JPS6321818A - Treating method for semiconductor thin film - Google Patents

Treating method for semiconductor thin film

Info

Publication number
JPS6321818A
JPS6321818A JP16610586A JP16610586A JPS6321818A JP S6321818 A JPS6321818 A JP S6321818A JP 16610586 A JP16610586 A JP 16610586A JP 16610586 A JP16610586 A JP 16610586A JP S6321818 A JPS6321818 A JP S6321818A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
amorphous
annealing
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16610586A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
隆 野口
Yasushi Morita
靖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16610586A priority Critical patent/JPS6321818A/en
Publication of JPS6321818A publication Critical patent/JPS6321818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to obtain rapidly a polycrystalline semiconductor thin film having crystal particles of a large particle size, by applying heat treatment to an amorphous semiconductor thin film in a heating furnace after energy beams are applied thereto. CONSTITUTION:Silicon ions Si<+> are implanted into a semiconductor thin film formed on a substrate, so as to make it amorphous. Next, excimer laser is applied to said semiconductor thin film. Thereafter, it is annealed by a heating furnace whose temperature is 600 deg.C or below, for instance. By applying the excimer laser to the semiconductor thin film before annealing, in this way, the amorphous semiconductor thin film can be put in an amorphous state which is found just before polycrystallization. Thus, a time required for generation is made to be zero substantially, and the size of a crystal particle which can be made to grow in the same annealing time can be made larger than usual.

Description

【発明の詳細な説明】 以下の順序に従って本発明を説明する。[Detailed description of the invention] The present invention will be described in the following order.

A、産業上の利用分野 B1発明の概要 C1背景技術 り1発明が解決しようとする問題点[第3図]E0問題
点を解決するための手段 F0作用 G、実施例[第1図、第2図] H0発明の効果 (A、産業上の利用分野) 本発明は半導体薄膜の処理方法、特に半導体薄膜に熱処
理を施すことりより大きな粒径を有する結晶粒を成長さ
せる半導体薄膜の処理方法に関する。
A. Industrial fields of application B1 Overview of the invention C1 Background art 1 Problems to be solved by the invention [Figure 3] E0 Means for solving the problems F0 Effects G. Examples [Figures 1 and 3] Figure 2] H0 Effects of the Invention (A, Industrial Application Field) The present invention relates to a method for processing a semiconductor thin film, and particularly to a method for processing a semiconductor thin film in which crystal grains having a larger grain size are grown than by heat-treating the semiconductor thin film. .

(B、発明の概要) 本発明は、半導体薄膜に熱処理を施すことりより大きな
粒径を有する結晶粒を成長させる半導体◆ 薄膜の処理方法において、 大きな粒径を有する結晶粒を迅速に成長させるため、 熱処理する前に例えばレーザビーム等のエネルギー線を
半導体薄膜に照射するものであり、従って、エネルギー
線の照射により非晶質半導体薄膜が瞬時に多結晶化直前
の非晶質状態に変化するのでその後の熱処理による多結
晶化が迅速に進み、延いては大きな粒径の結晶粒を有す
る多結晶半導体薄膜を迅速に得ることができる。
(B. Summary of the Invention) The present invention provides a semiconductor thin film processing method for rapidly growing crystal grains having a larger grain size than by heat-treating a semiconductor thin film. , Before heat treatment, the semiconductor thin film is irradiated with energy rays such as a laser beam. Therefore, the irradiation of the energy rays instantly changes the amorphous semiconductor thin film to an amorphous state just before polycrystallization. Polycrystalization by the subsequent heat treatment rapidly progresses, and as a result, a polycrystalline semiconductor thin film having crystal grains with a large grain size can be quickly obtained.

(C,背景技術) TPT等の製造には基板上に成長させた半導体薄膜にシ
リコンイオンSi1をイオン打込みしてその半導体薄膜
を一旦アモルファス化し、その後基板を加熱炉に通すこ
とによってアニールしてその半導体薄膜を多結晶にする
という技術が用いられることが多い。この技術によれば
結晶粒の粒径を5μmにもすることができた。
(C, Background technology) To manufacture TPT, etc., silicon ions Si1 are ion-implanted into a semiconductor thin film grown on a substrate to temporarily make the semiconductor thin film amorphous, and then the substrate is passed through a heating furnace to anneal it. A technique that makes semiconductor thin films polycrystalline is often used. According to this technique, it was possible to increase the grain size of crystal grains to 5 μm.

