JPH0319218A - Formation process and device of soi substrate - Google Patents

Formation process and device of soi substrate

Info

Publication number
JPH0319218A
JPH0319218A JP15432689A JP15432689A JPH0319218A JP H0319218 A JPH0319218 A JP H0319218A JP 15432689 A JP15432689 A JP 15432689A JP 15432689 A JP15432689 A JP 15432689A JP H0319218 A JPH0319218 A JP H0319218A
Authority
JP
Japan
Prior art keywords
oxygen
substrate
silicon
layer
soi substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15432689A
Other languages
Japanese (ja)
Other versions
JPH088250B2 (en
Inventor
Toru Tatsumi
徹 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15432689A priority Critical patent/JPH088250B2/en
Publication of JPH0319218A publication Critical patent/JPH0319218A/en
Publication of JPH088250B2 publication Critical patent/JPH088250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a silicon single crystal in high quality on a silicon oxide film in precision thickness by a method wherein an electron gun type evaporator is provided while a substrate is injected with oxygen molecular beams from a plasma ion source under irradiation with silicon molecular beams to be heated later. CONSTITUTION:An MSE device provided with an electron gun type Si evaporator 12, ECR plasma ion sources 13, 14, 15 is used. An n type Si substrate 3 used as a specimen wafer is RCA cleaned up and then placed in a formation chamber 16; an alpha-Si deposited in 10Angstrom thick is cleaned up at 800 deg.C for one minute; the substrate temperature is lowered at 700 deg.C to form an SOI substrate to be irradiated with oxygen ion 6 in 1muA/cm<2> from an ion source and simultaneously irradiated with Si molecular beams 5 in 1.0Angstrom /S from an evaporator 12. After the film thickness of SiO2 reaches the specific value, the oxygen ion irradiation is stopped; Si is MBE deposited to perform the heat treatment in vacuum at 800 deg.C for 30 minutes so that an SOI substrate equal to that formed by using a thermal oxide film may be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は分子線成長法をもちいたSOI(Silico
n onInsulator)基板の作成方法に関する
Detailed Description of the Invention (Industrial Application Field) The present invention is an SOI (Silico
The present invention relates to a method of manufacturing a (onInsulator) substrate.

(従来の技術) SOI技術は絶縁性基板上にSiの単結晶を形成する技
術で、近年精力的に研究が進められている。SOI基板
を形成する方法には 1)レーザービームもしくは電子ビームでSiOZ上に
形戊したポリシリコンを溶融し再結晶化させる方法、 2)気相や液相成長を用いてシード部からSiO2上へ
横方向成長させる方法、(ELO)、 3)酸素イオンをシリコン単結晶基板に注入し、表面単
結晶層の下に酸素高濃度層を作り、その後の加熱によっ
て酸素高濃度層をSiO2層に変化させる方−法(SI
MOX)、 等が提案されている。それぞれの方法には長所と短所が
あるが、この中でSIMOXは、スループットが高く、
もともと単結晶基板を用いるために結晶性も優れており
、一層のSOI層を作る上で有望な方法である。SIM
OXでは上層に十分な厚さのSi単結晶層を確保し、し
かも下層に厚いSiO2層を形戒するため、100ke
V以上の高速イオンを多量に注入しなければならない。
(Prior Art) SOI technology is a technology for forming a single crystal of Si on an insulating substrate, and has been actively researched in recent years. Methods for forming an SOI substrate include 1) melting and recrystallizing polysilicon formed on SiOZ with a laser beam or electron beam, and 2) growing polysilicon from a seed part onto SiO2 using vapor phase or liquid phase growth. Lateral growth method (ELO), 3) Oxygen ions are implanted into a silicon single crystal substrate to create a high oxygen concentration layer under the surface single crystal layer, and then heating changes the oxygen high concentration layer to a SiO2 layer. method (SI
MOX), etc. have been proposed. Each method has advantages and disadvantages, but SIMOX has high throughput and
Since it originally uses a single crystal substrate, it has excellent crystallinity and is a promising method for producing a single SOI layer. SIM
In OX, in order to ensure a sufficiently thick Si single crystal layer on the upper layer and a thick SiO2 layer on the lower layer, the 100ke
A large amount of high-velocity ions of V or higher must be implanted.

