JP2539296B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2539296B2
JP2539296B2 JP3038676A JP3867691A JP2539296B2 JP 2539296 B2 JP2539296 B2 JP 2539296B2 JP 3038676 A JP3038676 A JP 3038676A JP 3867691 A JP3867691 A JP 3867691A JP 2539296 B2 JP2539296 B2 JP 2539296B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
silicon crystal
impurity
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3038676A
Other languages
Japanese (ja)
Other versions
JPH04276627A (en
Inventor
良美 白川
寛 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3038676A priority Critical patent/JP2539296B2/en
Priority to KR1019920003653A priority patent/KR960000952B1/en
Priority to US07/846,061 priority patent/US5286658A/en
Priority to EP92103604A priority patent/EP0502471A3/en
Publication of JPH04276627A publication Critical patent/JPH04276627A/en
Application granted granted Critical
Publication of JP2539296B2 publication Critical patent/JP2539296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方
法、特に、シリコン結晶基板のイントリンシックゲッタ
リング(Intrinsic Gettering )熱処理方法(以下、I
G熱処理方法と云う。)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of heat treatment for intrinsic gettering of a silicon crystal substrate (hereinafter referred to as I
It is called G heat treatment method. ).

【0002】半導体装置に使用されるシリコン結晶は過
飽和の不純物酸素を含んでおり、この結晶に熱処理を施
すと酸素がシリコンの酸化物として析出する。この析出
物による欠陥が、結晶に混入した金属不純物等をゲッタ
リングすることはよく知られており、この作用は実際の
半導体装置の製造に積極的に利用されている。反面、析
出物が素子領域に発生すると素子特性を劣化させる原因
になる。
A silicon crystal used in a semiconductor device contains supersaturated impurity oxygen, and when this crystal is subjected to a heat treatment, oxygen precipitates as an oxide of silicon. It is well known that the defects caused by the precipitates getter metal impurities and the like mixed in the crystal, and this action is positively utilized in the actual manufacturing of semiconductor devices. On the other hand, if a precipitate is generated in the element region, it may cause deterioration of element characteristics.

【0003】よって、シリコン結晶基板中の不純物酸素
の析出する位置及び速度を精度よく制御するIG熱処理
方法の確立が重要である。
Therefore, it is important to establish an IG heat treatment method for precisely controlling the position and speed at which the impurity oxygen is precipitated in the silicon crystal substrate.

【0004】[0004]

【従来の技術】シリコン結晶中の不純物酸素の析出する
速度及び量は、その結晶中に不純物炭素が存在すると促
進されることは知られており、この炭素の反応を利用す
れば低酸素濃度のシリコン結晶中の不純物酸素の析出が
容易になる筈である。
2. Description of the Related Art It is known that the deposition rate and amount of impurity oxygen in a silicon crystal are promoted by the presence of impurity carbon in the crystal. It should facilitate the precipitation of impurity oxygen in the silicon crystal.

【0005】ところが、不純物酸素の析出のメカニズム
がこれまで明らかでなかったゝめ、IG熱処理条件に不
純物炭素の影響を正確に考慮に入れることができず、不
純物炭素を含むシリコン結晶のIG熱処理方法は確立さ
れていなかった。
However, since the mechanism of the precipitation of impurity oxygen has not been clarified so far, the influence of impurity carbon cannot be accurately taken into account in the IG heat treatment conditions, and the IG heat treatment method for silicon crystals containing impurity carbon is not possible. Was not established.

【0006】図5に従来のIG熱処理工程を示す。先
ず、1000℃以上、例えば1100℃の温度をもって1.5時間
熱処理を実行して無欠陥層(Denuded Zone)を形成し、
次に、650〜800℃、例えば700℃の温度をもっ
て4時間熱処理を実行して酸素析出の核を形成した後、
再び1100℃の温度に昇温して酸素析出核を成長・析出さ
せている。
FIG. 5 shows a conventional IG heat treatment process. First, heat treatment is performed at a temperature of 1000 ° C. or higher, for example, 1100 ° C. for 1.5 hours to form a defect-free layer (Denuded Zone),
Next, after heat treatment is performed at a temperature of 650 to 800 ° C., for example, 700 ° C. for 4 hours to form nuclei of oxygen precipitation,
The temperature is raised again to 1100 ° C to grow and precipitate oxygen precipitation nuclei.