(D、発明が解決しようとする問題点〉[第3図] ところで、半導体薄膜にシリコンイオンSi+をイオン
打込みして半導体薄膜をアモルファス化しアニールする
という方法には結晶粒の核をつくるまでに長い時間がか
かりそのため大きな粒径の結晶粒を得るのに要する時間
、即ち、アニール時間が非常に長くなるという大きな欠
点があった。
(D. Problems to be Solved by the Invention) [Figure 3] By the way, the method of implanting silicon ions Si+ into a semiconductor thin film to make the semiconductor thin film amorphous and annealing takes a long time to form the nuclei of crystal grains. This method has a major drawback in that it takes a long time and therefore the time required to obtain crystal grains with a large grain size, that is, the annealing time is extremely long.

第3図はアニール時間と結晶粒、即ち、グレインの最大
粒径との関係をアモルファス化のためのイオン打込みの
際のシリコンイオンSi+の打込み量をパラメータとし
て示すものであり、例えば打込み量が5xlO15/c
m2の場合には確かに最大粒径を5.0μm以上にする
ことができることが明らかである。しかし、アニールを
開始してから15時間程経過するまではグレインが全く
成長しない。即ち、グレイン成長の核が発生するまでに
15時間もの時間を要してしまう。従って、必然的にア
ニール時間が非常に長くなってしまう。
Figure 3 shows the relationship between the annealing time and the maximum grain size of crystal grains, using the implantation amount of silicon ions Si+ during ion implantation for amorphousization as a parameter. For example, when the implantation amount is 5xlO15 /c
It is clear that in the case of m2, the maximum particle size can certainly be made 5.0 μm or more. However, no grains grow at all until about 15 hours have passed after the start of annealing. That is, it takes as much as 15 hours for grain growth nuclei to occur. Therefore, the annealing time inevitably becomes very long.

尤も、シリコンイオンSi“の打込み量を1゜5X10
15/cm2にした場合にはアニール開始後グレイン成
長が開始するまでの時間は短くなるが、しかし、2.3
μmまで成長すると成長速度が極端に遅くなり、5μm
程度のグレインを得ることは非常に難しい。そして、打
込み量を1014/am2オーダーにするとアニール開
始後直ちにグレイン成長が始まるがすぐに成長かとまり
、グレインの最大粒径を0.1μm以上にすることは不
可能である。
However, the implantation amount of silicon ion Si" is 1゜5X10
15/cm2, the time from the start of annealing to the start of grain growth becomes shorter;
The growth rate becomes extremely slow when it grows to 5 μm.
It is very difficult to obtain such grains. When the implantation amount is on the order of 1014/am2, grain growth starts immediately after the start of annealing, but the growth stops immediately, making it impossible to make the maximum grain size of the grains 0.1 μm or more.

従って、5μmあるいはそれ以上粒径の大きさにグレイ
ンを成長させるためにはしリコンイオンSi”のドーズ
量を1.sx 10157cm2以上、好ましくは5X
1015/cm2以上にしなければならないが、そうし
た場合核発生に15時間もかかってしまい、TPT等の
生産性の向上を図るうえでその時間は看過できなかった
Therefore, in order to grow grains to a grain size of 5 μm or more, the dose of silicon ion Si” should be 1.sx 10157 cm2 or more, preferably 5x
It is necessary to make it 1015/cm2 or more, but in that case, it would take as long as 15 hours for nuclear generation, and this time could not be overlooked when trying to improve the productivity of TPT etc.

本発明はこのような問題点を解決すべく為されたもので
あり、大きな粒径を有する結晶粒を速く得ることができ
るようにすることを目的とするものである。
The present invention has been made to solve these problems, and aims to make it possible to quickly obtain crystal grains having a large grain size.

(E、問題点を解決するための手段) 本発明半導体薄膜の処理方法は上記問題点を解決するた
め、非晶質半導体薄膜にエネルギー線を照射した後加熱
炉中で熱処理を行うことを特徴とするものである。
(E. Means for Solving the Problems) In order to solve the above-mentioned problems, the semiconductor thin film processing method of the present invention is characterized by performing heat treatment in a heating furnace after irradiating the amorphous semiconductor thin film with energy rays. That is.