注入直後の酸素のプロファイルは第3図a)のようにな
る。酸素の分布は、高速のイオン注入のためガウス分布
に近いものになる。
The oxygen profile immediately after implantation is as shown in Figure 3a). The oxygen distribution becomes close to a Gaussian distribution due to high-speed ion implantation.

この後、高温の熱処理を行うと、SiO2が形威され、
第3図b)に示すように酸素の分布も急峻となる。しか
し、この時の熱処理温度は酸素を拡散させなければなら
ないので高く、1400°CとSiの融点に近い。この
様な高温ではSi中の不純物は全て拡散してしまうため
、8IMOXの技術はデバイスプロセスの始めにしか使
えない。また、酸素を長い距離拡散させて再分布させる
ため、Si単結晶中にはSiO2のクラスター、−Si
O中にはSiのクラスターを生じや2 すくこれが欠陥の原因となっている。
After this, when high-temperature heat treatment is performed, SiO2 is formed and
As shown in Figure 3b), the oxygen distribution also becomes steep. However, the heat treatment temperature at this time is high because it is necessary to diffuse oxygen, and is 1400°C, which is close to the melting point of Si. At such high temperatures, all impurities in Si diffuse, so 8IMOX technology can only be used at the beginning of the device process. In addition, in order to diffuse and redistribute oxygen over long distances, Si single crystals contain SiO2 clusters, -Si
Clusters of Si are likely to form in the O, and this is the cause of defects.

(発明が解決しようとする問題点) 本発明の目的は、この様な従来の欠点を除去せしめて、
厚さを精密に制御されたシリコン酸化膜上に、厚さを精
密に制御された良質のシリコン単結晶を低温で作成する
方法を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate such conventional drawbacks,
The object of the present invention is to provide a method for producing high-quality silicon single crystals with precisely controlled thickness on a silicon oxide film with precisely controlled thickness at low temperatures.

(問題点を解決するための手段) 本発明は、真空槽内にシリコン単結晶を表面に持つ基板
を配し、この基板表面を清浄化した後に、シリコン分子
線を照射しながら、酸素イオンもしくは酸素イオンを含
む酸素分子線を同時に注入することにより酸素を高濃度
に含んだシリコン層からなる酸素高濃度層を形戒する工
程と、シリコン分子線を照躬することによりシリコン層
を形戒する工程と、加熱によって前記酸素高濃度層を酸
化シリコン層に変化させる工程とを備えてなることを特
徴とするSOI基板の作戊方法であり、分子線或長装置
において、基板に電位をかけることができ、シリコン分
子線発生用として電子銃式蒸着装置と酸素イオン発生用
としてプラズマイオン源をそなえてなることを特徴とす
るSOI基板の作成装置である。
(Means for Solving the Problems) The present invention places a substrate having a silicon single crystal on its surface in a vacuum chamber, cleans the surface of the substrate, and then irradiates it with a silicon molecular beam while irradiating it with oxygen ions or A process of forming an oxygen-rich layer consisting of a silicon layer containing a high concentration of oxygen by simultaneously implanting an oxygen molecular beam containing oxygen ions, and forming a silicon layer by comparing the silicon molecular beam. and a step of changing the high oxygen concentration layer into a silicon oxide layer by heating. This SOI substrate manufacturing apparatus is characterized in that it is equipped with an electron gun type evaporation device for generating silicon molecular beams and a plasma ion source for generating oxygen ions.

(作用) 初めに、本発明の原理について説明する。(effect) First, the principle of the present invention will be explained.

SIMOX技術のにおいて、イオン注入後に高温、長時
間の熱処理を必要とするのは第3図に示した様に、高速
で注入された酸素イオンの広がったプロファイルを再分
布させSiと8102の界面を急峻するためと考えられ
る。
SIMOX technology requires high-temperature, long-term heat treatment after ion implantation, as shown in Figure 3, which redistributes the wide profile of oxygen ions implanted at high speed and closes the interface between Si and 8102. This is thought to be due to the steepness.

