JPH04276627A - Semiconductor device production method - Google Patents

Semiconductor device production method

Info

Publication number
JPH04276627A
JPH04276627A JP3038676A JP3867691A JPH04276627A JP H04276627 A JPH04276627 A JP H04276627A JP 3038676 A JP3038676 A JP 3038676A JP 3867691 A JP3867691 A JP 3867691A JP H04276627 A JPH04276627 A JP H04276627A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
impurity
oxygen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3038676A
Other languages
Japanese (ja)
Other versions
JP2539296B2 (en
Inventor
Yoshimi Shirakawa
良美 白川
Hiroshi Kaneda
寛 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3038676A priority Critical patent/JP2539296B2/en
Priority to EP92103604A priority patent/EP0502471A3/en
Priority to US07/846,061 priority patent/US5286658A/en
Priority to KR1019920003653A priority patent/KR960000952B1/en
Publication of JPH04276627A publication Critical patent/JPH04276627A/en
Application granted granted Critical
Publication of JP2539296B2 publication Critical patent/JP2539296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve characteristics by conducting heat treatment on silicon crystals which contain impurity carbon at a temperature by which the concentration of C-O complexes, which are the core for oxygen deposition, reach a specified value and then conducting core growth heat treatment. CONSTITUTION:Heat treatment is conducted for 1-4 hours at a heat treatment temperature of 950-1250 deg.C on silicon crystals which have an impurity carbon concentration of 0.5ppm or higher, but are below the solid solubility limit in order to form defect-free layers. Then heat treatment is conducted for 1-24 hours at a heat treatment temperature of 350-600 deg.C on these defect silicon crystals with defect-free layers so that compound defects of impurity oxygen and impurity carbon are formed. After that the temperature of these silicon crystals in which compound defects are formed is raised to 900-1,250 deg.C at a temperature speed of 0.2-3.0 deg.C/min., heat treatment is conducted, and intrinsic getterings formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置の製造方法
、特に、シリコン結晶基板のイントリンシックゲッタリ
ング(Intrinsic Gettering )熱
処理方法(以下、IG熱処理方法と云う。)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an intrinsic gettering heat treatment method (hereinafter referred to as an IG heat treatment method) for a silicon crystal substrate.

【0002】半導体装置に使用されるシリコン結晶は過
飽和の不純物酸素を含んでおり、この結晶に熱処理を施
すと酸素がシリコンの酸化物として析出する。この析出
物による欠陥が、結晶に混入した金属不純物等をゲッタ
リングすることはよく知られており、この作用は実際の
半導体装置の製造に積極的に利用されている。反面、析
出物が素子領域に発生すると素子特性を劣化させる原因
になる。
Silicon crystals used in semiconductor devices contain supersaturated impurity oxygen, and when this crystal is subjected to heat treatment, oxygen precipitates as silicon oxide. It is well known that defects caused by these precipitates getter metal impurities mixed into the crystal, and this effect is actively utilized in the manufacture of actual semiconductor devices. On the other hand, if precipitates are generated in the device region, they cause deterioration of device characteristics.

【0003】よって、シリコン結晶基板中の不純物酸素
の析出する位置及び速度を精度よく制御するIG熱処理
方法の確立が重要である。
Therefore, it is important to establish an IG heat treatment method that accurately controls the position and speed at which impurity oxygen is deposited in a silicon crystal substrate.

【0004】0004

【従来の技術】シリコン結晶中の不純物酸素の析出する
速度及び量は、その結晶中に不純物炭素が存在すると促
進されることは知られており、この炭素の反応を利用す
れば低酸素濃度のシリコン結晶中の不純物酸素の析出が
容易になる筈である。
[Prior Art] It is known that the rate and amount of impurity oxygen precipitated in a silicon crystal is accelerated when impurity carbon exists in the crystal. This should facilitate the precipitation of impurity oxygen in the silicon crystal.

【0005】ところが、不純物酸素の析出のメカニズム
がこれまで明らかでなかったゝめ、IG熱処理条件に不
純物炭素の影響を正確に考慮に入れることができず、不
純物炭素を含むシリコン結晶のIG熱処理方法は確立さ
れていなかった。
However, since the mechanism of precipitation of impurity oxygen has not been clarified until now, it has not been possible to accurately take into account the influence of impurity carbon in the IG heat treatment conditions, and the IG heat treatment method for silicon crystals containing impurity carbon has not been developed. had not been established.