【0007】[0007]

【発明が解決しようとする課題】不純物炭素を含むシリ
コン結晶に熱処理を施すと、不純物酸素(Oi)は不純
物炭素(Cs)に接近してC−O複合体欠陥を形成し、
これが酸素析出核となるが、本発明の発明者は、650
〜800℃の温度をもって熱処理を実行すると、このC
−O複合体欠陥は解離する方向に反応が進み、C−O複
合体濃度が減少することを見出した。以下にこの実験内
容を説明する。
When a silicon crystal containing impurity carbon is subjected to heat treatment, impurity oxygen (Oi) approaches the impurity carbon (Cs) to form a CO complex defect,
This becomes oxygen precipitation nuclei, but the inventor of the present invention found that 650
When heat treatment is performed at a temperature of ~ 800 ° C, this C
It was found that the reaction of the —O complex defect proceeds in the direction of dissociation, and the concentration of the C—O complex decreases. The details of this experiment will be described below.

【0008】図3は、不純物酸素(Oi)濃度が15ppm
であり、不純物炭素(Cs)濃度が6ppm であるシリコ
ン結晶に450〜800℃の温度をもって熱処理を施し
た場合の熱処理時間とC−O複合体濃度との関係を、熱
処理温度をパラメータとして求めたグラフである。C−
O複合体濃度は熱処理温度が600℃以下の場合には熱
処理によって増加し、600℃以上の場合には逆に減少
し、比較的に短期間で平衡状態に達する。なお、この平
衡状態のC−O複合体濃度はシリコン結晶中の不純物酸
素(Oi)濃度と不純物炭素(Cs)濃度と熱処理温度
とによって決定されることが確認されている。
FIG. 3 shows that the impurity oxygen (Oi) concentration is 15 ppm.
And the relationship between the heat treatment time and the C—O complex concentration when heat-treating a silicon crystal having an impurity carbon (Cs) concentration of 6 ppm at a temperature of 450 to 800 ° C. was obtained using the heat treatment temperature as a parameter. It is a graph. C-
The O complex concentration increases by the heat treatment when the heat treatment temperature is 600 ° C. or lower, and conversely decreases when the heat treatment temperature is 600 ° C. or higher, and reaches an equilibrium state in a relatively short period of time. It has been confirmed that the C—O complex concentration in this equilibrium state is determined by the impurity oxygen (Oi) concentration and the impurity carbon (Cs) concentration in the silicon crystal and the heat treatment temperature.

【0009】このように、従来使用されている熱処理温
度をもって熱処理を実行すると、酸素析出核であるC−
O複合体濃度が減少し、十分な酸素析出量が得られない
ということが明らかとなった。
As described above, when the heat treatment is performed at the conventionally used heat treatment temperature, C- which is an oxygen precipitation nucleus is formed.
It became clear that the O complex concentration decreased and a sufficient amount of oxygen precipitation could not be obtained.

【0010】本発明の目的は、この欠点を解消すること
にあり、シリコン結晶中の酸素析出核となるC−O複合
体欠陥濃度を増加させ、効率的にイントリンシックゲッ
タリングをなす方法を提供することにある。
An object of the present invention is to eliminate this drawback, and to provide a method for efficiently increasing the intrinsic gettering by increasing the defect concentration of the C--O complex which becomes an oxygen precipitation nucleus in the silicon crystal. To do.

【0011】[0011]

【課題を解決するための手段】上記の目的は、不純物炭
素濃度が0.5ppm 以上固溶限度以下であるシリコン結晶
に950〜1250℃の熱処理温度をもって1〜4時間の期
間熱処理を実行して無欠陥層を形成し、この無欠陥層の
形成された前記のシリコン結晶に350〜600℃の熱
処理温度をもって1〜24時間の期間熱処理を実行して不
純物酸素と不純物炭素との複合体欠陥を形成し、この複
合体欠陥の形成された前記のシリコン結晶を0.2〜3.0
℃/min の昇温速度をもって900〜1250℃の温度に昇
温して熱処理を実行しイントリンシックゲッタリングを
なす工程を含む半導体装置の製造方法によって達成され
る。なお、前記のシリコン結晶を350〜600℃の熱
処理温度をもって1〜24時間の期間熱処理を実行する工
程と前記のシリコン結晶を0.2〜3.0℃/min の昇温速
度をもって900〜1250℃の温度に昇温して熱処理を実
行する工程との組を複数回繰り返し実行すると効果的で
ある。
[Means for Solving the Problems] The above object is to perform heat treatment at a heat treatment temperature of 950 to 1250 ° C. for 1 to 4 hours on a silicon crystal having an impurity carbon concentration of 0.5 ppm or more and a solid solution limit or less. A defect-free layer is formed, and the silicon crystal on which the defect-free layer is formed is subjected to heat treatment at a heat treatment temperature of 350 to 600 ° C. for a period of 1 to 24 hours to remove a complex defect of impurity oxygen and impurity carbon. The formed silicon crystal having the complex defect is formed in an amount of 0.2 to 3.0.
This is achieved by a method of manufacturing a semiconductor device including a step of performing heat treatment by increasing the temperature to 900 to 1250 ° C. at a temperature increasing rate of ° C / min to perform intrinsic gettering. In addition, a step of performing heat treatment on the silicon crystal at a heat treatment temperature of 350 to 600 ° C. for a period of 1 to 24 hours, and a temperature increase rate of the silicon crystal of 0.2 to 3.0 ° C./min to 900 to 1250 It is effective to repeatedly perform a combination of a step of raising the temperature to ℃ and performing heat treatment a plurality of times.