通常のSiの熱酸化が800〜900°Cで可能である
ことから考えて、注入された格子間酸素をSiO2に変
えるためには、800〜900°Cのアニールで十分で
あると考えられる。従って、SIMOX技術において、
イオン注入後の酸素プロファイルが、はじめから第2図
b)に示すように急峻であれば、1400°CというS
iの融点に近い高温アニールを行わなくてもSOI基板
の形戒が可能であると考えられる。
Considering that normal thermal oxidation of Si is possible at 800 to 900°C, annealing at 800 to 900°C is considered to be sufficient to convert the implanted interstitial oxygen to SiO2. Therefore, in SIMOX technology,
If the oxygen profile after ion implantation is steep from the beginning as shown in Figure 2b), the S
It is thought that it is possible to form an SOI substrate without performing high temperature annealing close to the melting point of i.

そこで、発明者は、注入後の酸素のプロファイルの広が
りを少なくするため、酸素イオンの加速を1〜5keV
に下げ、超高真空中で清浄化したSi単結晶表面に注入
したところ酸素イオンは数十A結晶内入って止まり、厚
さ数十Aの最表面層は単結晶の状態であり、しかもSi
分子線をこの裏面に酸素イオンと同時に照射すると、最
表面層は単結晶の状態で酸素高濃度注入層の厚さを増加
させることが可能なことを見出した。これは次のような
原理に基ずく。固体中に打込まれた酸素イオンは基板原
子核との衝突及び価電子との相互作用によって運動エネ
ルギーを失い、固体内に静止する。これら2つの減速機
構は独立の現象として扱って良く、またそれぞれの阻止
能は入射エネルギーが一定であれば変化しない。従って
、表面から、イオンが静止するまでの平均的な深さ(P
rojected range)は酸素イオンの加速が
一定であれば変化しない。そこで、酸素イオンを注入し
なからSi分子線を照射すると、最表面は単結晶なので
飛来したSi分子はエビタキシャル或長し、最上層のS
i単結晶層の厚さが増加する。
Therefore, in order to reduce the spread of the oxygen profile after implantation, the inventor accelerated the oxygen ions by 1 to 5 keV.
When the oxygen ions were implanted into the surface of a Si single crystal cleaned in an ultra-high vacuum, the oxygen ions entered the crystal at several tens of amps and stopped.
It has been found that by irradiating the back surface with molecular beams and oxygen ions at the same time, it is possible to increase the thickness of the high-oxygen-concentration implanted layer while leaving the outermost layer in a single-crystal state. This is based on the following principle. Oxygen ions implanted into the solid lose kinetic energy through collision with substrate nuclei and interaction with valence electrons, and come to rest within the solid. These two speed reduction mechanisms can be treated as independent phenomena, and their respective stopping powers do not change as long as the incident energy is constant. Therefore, the average depth (P
The projected range does not change if the acceleration of oxygen ions is constant. Therefore, if we irradiate a Si molecular beam without implanting oxygen ions, since the outermost surface is a single crystal, the incoming Si molecules become ebitaxial and elongate, and the S of the uppermost layer becomes
i The thickness of the single crystal layer increases.

このとき、Si表面にはイオン源から放出される中性の
酸素分子も飛来するが、成長温度が700’C以上であ
ればエビタキシャル層中には取り込まれない。
At this time, neutral oxygen molecules released from the ion source also fly to the Si surface, but if the growth temperature is 700'C or higher, they are not incorporated into the epitaxial layer.