【0006】図5に従来のIG熱処理工程を示す。先ず
、1000℃以上、例えば1100℃の温度をもって1
.5時間熱処理を実行して無欠陥層(Denuded 
Zone)を形成し、次に、650〜800℃、例えば
700℃の温度をもって4時間熱処理を実行して酸素析
出の核を形成した後、再び1100℃の温度に昇温して
酸素析出核を成長・析出させている。
FIG. 5 shows a conventional IG heat treatment process. First, at a temperature of 1000°C or higher, for example 1100°C,
.. Heat treatment was performed for 5 hours to form a defect-free layer (Denuded layer).
Next, heat treatment is performed at a temperature of 650 to 800°C, for example, 700°C for 4 hours to form oxygen precipitation nuclei, and then the temperature is raised to 1100°C again to form oxygen precipitation nuclei. It grows and precipitates.

【0007】[0007]

【発明が解決しようとする課題】不純物炭素を含むシリ
コン結晶に熱処理を施すと、不純物酸素(Oi)は不純
物炭素(Cs)に接近してC−O複合体欠陥を形成し、
これが酸素析出核となるが、本発明の発明者は、650
〜800℃の温度をもって熱処理を実行すると、このC
−O複合体欠陥は解離する方向に反応が進み、C−O複
合体濃度が減少することを見出した。以下にこの実験内
容を説明する。
[Problems to be Solved by the Invention] When a silicon crystal containing impurity carbon is heat-treated, impurity oxygen (Oi) approaches impurity carbon (Cs) and forms C-O complex defects,
This becomes the oxygen precipitation nucleus, but the inventor of the present invention
When heat treatment is performed at a temperature of ~800°C, this C
It was found that the reaction proceeds in the direction of dissociation of the -O complex defect, and the concentration of the C-O complex decreases. The details of this experiment will be explained below.

【0008】図3は、不純物酸素(Oi)濃度が15p
pm であり、不純物炭素(Cs)濃度が6ppm で
あるシリコン結晶に450〜800℃の温度をもって熱
処理を施した場合の熱処理時間とC−O複合体濃度との
関係を、熱処理温度をパラメータとして求めたグラフで
ある。C−O複合体濃度は熱処理温度が600℃以下の
場合には熱処理によって増加し、600℃以上の場合に
は逆に減少し、比較的に短期間で平衡状態に達する。な
お、この平衡状態のC−O複合体濃度はシリコン結晶中
の不純物酸素(Oi)濃度と不純物炭素(Cs)濃度と
熱処理温度とによって決定されることが確認されている
FIG. 3 shows that the impurity oxygen (Oi) concentration is 15p.
pm, and the impurity carbon (Cs) concentration is 6 ppm. When a silicon crystal is heat treated at a temperature of 450 to 800°C, the relationship between the heat treatment time and the C-O complex concentration is determined using the heat treatment temperature as a parameter. This is a graph. The C--O complex concentration increases by heat treatment when the heat treatment temperature is 600°C or lower, and decreases when the heat treatment temperature is 600°C or higher, reaching an equilibrium state in a relatively short period of time. It has been confirmed that the C-O complex concentration in this equilibrium state is determined by the impurity oxygen (Oi) concentration, the impurity carbon (Cs) concentration, and the heat treatment temperature in the silicon crystal.

【0009】このように、従来使用されている熱処理温
度をもって熱処理を実行すると、酸素析出核であるC−
O複合体濃度が減少し、十分な酸素析出量が得られない
ということが明らかとなった。
[0009] As described above, when heat treatment is performed at the heat treatment temperature conventionally used, C-
It became clear that the O complex concentration decreased and a sufficient amount of oxygen precipitation could not be obtained.

【0010】本発明の目的は、この欠点を解消すること
にあり、シリコン結晶中の酸素析出核となるC−O複合
体欠陥濃度を増加させ、効率的にイントリンシックゲッ
タリングをなす方法を提供することにある。
The purpose of the present invention is to eliminate this drawback, and to provide a method for efficiently performing intrinsic gettering by increasing the concentration of C--O complex defects that become oxygen precipitation nuclei in silicon crystals. It's about doing.

