JPS63207913A - Fluid heating device with radiator - Google Patents

Fluid heating device with radiator

Info

Publication number
JPS63207913A
JPS63207913A JP3991487A JP3991487A JPS63207913A JP S63207913 A JPS63207913 A JP S63207913A JP 3991487 A JP3991487 A JP 3991487A JP 3991487 A JP3991487 A JP 3991487A JP S63207913 A JPS63207913 A JP S63207913A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
tube group
heat
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3991487A
Other languages
Japanese (ja)
Inventor
Noriyuki Oda
紀之 織田
Satoshi Ebato
江波戸 智
Kozo Sakurai
桜井 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Gas Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3991487A priority Critical patent/JPS63207913A/en
Publication of JPS63207913A publication Critical patent/JPS63207913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To effectively transfer combustion heat without burning fire combustion means and a heat exchange part to prevent incomplete combustion by providing a plurality of gas-permeable radiators disposed by inclining a first heat transfer tube group with respect to the flowing direction of a combustion gas, and a second heat transfer group disposed at the downstream in the vicinity of a first heat transfer tube group. CONSTITUTION:Gas-permeable radiators 20 are disposed in parallel to heat transfer tube 19a and 19b and slantly with respect to the flowing direction of a combustion gas between respective heat transfer tubes 19a and 19b. The radiators 20 radiate radiant heat to a second heat transfer tube group as well as a first heat transfer tube group 10 positioned at both sides of each radiator 20. As the radiator 20 a honeycomb plate is used. Since the honeycomb plate has a tendency to have a large difference in temperature distribution between a part near to the heat transfer tube and a part far therefrom and further a large temperature difference is imparted at the time of ignition and at the time of fire-extinguishment, the radiator is made from ceramics having excellent heat resistance and thermal shock resistance. At the upper part of in the vicinity of the first heat transfer tube group 19 and the radiators 20, the second heat transfer tube group with fins 21 is disposed in a zigzag manner.

Description

【発明の詳細な説明】 「技術分野」 本発明は、湯沸器、風呂釜、温水ボイラなどに使用され
る流体加熱装置に間する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a fluid heating device used in water heaters, bathtubs, hot water boilers, and the like.

[従来技術およびその問題点) 従来、湯沸器、風呂釜、温水ボイラなどの流体加熱装置
においては、バーナの下流の燃焼室にて燃料を燃焼させ
た後、燃焼ガスを伝熱管群間に導き、主に対流熱伝達を
利用しで、伝熱管群の内部を流れる水などの流体を加熱
するようになっていた。
[Prior art and its problems] Conventionally, in fluid heating devices such as water heaters, bathtubs, and hot water boilers, fuel is combusted in a combustion chamber downstream of a burner, and then the combustion gas is passed between a group of heat transfer tubes. It was designed to heat fluids such as water flowing inside a group of heat transfer tubes, mainly by using convective heat transfer.

近年、これらの流体加熱装置においでは、極力コンパク
トにするため、燃焼室をできる限り小型化すると共に、
熱交換部の単位容積当りの伝熱量を増加させる傾向にあ
る。
In recent years, in order to make these fluid heating devices as compact as possible, the combustion chamber has been made as small as possible, and
This tends to increase the amount of heat transferred per unit volume of the heat exchange section.

ところで、燃焼室を単純に小型化すると、燃焼室内で燃
焼反応が完結しないまま熱交換部にまで火炎が伸び、そ
の結果、燃焼反応途中の燃料が伝熱管の壁に接触して火
炎が冷却されることにより燃焼反応が停止して、不完全
#A焼を起こすことがあった。このことは、燃料の損失
となるばかりか、−酸化炭素、スス、アルデヒド等が発
生し、人体にも悪影響を及ぼす結果となる。
By the way, if the combustion chamber is simply downsized, the flame will extend to the heat exchanger without completing the combustion reaction within the combustion chamber, and as a result, the fuel in the middle of the combustion reaction will come into contact with the walls of the heat transfer tubes and cool the flame. This sometimes caused the combustion reaction to stop, resulting in incomplete #A firing. This not only results in a loss of fuel, but also generates carbon oxide, soot, aldehyde, etc., which has an adverse effect on the human body.

また、燃焼室を小型化して熱交換部と一体化すると、伝
熱管表面に未燃燃料成分などが付着堆積した場合、伝熱
管が過熱されて損傷したり、燃焼室内の燃焼ガスの混合
が悪くなって温度分布が大きくなりやすく、局部的に伝
熱負荷が増大して同じく伝熱管を損傷させることがあっ
た。
In addition, if the combustion chamber is downsized and integrated with the heat exchange section, if unburned fuel components adhere to and accumulate on the surface of the heat transfer tube, the heat transfer tube may be overheated and damaged, or the combustion gas in the combustion chamber may not mix well. As a result, the temperature distribution tends to become large, and the heat transfer load increases locally, which can also damage the heat transfer tubes.