酸素イオンのProjected rangeは一定な
ので酸素高濃度層も表面方向に威長じて行く(第1図a
)及びb))。このようにして形成された酸素高濃度層
は、その厚さが厚くなってもSi単結晶層との界面での
酸素プロファイルの広がりが、加速1〜5keVで注入
した時と同じで極めて急峻である。また、酸素高濃度層
の厚さが所定の厚さになったあとは、酸素イオンの供給
を止めれば、最表面単結晶層のエビタキシャル情報を引
き継いで、酸素の全く入らないSi単結晶層をMBE或
長ずることができる(第1図e))。以上のようにして
形威された酸素高濃度注入層を持った基板を800°C
で加熱すると酸素高濃度注入層はSZO2に変化し、通
常のSIMOX技術と比較して極めて低温でSOI基板
が形成できる(第1図d))。
Since the projected range of oxygen ions is constant, the oxygen-rich layer also grows toward the surface (Figure 1a).
) and b)). Even if the high oxygen concentration layer formed in this way becomes thicker, the spread of the oxygen profile at the interface with the Si single crystal layer is extremely steep, the same as when implanted at an acceleration of 1 to 5 keV. be. In addition, after the oxygen-rich layer reaches a predetermined thickness, if the supply of oxygen ions is stopped, the epitaxial information of the outermost single-crystal layer is inherited, and a Si single-crystal layer containing no oxygen is formed. MBE can be lengthened to some extent (Fig. 1e)). The substrate with the high oxygen concentration implanted layer formed as described above was heated to 800°C.
When heated, the oxygen-rich injection layer changes to SZO2, and an SOI substrate can be formed at an extremely low temperature compared to normal SIMOX technology (Fig. 1d)).

次に、発明者は以上のような原理に基づたSOI基板の
形戒を行うための装置を考案した。第2図に示すように
本装置は真空槽内にSi分子線或長用のEガン蒸着器と
酸素イオン形戒用のECRイオン源を備え、Si基板に
高圧を印加できることが特徴である。
Next, the inventor devised a device for shaping an SOI substrate based on the above principle. As shown in FIG. 2, this device is equipped with an E-gun evaporator for elongating Si molecular beams and an ECR ion source for elongating oxygen ions in a vacuum chamber, and is characterized in that it can apply high pressure to the Si substrate.

ECRイオン源は10  Torrの酸素雰囲気中でも
プラズマを発生させることができ、またイオン電流量も
多い。この様に高真空中でもイオンを発生できるため、
Siのエビタキシャル成長中に同時に酸素イオンの照射
が可能となった。また、イオンの加速はSi基板にプラ
スの高圧を印加することによって行う。この様にすると
、ECRイオン源からの酸素イオンをほとんどとすべて
基板に集めることができ効率的である。また、表面近傍
では電気力線は表面に垂直方向に揃い、イオンは表面に
垂直に入射する。基板として表面の面方位が正確にチャ
ンネノング方位と一致しているウエハーを使えば、入射
酸素イオンは基板内でチャンネリングを起こし、最表面
単結晶層へのダメージを低減することができる。
The ECR ion source can generate plasma even in an oxygen atmosphere of 10 Torr, and has a large amount of ion current. In this way, ions can be generated even in high vacuum,
It became possible to simultaneously irradiate oxygen ions during the epitaxial growth of Si. Further, the ions are accelerated by applying a positive high voltage to the Si substrate. In this way, almost all the oxygen ions from the ECR ion source can be collected on the substrate, which is efficient. Further, near the surface, the electric lines of force are aligned perpendicular to the surface, and ions are incident perpendicularly to the surface. If a wafer whose surface plane orientation accurately matches the Channel-Nong orientation is used as the substrate, incident oxygen ions will channel within the substrate, reducing damage to the outermost single crystal layer.

(実施例) 発明の実施例について具体的に説明する。実験は40c
cの電子銃式Si蒸着器とECRプラズマイオン源を備
えたMBE装置を用いて行った。試料ウエハーには4イ
ンチn型Si(100)0.01〜0.02Ωcm基板
を用いた。試料ウエハーはRCA洗浄後、形戊室内に搬
送しIOAのa−Siを堆積後、800°01分間の清
浄化を行い、清浄面を出した。基板温度をSOI基板形
戒温度700°Cに下げた後、ECRイオン源から電流
密度1pA/cmの酸素イオンを基板に照射し、同時に
電子銃式Si蒸着器から、1.0A/sのSi分子線を
照射した。
(Example) Examples of the invention will be specifically described. The experiment is 40c
This was carried out using an MBE apparatus equipped with an electron gun type Si evaporator and an ECR plasma ion source. A 4-inch n-type Si (100) 0.01-0.02 Ωcm substrate was used as a sample wafer. After the sample wafer was cleaned by RCA, it was transported into the molding chamber, IOA a-Si was deposited thereon, and the sample wafer was cleaned for 800° 01 minutes to expose the clean surface. After lowering the substrate temperature to the SOI substrate temperature of 700°C, the substrate was irradiated with oxygen ions at a current density of 1 pA/cm from an ECR ion source, and at the same time, Si was irradiated at a current density of 1.0 A/s from an electron gun type Si evaporator. Irradiated with molecular beams.