【0012】[0012]

【作用】不純物炭素を含むシリコン結晶に600℃以下
の温度をもって熱処理を施すと、図3に示す実験結果か
ら明らかなように結晶中のC−O複合体濃度は増加す
る。
When the silicon crystal containing the impurity carbon is heat-treated at a temperature of 600 ° C. or lower, the concentration of C—O complex in the crystal increases as is clear from the experimental results shown in FIG.

【0013】酸素析出核となるC−O複合体濃度が増加
すれば、下記の実験結果が示すように、その後に実施さ
れる熱処理工程において酸素析出物は増加する。
As the concentration of the C--O complex that becomes the oxygen precipitation nuclei increases, the oxygen precipitates increase in the subsequent heat treatment step, as shown by the following experimental results.

【0014】図4に、シリコン結晶に700℃の温度を
もって熱処理を施した場合の熱処理時間と不純物酸素
(Oi)濃度の変化との関係を示す。図中破線をもって
示すAのグラフは700℃の温度をもって熱処理を施す
前に450℃の温度をもってプレアニールを施した場合
の結果を示し、実線をもって示すBのグラフは、プレア
ニールを施さない場合の結果を示す。両者を比較する
と、450℃の温度をもってプレアニールを施した場合
(グラフA)の方が不純物酸素(Oi)濃度の低下が大
きくなっている。不純物酸素濃度の低下が大きいという
ことは、酸素析出量が多いことを意味しており、450
℃の温度をもってプレアニールすると酸素析出核となる
C−O複合体濃度が増加し、その後に実行される酸素析
出核成長熱処理工程において酸素析出量が増加すること
を示している。
FIG. 4 shows the relationship between the heat treatment time and the change in the impurity oxygen (Oi) concentration when the silicon crystal is heat treated at a temperature of 700.degree. The graph A shown by the broken line shows the result when pre-annealing was performed at a temperature of 450 ° C. before the heat treatment was performed at a temperature of 700 ° C., and the graph B shown by a solid line shows the result when no pre-annealing was performed. Show. Comparing both, when the pre-annealing is performed at a temperature of 450 ° C. (graph A), the decrease of the impurity oxygen (Oi) concentration is larger. A large decrease in the impurity oxygen concentration means that the amount of oxygen precipitation is large, and
It is shown that pre-annealing at a temperature of ℃ increases the concentration of the C—O complex that becomes oxygen precipitation nuclei, and increases the amount of oxygen precipitation in the subsequent heat treatment step for growing oxygen precipitation nuclei.

【0015】因みに、不純物酸素(Oi)濃度が15ppm
であり、不純物炭素を含まないシリコン結晶に上記と同
一の熱処理を施しても酸素析出物は殆ど発生しない。こ
のことは、不純物炭素を含むシリコン結晶においてはC
−O複合体が酸素析出核の働きをすることを示してい
る。
Incidentally, the impurity oxygen (Oi) concentration is 15 ppm.
Therefore, even if the same heat treatment as described above is applied to the silicon crystal containing no impurity carbon, almost no oxygen precipitate is generated. This means that in a silicon crystal containing impurity carbon, C
It is shown that the -O complex acts as an oxygen precipitation nucleus.

【0016】[0016]

【実施例】以下、図面を参照して、本発明の一実施例に
係るIG熱処理方法について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An IG heat treatment method according to an embodiment of the present invention will be described below with reference to the drawings.