【0011】[0011]

【課題を解決するための手段】上記の目的は、不純物炭
素濃度が0.5ppm 以上固溶限度以下であるシリコ
ン結晶に950〜1250℃の熱処理温度をもって1〜
4時間の期間熱処理を実行して無欠陥層を形成し、この
無欠陥層の形成された前記のシリコン結晶に350〜6
00℃の熱処理温度をもって1〜24時間の期間熱処理
を実行して不純物酸素と不純物炭素との複合体欠陥を形
成し、この複合体欠陥の形成された前記のシリコン結晶
を0.2〜3.0℃/min の昇温速度をもって90
0〜1250℃の温度に昇温して熱処理を実行しイント
リンシックゲッタリングをなす工程を含む半導体装置の
製造方法によって達成される。なお、前記のシリコン結
晶を350〜600℃の熱処理温度をもって1〜24時
間の期間熱処理を実行する工程と前記のシリコン結晶を
0.2〜3.0℃/min の昇温速度をもって900
〜1250℃の温度に昇温して熱処理を実行する工程と
の組を複数回繰り返し実行すると効果的である。
[Means for Solving the Problems] The above object is to provide silicon crystals with an impurity carbon concentration of 0.5 ppm or more and below the solid solubility limit at a heat treatment temperature of 950 to 1250°C.
A heat treatment is performed for a period of 4 hours to form a defect-free layer, and the silicon crystal on which the defect-free layer is formed is heated to 350 to 6
A heat treatment is performed at a heat treatment temperature of 0.000C for a period of 1 to 24 hours to form composite defects of impurity oxygen and impurity carbon, and the silicon crystal with the composite defects formed has a temperature of 0.2 to 3. 90℃ with a heating rate of 0℃/min
This is achieved by a method of manufacturing a semiconductor device including a step of raising the temperature to a temperature of 0 to 1250° C. and performing heat treatment to perform intrinsic gettering. Note that the above silicon crystal is heat treated at a heat treatment temperature of 350 to 600°C for a period of 1 to 24 hours, and the silicon crystal is heated to 900°C at a heating rate of 0.2 to 3.0°C/min.
It is effective to repeat the process of increasing the temperature to ~1250° C. and performing heat treatment multiple times.

【0012】0012

【作用】不純物炭素を含むシリコン結晶に600℃以下
の温度をもって熱処理を施すと、図3に示す実験結果か
ら明らかなように結晶中のC−O複合体濃度は増加する
[Operation] When a silicon crystal containing impurity carbon is heat-treated at a temperature of 600° C. or lower, the concentration of the C--O complex in the crystal increases, as is clear from the experimental results shown in FIG.

【0013】酸素析出核となるC−O複合体濃度が増加
すれば、下記の実験結果が示すように、その後に実施さ
れる熱処理工程において酸素析出物は増加する。
[0013] As the concentration of the C--O complex, which serves as oxygen precipitate nuclei, increases, the amount of oxygen precipitates increases in the subsequent heat treatment step, as shown by the experimental results below.

【0014】図4に、シリコン結晶に700℃の温度を
もって熱処理を施した場合の熱処理時間と不純物酸素(
Oi)濃度の変化との関係を示す。図中破線をもって示
すAのグラフは700℃の温度をもって熱処理を施す前
に450℃の温度をもってプレアニールを施した場合の
結果を示し、実線をもって示すBのグラフは、プレアニ
ールを施さない場合の結果を示す。両者を比較すると、
450℃の温度をもってプレアニールを施した場合(グ
ラフA)の方が不純物酸素(Oi)濃度の低下が大きく
なっている。不純物酸素濃度の低下が大きいということ
は、酸素析出量が多いことを意味しており、450℃の
温度をもってプレアニールすると酸素析出核となるC−
O複合体濃度が増加し、その後に実行される酸素析出核
成長熱処理工程において酸素析出量が増加することを示
している。
FIG. 4 shows the heat treatment time and the impurity oxygen (
Oi) shows the relationship with changes in concentration. Graph A shown with a broken line in the figure shows the results when pre-annealing is performed at a temperature of 450°C before heat treatment at a temperature of 700°C, and graph B shown with a solid line shows the results when pre-annealing is not performed. show. Comparing the two,
When pre-annealing is performed at a temperature of 450° C. (graph A), the impurity oxygen (Oi) concentration decreases more greatly. A large decrease in impurity oxygen concentration means that the amount of oxygen precipitated is large, and when pre-annealing at a temperature of 450°C, C-, which becomes oxygen precipitated nuclei, is
This shows that as the O complex concentration increases, the amount of oxygen precipitated increases in the oxygen precipitate nucleus growth heat treatment step performed thereafter.

【0015】因みに、不純物酸素(Oi)濃度が15p
pm であり、不純物炭素を含まないシリコン結晶に上
記と同一の熱処理を施しても酸素析出物は殆ど発生しな
い。このことは、不純物炭素を含むシリコン結晶におい
てはC−O複合体が酸素析出核の働きをすることを示し
ている。
Incidentally, when the impurity oxygen (Oi) concentration is 15p
pm, and hardly any oxygen precipitates are generated even if the same heat treatment as above is applied to a silicon crystal that does not contain impurity carbon. This indicates that in a silicon crystal containing impurity carbon, the C--O complex functions as an oxygen precipitation nucleus.