このとき、基板にプラス5keVの電圧を印加した。At this time, a voltage of plus 5 keV was applied to the substrate.

形戒室内の酸素分圧はI X 10  Torrであっ
た。St02の膜厚が所定の値に達したところで酸素イ
オンの照射をやめ、Siの分子線エビタキシャル威長を
行った。この後、基板温度を8000C上げ、30分間
の真空中熱処理を行った。
The oxygen partial pressure inside the chamber was I x 10 Torr. When the film thickness of St02 reached a predetermined value, irradiation with oxygen ions was stopped, and Si molecular beam epitaxial growth was performed. Thereafter, the substrate temperature was raised to 8000C and heat treatment was performed in vacuum for 30 minutes.

第4図はIOOOAの酸素高濃度層と、その上に100
0人のSi単結晶層を或長じた基板中の酸素濃度の深さ
分布をSIMSにより調べたものである。高温熱処理を
行っていないにもかかわらず、プロファイルは極めて急
峻である。遷移領域幅を数十Aであった。酸素のプロフ
ァイルは800’C30分の熱処理後もほとんど変化し
なかった。第5図a)、b)は第4図に示したサンプル
の上層シリコン層と下層基板との間のリーク電流を80
0°Cの熱処理を行わないものと行ったもので比較した
ものである。熱処理を行わないものではリーク電流が多
いが、行ったものでは少なく、熱酸化膜を用いその上に
形威したボリシリコンをレーザーアニールによって再結
晶化させたものとほぼ同じレベルであった。以上の結果
より、後の熱処理によって酸素高濃度層はSiOに2 変化し、熱酸化膜を使ったものと遜色のないSOI基板
が形威されていることが分かった。また熱処理温度は6
00°C以上であれば、発明の効果が得られる。ただし
再現性を考慮すれば8006C以上で熱処理することが
望ましいが、熱処理と同時に光照射などを行なえば、低
温熱処理でも再現性の良い結果が得られる。熱処理雰囲
気も水素、窒素など通常の熱処理の条件であれば良い。
Figure 4 shows the high oxygen concentration layer of IOOOA and the 100% oxygen concentration layer on top of it.
The depth distribution of oxygen concentration in a substrate with an elongated Si single crystal layer was investigated by SIMS. The profile is extremely steep even though no high-temperature heat treatment was performed. The width of the transition region was several tens of amps. The oxygen profile hardly changed after heat treatment at 800'C for 30 minutes. Figure 5 a) and b) show the leakage current between the upper silicon layer and the lower substrate of the sample shown in Figure 4 at 80%.
A comparison was made between those without and those subjected to heat treatment at 0°C. The leakage current was high in the case without heat treatment, but it was small in the case where it was done, and it was about the same level as in the case of using a thermal oxide film and recrystallizing the polysilicon formed thereon by laser annealing. From the above results, it was found that the oxygen-rich layer was converted to SiO2 by the subsequent heat treatment, and an SOI substrate comparable to that using a thermal oxide film was formed. Also, the heat treatment temperature is 6
If the temperature is 00°C or higher, the effects of the invention can be obtained. However, in consideration of reproducibility, it is desirable to perform heat treatment at 8006 C or higher, but if heat treatment is performed at the same time as light irradiation, results with good reproducibility can be obtained even with low-temperature heat treatment. The heat treatment atmosphere may be any normal heat treatment conditions such as hydrogen or nitrogen.

なお、本実施例ではシリコンウェハーを対象トしたが、
本発明の方法は表面にのみシリコンが存在するSOS(
Silicon on Sapphire)基板や更に
一般にSOI(Silicon on Insulat
or)基板等にも当然適用できる。
Note that in this example, silicon wafers were targeted;
The method of the present invention uses SOS (
Silicon on Sapphire) substrates and more generally SOI (Silicon on Insulat)
or) Of course, it can also be applied to substrates, etc.