【0017】不純物酸素(Oi)濃度が15ppm であり、
不純物炭素(Cs)濃度が6ppm であるシリコン結晶に
図1に示す熱処理工程をもって熱処理を実行する。すな
わち、まず1100℃の温度をもって1.5時間熱処理を施し
てシリコン結晶の表面に無欠陥層(DZ)を形成し、次
いで、550℃の温度をもって2時間熱処理を施して酸
素析出核となるC−O複合体濃度を増加させる。次に1.
8℃/min の速度をもって徐々に1100℃の温度まで昇温
し、この温度に約1時間保持して酸素析出核を成長・析
出させイントリンシックゲッタリング層を形成する。な
お、昇温速度が大きすぎると酸素析出核であるC−O複
合体が逆に解離するので徐々に昇温させる必要がある。
The impurity oxygen (Oi) concentration is 15 ppm,
A silicon crystal having an impurity carbon (Cs) concentration of 6 ppm is subjected to heat treatment by the heat treatment process shown in FIG. That is, first, heat treatment is performed at a temperature of 1100 ° C. for 1.5 hours to form a defect-free layer (DZ) on the surface of a silicon crystal, and then heat treatment is performed at a temperature of 550 ° C. for 2 hours to form oxygen precipitation nuclei. Increase the -O complex concentration. Then 1.
The temperature is gradually raised to 1100 ° C. at a rate of 8 ° C./min, and this temperature is maintained for about 1 hour to grow and precipitate oxygen precipitation nuclei to form an intrinsic gettering layer. If the heating rate is too high, the C—O complex, which is an oxygen precipitation nucleus, dissociates in reverse, so it is necessary to gradually raise the temperature.

【0018】なお、前記のC−O複合体濃度を増加させ
る熱処理工程と、その核を成長させて析出させる熱処理
工程とを、図2に示すように、複数回繰り返し実行して
酸素析出量を増加させることも可能である。
As shown in FIG. 2, the heat treatment step of increasing the C--O complex concentration and the heat treatment step of growing and precipitating the nuclei thereof are repeatedly performed a plurality of times to adjust the oxygen precipitation amount. It is also possible to increase.

【0019】[0019]

【発明の効果】以上説明したとおり、本発明に係る半導
体装置の製造方法については、不純物炭素を含むシリコ
ン結晶に、酸素析出核となるC−O複合体濃度が所望の
値となるような温度をもって熱処理を実行した後に核成
長熱処理をなしているので効率的にイントリンシックゲ
ッタリングをなすことができ、このシリコン結晶を使用
して特性の良い半導体装置を製造することが可能にな
る。
As described above, in the method of manufacturing a semiconductor device according to the present invention, in the silicon crystal containing impurity carbon, the temperature at which the concentration of the C--O complex which becomes the oxygen precipitation nucleus becomes a desired value is obtained. Since the nuclear growth heat treatment is performed after the heat treatment is performed, intrinsic gettering can be efficiently performed, and a semiconductor device having excellent characteristics can be manufactured using this silicon crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るIG熱処理工程図である。FIG. 1 is a process diagram of an IG heat treatment according to the present invention.

【図2】本発明に係るIG熱処理工程図である。FIG. 2 is a process diagram of an IG heat treatment according to the present invention.

【図3】熱処理温度をパラメータとするC−O濃度と熱
処理時間との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between C—O concentration and heat treatment time with heat treatment temperature as a parameter.

【図4】不純物酸素濃度と熱処理時間との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between impurity oxygen concentration and heat treatment time.

【図5】従来技術に係るIG熱処理工程図である。FIG. 5 is a process diagram of an IG heat treatment according to a conventional technique.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−227026(JP,A) 特開 昭60−94722(JP,A) 特開 昭59−94809(JP,A) 特開 昭58−18929(JP,A) 特開 昭57−141931(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A 63-227026 (JP, A) JP-A 60-94722 (JP, A) JP-A 59-94809 (JP, A) JP-A 58- 18929 (JP, A) JP 57-141931 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不純物炭素濃度が0.5ppm 以上固溶限度
以下であるシリコン結晶に950〜1250℃の熱処理温度
をもって1〜4時間の期間熱処理を実行して無欠陥層を
形成し、該無欠陥層の形成された前記シリコン結晶に3
50〜600℃の熱処理温度をもって1〜24時間の期間
熱処理を実行して不純物酸素と不純物炭素との複合体欠
陥を形成し、該複合体欠陥の形成された前記シリコン結
晶を0.2〜3.0℃/min の昇温速度をもって900〜12
50℃の温度に昇温して熱処理を実行しイントリンシック
ゲッタリングをなす工程を含むことを特徴とする半導体
装置の製造方法。
1. A silicon crystal having an impurity carbon concentration of 0.5 ppm or more and a solid solution limit or less is heat-treated at a heat treatment temperature of 950 to 1250 ° C. for a period of 1 to 4 hours to form a defect-free layer. 3 on the silicon crystal on which the defect layer is formed
Heat treatment is performed at a heat treatment temperature of 50 to 600 ° C. for a period of 1 to 24 hours to form a complex defect of impurity oxygen and impurity carbon, and the silicon crystal in which the complex defect is formed is 0.2 to 3 900-12 at a heating rate of 0.0 ℃ / min
A method of manufacturing a semiconductor device, comprising the step of performing intrinsic heat treatment by heating to 50 ° C. and performing heat treatment.
【請求項2】 前記シリコン結晶を350〜600℃の
熱処理温度をもって1〜24時間の期間熱処理を実行する
工程と前記シリコン結晶を0.2〜3.0℃/min の昇温速
度をもって900〜1250℃の温度に昇温して熱処理を実
行する工程との組を複数回繰り返し実行することを特徴
とする請求項1記載の半導体装置の製造方法。
2. A step of performing heat treatment on the silicon crystal at a heat treatment temperature of 350 to 600 ° C. for a period of 1 to 24 hours, and at a temperature rising rate of 0.2 to 3.0 ° C./min for 900 to 900 ° C. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a group of the step of raising the temperature to 1250 ° C. and performing the heat treatment is repeatedly performed a plurality of times.
JP3038676A 1991-03-05 1991-03-05 Method for manufacturing semiconductor device Expired - Lifetime JP2539296B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3038676A JP2539296B2 (en) 1991-03-05 1991-03-05 Method for manufacturing semiconductor device
KR1019920003653A KR960000952B1 (en) 1991-03-05 1992-03-05 Process for producing semiconductor device
US07/846,061 US5286658A (en) 1991-03-05 1992-03-05 Process for producing semiconductor device
EP92103604A EP0502471A3 (en) 1991-03-05 1992-03-05 Intrinsic gettering of a silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038676A JP2539296B2 (en) 1991-03-05 1991-03-05 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04276627A JPH04276627A (en) 1992-10-01
JP2539296B2 true JP2539296B2 (en) 1996-10-02

Family

ID=12531883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038676A Expired - Lifetime JP2539296B2 (en) 1991-03-05 1991-03-05 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2539296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699675B2 (en) * 2002-10-08 2011-06-15 信越半導体株式会社 Annealed wafer manufacturing method
EP1906450A4 (en) * 2005-07-11 2011-07-27 Sumco Corp Process for producing simox substrate, and simox substrate produced by said process

Also Published As

Publication number Publication date
JPH04276627A (en) 1992-10-01

Similar Documents

Publication Publication Date Title
EP0732431B1 (en) Precision controlled precipitation of oxygen in silicon
KR100853001B1 (en) Method for preparing nitrogen-doped and annealed wafer and nitrogen-doped and annealed wafer
JPWO2015107562A1 (en) Silicon wafer and manufacturing method thereof
KR20000006046A (en) Production method for silicon epitaxial wafer
JP2539296B2 (en) Method for manufacturing semiconductor device
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
JP2535701B2 (en) Semiconductor device
JPH09148336A (en) Si semiconductor substrate and manufacturing method
JPH04294540A (en) Manufacture of semiconductor device
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JP3578396B2 (en) Semiconductor disk having crystal lattice defects and method of manufacturing the same
JPS5821829A (en) Manufacture of semiconductor device
JP3294723B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2706527B2 (en) Processing method of silicon single crystal wafer
JPH0119265B2 (en)
JPS639745B2 (en)
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPS5887833A (en) Manufacture of semiconductor device
JPH0324058B2 (en)
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JPH03166733A (en) Manufacture of semiconductor device
JPH06291123A (en) Fabrication of semiconductor device
JPS63112488A (en) Growth method for single crystal silicon
JP2588632B2 (en) Oxygen precipitation method for silicon single crystal
JPH04175300A (en) Heat treatment of silicon single crystal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960430