このため燃焼室の小型(II、には限界があり、例えば
現在市販されているガス湯沸器では、燃焼室と熱交換部
との大きざを比較すると約2=1であり、バーナ先端と
下流の伝熱管との距離は20〜30cmもあり、燃焼室
負荷としでは5x 10’ kcal/m3/hr程度
以下に抑えられていた。これ以上燃焼室を小さくして熱
交換部を火炎に近づけることは、伝熱管の損傷を早めた
り、COの発生を増加させるなどの理由で困難となって
いた。
For this reason, there is a limit to the small size of the combustion chamber (II); for example, in currently commercially available gas water heaters, the size difference between the combustion chamber and the heat exchange section is approximately 2 = 1, and the size difference between the burner tip and the The distance to the downstream heat exchanger tube is 20 to 30 cm, and the combustion chamber load was kept to less than 5x 10' kcal/m3/hr.The combustion chamber could be made smaller to bring the heat exchanger closer to the flame. This has been difficult because it accelerates damage to the heat exchanger tubes and increases CO generation.

対流熱伝達を利用している限りにおいては、熱交換部の
単位容積当りの伝熱量を増加させるためには、プレート
フィン間隔を狭くするとともにその枚数を増して単位容
積当りの伝熱面積を増加させるか、燃焼ガスの流速を上
げて熱伝達率を増加させるか、あるいは熱交換部へ流入
する燃焼ガスの温度を上昇させて加熱側と被加熱側との
温度差を大きくするなどの対策が必要となる。
As long as convective heat transfer is used, in order to increase the amount of heat transfer per unit volume of the heat exchanger, the distance between plate fins should be narrowed and the number of plate fins should be increased to increase the heat transfer area per unit volume. Measures can be taken to increase the heat transfer coefficient by increasing the flow rate of the combustion gas, or by increasing the temperature of the combustion gas flowing into the heat exchanger to increase the temperature difference between the heating side and the heated side. It becomes necessary.

しかし、プレートフィン間の目詰まりを防ぐためにプレ
ートフィン間隔は2.6mm程度が下限である。圧力損
失を抑えるためには燃焼ガス流速も10m/s程度が上
限である。ざらに、熱交換部へ流入する燃焼ガス温度を
上げると、プレートフィン先端の温度が上昇しで、耐熱
性や耐久性に問題が発生するため、燃焼ガス流入温度も
1000℃程度が上限である。かくして熱交換部の小型
化にも限界が生していた。
However, in order to prevent clogging between the plate fins, the lower limit of the plate fin interval is about 2.6 mm. In order to suppress pressure loss, the upper limit of the combustion gas flow velocity is about 10 m/s. Roughly speaking, if the temperature of the combustion gas flowing into the heat exchange section is increased, the temperature at the tip of the plate fin will rise, causing problems with heat resistance and durability, so the upper limit of the combustion gas inflow temperature is about 1000℃. . Thus, there was a limit to the miniaturization of the heat exchange section.

「発明の目的」 本発明の目的は、上記従来技術の問題点を解消し、燃焼
手段および熱交換部を焼損させることなく燃焼熱を効果
的に伝熱させ、ざらには不完全燃焼を抑制し、装置全体
の小型化を図ることのできる流体加熱装置を提供するこ
とにある。
"Objective of the Invention" The object of the present invention is to solve the problems of the prior art described above, to effectively transfer combustion heat without burning out the combustion means and the heat exchanger, and to suppress incomplete combustion. However, it is an object of the present invention to provide a fluid heating device that can reduce the size of the entire device.

「発明の構成」 本発明の流体加熱装置は、燃焼手段と、燃焼手段の近接
下流に配置された第一の伝熱管群と、第一の伝熱管群を
構成する伝熱管の闇に燃焼ガスの流れ方向に対して傾斜
させて配置された複数の通気性輻射体と、第一の伝熱管
群の近接下流に配置された第二の伝熱管群とを備えるこ
とを特徴とする。
"Structure of the Invention" The fluid heating device of the present invention includes a combustion means, a first heat exchanger tube group disposed adjacent to and downstream of the combustion means, and a combustion gas in the darkness of the heat exchanger tubes constituting the first heat exchanger tube group. The heat exchanger tube is characterized by comprising a plurality of air permeable radiators arranged at an angle with respect to the flow direction of the heat exchanger, and a second heat exchanger tube group arranged adjacent to and downstream of the first heat exchanger tube group.