(発明の効果) 以上、詳細に述べた通り本発明によれば酸化膜形戒の目
的でSi中に注入する酸素の分布を急峻なものとするこ
とが注入層すなわち酸素高濃度層の厚さによらずできる
。また酸素高濃度層とこの上に形威されたシリコンとの
界面も急峻となる。したがって従来の熱処理工程で必要
とされた界面を急峻にするためのプロセスは必要ない。
(Effects of the Invention) As described above in detail, according to the present invention, the thickness of the injection layer, that is, the high oxygen concentration layer, can be adjusted to steepen the distribution of oxygen injected into Si for the purpose of forming an oxide film. You can do it regardless. Furthermore, the interface between the high oxygen concentration layer and the silicon formed thereon also becomes steep. Therefore, there is no need for a process to make the interface steep, which is required in the conventional heat treatment process.

このため酸素高濃度層を酸化膜に変化させるための熱処
理は低温で行うことが可能となる。厚さを精密に制御さ
れたシリコン酸化膜上に、厚さを精密に制御された良質
のシリコン単結晶を低温で作成することができる。
Therefore, the heat treatment for changing the high oxygen concentration layer into an oxide film can be performed at a low temperature. High-quality silicon single crystals with precisely controlled thickness can be created at low temperatures on silicon oxide films with precisely controlled thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理の概念図、第2図は、本発明の
装置の概念図、第3図は、従来例を示す図、第4図は、
実施例で成長したSOI基板中の酸素濃度の深さ分布を
示す図、第5図は、上層シリコン層と下層基板との間の
リーク電流を示す図である。
FIG. 1 is a conceptual diagram of the principle of the present invention, FIG. 2 is a conceptual diagram of the apparatus of the present invention, FIG. 3 is a diagram showing a conventional example, and FIG.
FIG. 5 is a diagram showing the depth distribution of oxygen concentration in the SOI substrate grown in the example, and is a diagram showing the leakage current between the upper silicon layer and the lower substrate.

Claims (1)

【特許請求の範囲】 1、真空槽内にシリコン単結晶を表面に持つ基板を配し
、この基板表面を清浄化した後に、シリコン分子線を照
射しながら、酸素イオンもしくは酸素イオンを含む酸素
分子線を同時に照射することにより酸素を高濃度に含ん
だシリコン層から成る酸素高濃度層を形成する工程と、
シリコン分子線を前記酸素高濃度層上に照射することに
よりシリコン層を形成する工程と、加熱によって前記酸
素高濃度層を酸化シリコン層に変化させる工程とを備え
てなることを特徴とするSOI基板の作成方法。 2、分子線成長可能な真空槽と前記真空槽内に配置され
基板に電位をかけるための手段と、前記真空槽に連結さ
れたシリコン分子線発生用電子銃式蒸着装置と酸素イオ
ン発生用プラズマイオン源とを備えてなることを特徴と
するSOI基板の作成装置。
[Claims] 1. A substrate having a silicon single crystal on its surface is placed in a vacuum chamber, and after cleaning the surface of the substrate, oxygen ions or oxygen molecules containing oxygen ions are irradiated with a silicon molecular beam. forming a high oxygen concentration layer consisting of a silicon layer containing high concentration of oxygen by simultaneously irradiating the
An SOI substrate comprising the steps of: forming a silicon layer by irradiating the high oxygen concentration layer with a silicon molecular beam; and converting the high oxygen concentration layer into a silicon oxide layer by heating. How to create. 2. A vacuum chamber capable of molecular beam growth, a means disposed in the vacuum chamber for applying a potential to a substrate, an electron gun type evaporation device for generating silicon molecular beams, and a plasma for generating oxygen ions, connected to the vacuum chamber. 1. An SOI substrate manufacturing apparatus, comprising: an ion source.
JP15432689A 1989-06-15 1989-06-15 Method and apparatus for making SOI substrate Expired - Fee Related JPH088250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15432689A JPH088250B2 (en) 1989-06-15 1989-06-15 Method and apparatus for making SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15432689A JPH088250B2 (en) 1989-06-15 1989-06-15 Method and apparatus for making SOI substrate