【0016】[0016]

【実施例】以下、図面を参照して、本発明の一実施例に
係るIG熱処理方法について説明する。
Embodiment An IG heat treatment method according to an embodiment of the present invention will be described below with reference to the drawings.

【0017】不純物酸素(Oi)濃度が15ppm で
あり、不純物炭素(Cs)濃度が6ppm であるシリ
コン結晶に図1に示す熱処理工程をもって熱処理を実行
する。すなわち、まず1100℃の温度をもって1.5
時間熱処理を施してシリコン結晶の表面に無欠陥層(D
Z)を形成し、次いで、550℃の温度をもって2時間
熱処理を施して酸素析出核となるC−O複合体濃度を増
加させる。次に1.8℃/min の速度をもって徐々
に1100℃の温度まで昇温し、この温度に約1時間保
持して酸素析出核を成長・析出させイントリンシックゲ
ッタリング層を形成する。なお、昇温速度が大きすぎる
と酸素析出核であるC−O複合体が逆に解離するので徐
々に昇温させる必要がある。
A silicon crystal having an impurity oxygen (Oi) concentration of 15 ppm and an impurity carbon (Cs) concentration of 6 ppm is subjected to heat treatment using the heat treatment process shown in FIG. In other words, first, at a temperature of 1100°C, 1.5
A defect-free layer (D
Z) is formed, and then a heat treatment is performed at a temperature of 550° C. for 2 hours to increase the concentration of the C—O complex that becomes oxygen precipitation nuclei. Next, the temperature is gradually increased to 1100° C. at a rate of 1.8° C./min, and maintained at this temperature for about 1 hour to grow and precipitate oxygen precipitation nuclei to form an intrinsic gettering layer. Note that if the heating rate is too high, the C--O complex, which is the oxygen precipitation nucleus, will dissociate, so it is necessary to gradually raise the temperature.

【0018】なお、前記のC−O複合体濃度を増加させ
る熱処理工程と、その核を成長させて析出させる熱処理
工程とを、図2に示すように、複数回繰り返し実行して
酸素析出量を増加させることも可能である。
[0018] The heat treatment process for increasing the C-O complex concentration and the heat treatment process for growing and precipitating the nuclei are repeated several times to reduce the amount of oxygen precipitated, as shown in Fig. 2. It is also possible to increase it.

【0019】[0019]

【発明の効果】以上説明したとおり、本発明に係る半導
体装置の製造方法については、不純物炭素を含むシリコ
ン結晶に、酸素析出核となるC−O複合体濃度が所望の
値となるような温度をもって熱処理を実行した後に核成
長熱処理をなしているので効率的にイントリンシックゲ
ッタリングをなすことができ、このシリコン結晶を使用
して特性の良い半導体装置を製造することが可能になる
[Effects of the Invention] As explained above, in the method for manufacturing a semiconductor device according to the present invention, silicon crystal containing impurity carbon is heated to a temperature such that the concentration of C-O complexes, which become oxygen precipitation nuclei, reaches a desired value. Since the nuclear growth heat treatment is performed after the heat treatment is carried out, intrinsic gettering can be performed efficiently, and a semiconductor device with good characteristics can be manufactured using this silicon crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るIG熱処理工程図である。FIG. 1 is an IG heat treatment process diagram according to the present invention.

【図2】本発明に係るIG熱処理工程図である。FIG. 2 is an IG heat treatment process diagram according to the present invention.

【図3】熱処理温度をパラメータとするC−O濃度と熱
処理時間との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between C-O concentration and heat treatment time using heat treatment temperature as a parameter.

【図4】不純物酸素濃度と熱処理時間との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between impurity oxygen concentration and heat treatment time.

【図5】従来技術に係るIG熱処理工程図である。FIG. 5 is an IG heat treatment process diagram according to the prior art.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  不純物炭素濃度が0.5ppm 以上
固溶限度以下であるシリコン結晶に950〜1250℃
の熱処理温度をもって1〜4時間の期間熱処理を実行し
て無欠陥層を形成し、該無欠陥層の形成された前記シリ
コン結晶に350〜600℃の熱処理温度をもって1〜
24時間の期間熱処理を実行して不純物酸素と不純物炭
素との複合体欠陥を形成し、該複合体欠陥の形成された
前記シリコン結晶を0.2〜3.0℃/min の昇温
速度をもって900〜1250℃の温度に昇温して熱処
理を実行しイントリンシックゲッタリングをなす工程を
含むことを特徴とする半導体装置の製造方法。
Claim 1: A silicon crystal with an impurity carbon concentration of 0.5 ppm or more and below the solid solubility limit is heated at 950 to 1250°C.
A heat treatment is performed for a period of 1 to 4 hours at a heat treatment temperature of 350 to 600°C to form a defect-free layer, and the silicon crystal on which the defect-free layer is formed is heated to a heat treatment temperature of 1 to 4 hours at a heat treatment temperature of 350 to 600°C.
A heat treatment is performed for a period of 24 hours to form composite defects of impurity oxygen and impurity carbon, and the silicon crystal in which the composite defects are formed is heated at a heating rate of 0.2 to 3.0°C/min. 1. A method for manufacturing a semiconductor device, comprising a step of increasing the temperature to a temperature of 900 to 1250° C. and performing heat treatment to perform intrinsic gettering.
【請求項2】  前記シリコン結晶を350〜600℃
の熱処理温度をもって1〜24時間の期間熱処理を実行
する工程と前記シリコン結晶を0.2〜3.0℃/mi
n の昇温速度をもって900〜1250℃の温度に昇
温して熱処理を実行する工程との組を複数回繰り返し実
行することを特徴とする請求項1記載の半導体装置の製
造方法。
2. The silicon crystal is heated at 350 to 600°C.
A step of performing heat treatment for a period of 1 to 24 hours at a heat treatment temperature of 0.2 to 3.0 °C/mi
2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of increasing the temperature to a temperature of 900 to 1250 DEG C. and performing heat treatment at a temperature increase rate of n is repeated a plurality of times.
JP3038676A 1991-03-05 1991-03-05 Method for manufacturing semiconductor device Expired - Lifetime JP2539296B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3038676A JP2539296B2 (en) 1991-03-05 1991-03-05 Method for manufacturing semiconductor device
EP92103604A EP0502471A3 (en) 1991-03-05 1992-03-05 Intrinsic gettering of a silicon substrate
US07/846,061 US5286658A (en) 1991-03-05 1992-03-05 Process for producing semiconductor device
KR1019920003653A KR960000952B1 (en) 1991-03-05 1992-03-05 Process for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038676A JP2539296B2 (en) 1991-03-05 1991-03-05 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04276627A true JPH04276627A (en) 1992-10-01
JP2539296B2 JP2539296B2 (en) 1996-10-02

Family

ID=12531883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038676A Expired - Lifetime JP2539296B2 (en) 1991-03-05 1991-03-05 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2539296B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134439A (en) * 2002-10-08 2004-04-30 Shin Etsu Handotai Co Ltd Annealing wafer and its manufacturing method
WO2007007386A1 (en) * 2005-07-11 2007-01-18 Sumitomo Mitsubishi Silicon Corporation Process for producing simox substrate, and simox substrate produced by said process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134439A (en) * 2002-10-08 2004-04-30 Shin Etsu Handotai Co Ltd Annealing wafer and its manufacturing method
US7311888B2 (en) 2002-10-08 2007-12-25 Shin-Etsu Handotai Co., Ltd. Annealed wafer and method for manufacturing the same
WO2007007386A1 (en) * 2005-07-11 2007-01-18 Sumitomo Mitsubishi Silicon Corporation Process for producing simox substrate, and simox substrate produced by said process

Also Published As

Publication number Publication date
JP2539296B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JPH11354525A (en) Manufacture of silicon epitaxial wafer
JPS63227026A (en) Gettering method for silicon crystal substrate
JPH04276627A (en) Semiconductor device production method
JP2535701B2 (en) Semiconductor device
JPS60247935A (en) Manufacture of semiconductor wafer
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JPS5818929A (en) Manufacture of semiconductor device
JP2725460B2 (en) Manufacturing method of epitaxial wafer
JPS5821829A (en) Manufacture of semiconductor device
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH0119265B2 (en)
JPH04175300A (en) Heat treatment of silicon single crystal
JP2588632B2 (en) Oxygen precipitation method for silicon single crystal
JP2734034B2 (en) Processing method of silicon semiconductor substrate
JPH05121319A (en) Manufacture of semiconductor device
JPS5994809A (en) Production of semiconductor element
JPH06291123A (en) Fabrication of semiconductor device
JPH0324058B2 (en)
JPH03166733A (en) Manufacture of semiconductor device
JPH0745621A (en) Manufacture of silicon wafer
JPS5982717A (en) Manufacture of semiconductor device
JPH0350737A (en) Manufacture of semiconductor device
JPS63198335A (en) Manufacture of silicon substrate
JPH0461343A (en) Manufacture of semiconductor wafer
JPS60123036A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960430