(F、作用) 本発明半導体薄膜の処理方法によれば、非晶質の半導体
薄膜に対して熱処理する前にエネルギー線を照射するの
でそのエネルギー線の照射によって瞬時に半導体薄膜を
同じ非晶質でも多結晶化直前の非晶質にすることがてき
、その多結晶化直面の非晶質の半導体薄1摸に対して熱
処理を施すことができる。従って、グレインを熱処理開
始直後から成長させることができ、従来グレイン成長の
核を発生するに要した長い時間分熱処理時間を短がくで
き、その分生産性を向上させることかできる。
(F. Effect) According to the method for processing a semiconductor thin film of the present invention, energy rays are irradiated before the amorphous semiconductor thin film is heat-treated. However, it is possible to make it amorphous just before polycrystallization, and heat treatment can be applied to a sample of the amorphous semiconductor thin film facing polycrystallization. Therefore, grains can be grown immediately after the start of heat treatment, the heat treatment time can be shortened by the long time conventionally required to generate grain growth nuclei, and productivity can be improved accordingly.

(G、実施例)[第1図、第2図] 以下、本発明半導体薄膜の処理方法を図示実施例に従っ
て詳細に説明する。
(G, Example) [FIGS. 1 and 2] Hereinafter, the method for processing a semiconductor thin film of the present invention will be explained in detail according to the illustrated embodiment.

第1図は本発明半導体薄膜の処理方法の一つの実施例を
工程順に示すフロー図である。
FIG. 1 is a flowchart showing one embodiment of the semiconductor thin film processing method of the present invention in the order of steps.

(イ)基板上に形成された半導体薄I漠(膜厚800人
)に対してシリコンイオンSi“をイオン打込みするこ
とによりアモルファス化する。シリコンイオンSi+の
イオン打込み量は例えば5xlO157cm2程度であ
る。
(a) The semiconductor thin layer (film thickness: 800 mm) formed on the substrate is made amorphous by implanting silicon ions "Si". The amount of silicon ions Si+ implanted is, for example, about 5xlO157 cm2.

(ロ)次に、エキシマレーザを半導体薄膜に対して照射
する。この照射は例えばsomj/パルス・Cm2の低
エネルギーで行い、モしてレチクル制御により半導体薄
膜のTPT等のセルを形成すべき箇所にのみ局所的に行
う方が良い。但し、チャンネル長、チャンネル幅が長い
場合には線状に照射する。
(b) Next, the semiconductor thin film is irradiated with an excimer laser. It is better to perform this irradiation at a low energy of, for example, somj/pulse/Cm2, and to perform it locally by reticle control only at the portions of the semiconductor thin film where cells such as TPT are to be formed. However, if the channel length or channel width is long, irradiation is performed in a linear manner.

(ハ)その後、例えば600℃あるいはそわより低い温
度の加熱炉によってアニールする。
(c) After that, annealing is performed in a heating furnace at a temperature of, for example, 600° C. or lower than that of warp.

このようにアニールする航にエキシマレーザを半導体薄
膜に照射することによってアモルファスの半導体薄膜を
多結晶化直前のアモルファス状態にすることができ、核
発生に要する時間を略0にすることができる。第2図は
アニール前にエキシマレーザを照射した場合におけるそ
のレーザビームのパルスエネルギーと成長するダレイン
のサイズとの関係を示す関係図であり、パルスエネルギ
ーによってダレインサイズの制御ができることが明らか
である。
By irradiating the semiconductor thin film with an excimer laser during annealing in this manner, the amorphous semiconductor thin film can be brought into an amorphous state immediately before polycrystallization, and the time required for nucleation can be reduced to approximately zero. Figure 2 is a relationship diagram showing the relationship between the pulse energy of the laser beam and the size of the growing dalein when excimer laser is irradiated before annealing, and it is clear that the size of the dalein can be controlled by the pulse energy. .

上述したように核発生に要する時間を略Oにすることが
できるので、同じアニール時間で成長させることのでき
る結□晶粒の大きさを従来よりも大きくすることができ
る。
As described above, since the time required for nucleation can be reduced to approximately 0, the size of the □ crystal grains that can be grown with the same annealing time can be made larger than before.

そして、エキシマレーザをアモルファス半導体薄膜に対
して選択的に照射することによりその選択的に照射され
た部分においてのみダレインを成長させることができる
By selectively irradiating the amorphous semiconductor thin film with an excimer laser, dalein can be grown only in the selectively irradiated portions.

(H,発明の効果) 以上に述べたように、本発明半導体薄膜の処理方法は、
非晶質半導体薄膜にエネルギー線を照射した後加熱炉中
で熱処理を行うことを特徴とする。
(H, Effect of the invention) As described above, the method for processing a semiconductor thin film of the present invention is as follows:
The method is characterized in that the amorphous semiconductor thin film is irradiated with energy rays and then heat treated in a heating furnace.