Publications (2)

Publication Number Publication Date
JPH0319218A true JPH0319218A (en) 1991-01-28
JPH088250B2 JPH088250B2 (en) 1996-01-29

Family

ID=15581699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15432689A Expired - Fee Related JPH088250B2 (en) 1989-06-15 1989-06-15 Method and apparatus for making SOI substrate

Country Status (1)

Country Link
JP (1) JPH088250B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661043A (en) * 1994-07-25 1997-08-26 Rissman; Paul Forming a buried insulator layer using plasma source ion implantation
US6153524A (en) * 1997-07-29 2000-11-28 Silicon Genesis Corporation Cluster tool method using plasma immersion ion implantation
US6274459B1 (en) 1998-02-17 2001-08-14 Silicon Genesis Corporation Method for non mass selected ion implant profile control
JP2007317578A (en) * 2006-05-27 2007-12-06 Sanyo Electric Co Ltd Battery pack
JP2007317579A (en) * 2006-05-27 2007-12-06 Sanyo Electric Co Ltd Battery pack
KR101067798B1 (en) * 2008-03-06 2011-09-27 서민정 Feminine urinary aid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661043A (en) * 1994-07-25 1997-08-26 Rissman; Paul Forming a buried insulator layer using plasma source ion implantation
US6153524A (en) * 1997-07-29 2000-11-28 Silicon Genesis Corporation Cluster tool method using plasma immersion ion implantation
US6207005B1 (en) 1997-07-29 2001-03-27 Silicon Genesis Corporation Cluster tool apparatus using plasma immersion ion implantation
US6321134B1 (en) 1997-07-29 2001-11-20 Silicon Genesis Corporation Clustertool system software using plasma immersion ion implantation
US6274459B1 (en) 1998-02-17 2001-08-14 Silicon Genesis Corporation Method for non mass selected ion implant profile control
JP2007317578A (en) * 2006-05-27 2007-12-06 Sanyo Electric Co Ltd Battery pack
JP2007317579A (en) * 2006-05-27 2007-12-06 Sanyo Electric Co Ltd Battery pack
KR101067798B1 (en) * 2008-03-06 2011-09-27 서민정 Feminine urinary aid

Also Published As

Publication number Publication date
JPH088250B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US4659392A (en) Selective area double epitaxial process for fabricating silicon-on-insulator structures for use with MOS devices and integrated circuits
US4177084A (en) Method for producing a low defect layer of silicon-on-sapphire wafer
JPH0629320A (en) Manufacture of thin film transistor
JP3080867B2 (en) Method for manufacturing SOI substrate
JPH0395922A (en) Forming method for thin semiconductor film
JPH0319218A (en) Formation process and device of soi substrate
JPH03108716A (en) Heat treating method for semiconductor integrated circuit device
KR101503000B1 (en) A Method of fabricating strain-relaxed Si-Ge buffer layer and Si-Ge buffer layer fabricated thereby
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JPH0479372A (en) Manufacture of semiconductor substrate
JPH05213695A (en) Method for depositing thin diamond film
JP2861617B2 (en) Manufacturing method of LSI substrate
JP2000031079A (en) Production of soi substrate
White et al. The role of implant temperature in the formation of thin buried oxide layers
JPH0361335B2 (en)
KR20010038202A (en) Method of low temperature growth of a semiconductor film
JPH0810669B2 (en) Method of forming SOI film
JPH04242958A (en) Manufacture of semiconductor device
JP3291149B2 (en) Method for producing crystalline thin film
JP3147360B2 (en) Polysilicon film forming method
JPH10256153A (en) Method for converting amorphous si layer to single crystal at low temperature
JPS59228713A (en) Manufacture of semiconductor device
JP2023138469A (en) Process of processing wafer of 4h-sic material to form 3c-sic layer in direct contact with 4h-sic material
JPH08102532A (en) Manufacture of ion implantation substrate
JPS6126212A (en) Formation of p-n junction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees