-05-10 1995-08-29 Hitachi, Ltd. Method of making a semiconductor memory device
US5711891A (en) * 1995-09-20 1998-01-27 Lucent Technologies Inc. Wafer processing using thermal nitride etch mask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153144A (en) * 1988-05-10 1992-10-06 Hitachi, Ltd. Method of making tunnel EEPROM
US5445980A (en) * 1988-05-10 1995-08-29 Hitachi, Ltd. Method of making a semiconductor memory device
USRE37959E1 (en) 1988-05-10 2003-01-07 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing the same
US5711891A (en) * 1995-09-20 1998-01-27 Lucent Technologies Inc. Wafer processing using thermal nitride etch mask

Similar Documents

Publication Publication Date Title
KR100678473B1 (en) Method of fabricating a semiconductor device having multiple gate insulating layer
JPH0212836A (en) Manufacture of semiconductor device
JPS63253671A (en) Manufacture of semiconductor device
JPS605065B2 (en) Manufacturing method of MIS type semiconductor device
JP3436315B2 (en) Method of manufacturing MONOS type semiconductor nonvolatile memory device and method of manufacturing semiconductor device
JP2950244B2 (en) Method for manufacturing semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
JPS6161463A (en) Semiconductor integrated circuit element and manufacture thereof
JP2666565B2 (en) Method for manufacturing semiconductor device
JPS5836505B2 (en) Method for manufacturing semiconductor memory device
JP3387518B2 (en) Semiconductor device
JP3500553B2 (en) Method for manufacturing semiconductor device
JPH01110762A (en) Manufacture of semiconductor device
JPS61156883A (en) Manufacture of semiconductor device
JPS6068655A (en) Manufacture of mos transistor
JPH04284675A (en) Manufacture of semiconductor device
JP3172081B2 (en) Semiconductor device and manufacturing method thereof
JPH0590254A (en) Manufacture of semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JP3030569B2 (en) Manufacturing method of nonvolatile semiconductor memory
JP2961388B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPH07106443A (en) Nonvolatile semiconductor memory and fabrication thereof
JP3009683B2 (en) Method for manufacturing semiconductor nonvolatile memory element
JPS62131538A (en) Manufacture of semiconductor device
JPS63177562A (en) Manufacture of semiconductor device