従って、本発明半導体薄膜の処理方法によれば、エネル
ギー線の照射により非晶質が瞬時に多結晶化直前の非晶
質状態に変化するのでその後の熱処理において処理開始
後すぐに結晶粒の核が発生し、その結晶粒の成長が迅速
に進むので大きな粒径の結晶粒を有する多結晶半導体薄
膜を迅速に得ることができる。
Therefore, according to the method for processing a semiconductor thin film of the present invention, the amorphous state instantly changes to the amorphous state immediately before polycrystalization by irradiation with energy rays, so that in the subsequent heat treatment, the nuclei of crystal grains immediately after the start of the treatment. is generated and the growth of the crystal grains proceeds rapidly, so that a polycrystalline semiconductor thin film having crystal grains with a large grain size can be quickly obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明半導体薄膜の処理方法の一つ
の実施例を説明するためのもので、第1図は処理方法を
工程順に示すフロー図、第2図はエネルギー線の照射エ
ネルギーと成長する結晶粒のサイズとの閏、係を示す関
係図、第3図は発明が解決しようとする問題点を説明す
るためのアニール時間と結晶粒の粒径との関係図である
。 実力tfIJぞ工程j1肩に示すフロー図第1図 二工亨ルぞ−(ml7cm”) エネルギーとグ°レインサイズp関係図第2図
1 and 2 are for explaining one embodiment of the method for processing a semiconductor thin film of the present invention. FIG. 1 is a flow diagram showing the processing method step by step, and FIG. FIG. 3 is a diagram showing the relationship between the annealing time and the grain size of the crystal grain to explain the problem to be solved by the invention. Flowchart shown on the shoulder of tf IJ process j 1 Figure 1 Flow diagram shown on the shoulder 2 Process (ml 7 cm) Energy and grain size p relationship diagram Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質半導体薄膜にエネルギー線を照射した後加
熱炉中で熱処理を行う ことを特徴とする半導体薄膜の処理方法
(1) A method for processing a semiconductor thin film, which comprises irradiating an amorphous semiconductor thin film with energy rays and then performing heat treatment in a heating furnace.
JP16610586A 1986-07-15 1986-07-15 Treating method for semiconductor thin film Pending JPS6321818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16610586A JPS6321818A (en) 1986-07-15 1986-07-15 Treating method for semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16610586A JPS6321818A (en) 1986-07-15 1986-07-15 Treating method for semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS6321818A true JPS6321818A (en) 1988-01-29

Family

ID=15825106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16610586A Pending JPS6321818A (en) 1986-07-15 1986-07-15 Treating method for semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS6321818A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178119A (en) * 1984-09-25 1986-04-21 Sony Corp Manufacture of semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178119A (en) * 1984-09-25 1986-04-21 Sony Corp Manufacture of semiconductor

Similar Documents

Publication Publication Date Title
EP1402567B1 (en) Film or layer made of semi-conductive material and method for producing said film or layer
JPS63142655A (en) Manufacture of device containing buried sio2 layer
JPS6046022A (en) Pretreating method of ion implanted substrate
JPS6321818A (en) Treating method for semiconductor thin film
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JPH0319218A (en) Formation process and device of soi substrate
JPH0234932A (en) Gettering method for semiconductor wafer
JPH023539B2 (en)
JPS6151930A (en) Manufacture of semiconductor device
JPS5897835A (en) Semiconductor substrate and manufacture thereof
JPS62114218A (en) Annealing method for compound semiconductor
JPH03250621A (en) Manufacture of semiconductor film
JPS60164316A (en) Formation of semiconductor thin film
JPS6122623A (en) Manufacture of semiconductor element
JPH04175300A (en) Heat treatment of silicon single crystal
JPH03293718A (en) Processing method for silicon single crystalline substrate
JPS5892227A (en) Gettering for crystal defect
JPH0766149A (en) Production of silicon wafer
JPS63198335A (en) Manufacture of silicon substrate
JPS62181421A (en) Manufacture of silicon epitaxial wafer
JPS62177930A (en) High speed oxidation method for semiconductor substrate
JPS6171636A (en) Silicon etching method
JPH0645270A (en) Method for heat-treating semiconductor substrate
JPH09129570A (en) Manufacture of semiconductor device
JPS63278217A (en) Manufacture of semiconductor substrate