本発明においで、燃料としては、都市ガス、ブ0パンガ
ス、天然ガス等の気体燃料、または灯油゛  等の液体
燃料を気化させたものが使用できる。燃焼手段としては
、燃焼用空気と燃料を別々に燃焼室へ供給する拡散燃焼
型バーナ、または燃焼用空気と燃料とを予め所要割合で
混合させた俊に燃焼室へ供給する予混合[焼型バーナな
どが使用される。予混合型バーナとしては面状バーナプ
レートを有するものは好ましい例である。
In the present invention, gaseous fuels such as city gas, buoyant gas, and natural gas, or vaporized liquid fuels such as kerosene can be used as the fuel. Combustion means include a diffusion combustion type burner that supplies combustion air and fuel separately to the combustion chamber, or a premixed burner that mixes combustion air and fuel in the required ratio and supplies it to the combustion chamber. Burners etc. are used. A preferred example of the premix burner is one having a planar burner plate.

第一の伝熱管群は、通例はこれを構成する各伝熱管が相
互に平行に、かつ、燃焼ガスの流れ方向に直交して配W
!され、好ましくは複数段、特には千鳥状に配置1c’
れ、全体として燃焼手段の下流に、かつ、燃焼手段に近
接して設けられる。
In the first heat exchanger tube group, the heat exchanger tubes constituting the group are usually arranged parallel to each other and perpendicular to the flow direction of the combustion gas.
! and are preferably arranged in multiple stages, particularly in a staggered manner 1c'
and generally located downstream of and proximate to the combustion means.

第一の伝熱管群は、これを構成する伝熱管またはそれに
付属するフィンの最も燃焼手段寄りの端部を燃焼手段に
近接して、例えば燃焼手段によっで形成される火炎中、
あるいは火炎の先端に近接した位置に配置lされる。具
体的には燃焼手段の燃料ガス吐出口(例えばバーナプレ
ートの出口側の面)と上述した伝熱管の上流線との距離
は5〜50mmとすることが好ましい、言い換えると、
火炎の長さは、燃焼手段の設計によって異なるが、一般
には5〜50mm程度であるため、結局第一の伝熱管群
における最上流段の伝熱管は、火炎の先端付近に配置さ
れることになる。
The first heat exchanger tube group is arranged such that the end of the heat exchanger tubes or the fins attached to the first heat exchanger tube group is placed closest to the combustion means, for example, in the flame formed by the combustion means.
Alternatively, it is placed close to the tip of the flame. Specifically, it is preferable that the distance between the fuel gas discharge port of the combustion means (for example, the outlet side surface of the burner plate) and the upstream line of the heat exchanger tube is 5 to 50 mm. In other words,
The length of the flame varies depending on the design of the combustion means, but is generally about 5 to 50 mm, so the most upstream heat exchanger tube in the first heat exchanger tube group is ultimately placed near the tip of the flame. Become.

第一の伝熱管群を燃焼手段に対し上記位置より離れた位
置に配置した場合には、熱損失あるいは燃焼室を囲むケ
ーシングの冷却管などにより燃焼ガスの温度が低下し、
本発明の効果を充分には得られなくなったり、ガス厚み
が増大して高温燃焼ガスからバーナへの輻射入熱が増大
し、バーナの損傷、逆火を招く可能性がある。逆に第一
の伝熱管群を燃焼手段に対し上記位置より近く配置する
ときには、CO発生が増加しないように配慮するのがよ
い。
If the first heat transfer tube group is placed at a position farther from the combustion means than the above position, the temperature of the combustion gas will decrease due to heat loss or cooling pipes in the casing surrounding the combustion chamber.
There is a possibility that the effects of the present invention cannot be sufficiently obtained, or the gas thickness increases and the radiant heat input from the high temperature combustion gas to the burner increases, leading to damage to the burner and backfire. Conversely, when arranging the first heat exchanger tube group closer to the combustion means than the above position, it is preferable to take care not to increase CO generation.

第一の伝熱管群は、燃焼手段に最も近接し高温の2!、
焼ガスにざらされるが、内部を流れる水などの流体によ
り冷却されるので、熱損傷が防止される。第一の伝熱管
群は、周囲の燃焼ガス温度が高く、しかも後述する輻射
体よりの輻射伝熱によって熱伝達率も高くなるため、外
面にはフィンを付けないものが好ましいが、伝熱量増大
の観点より、例えば高さ2mm以下のフィンを有するい
わゆるローフイン型とすることも可能である。
The first heat transfer tube group is closest to the combustion means and has a high temperature. ,
Although it is exposed to burning gas, it is cooled by fluid such as water flowing inside, which prevents heat damage. The first group of heat transfer tubes is preferably one without fins on the outer surface because the temperature of the surrounding combustion gas is high and the heat transfer rate is also high due to radiant heat transfer from the radiator described later, but the amount of heat transfer increases. From this point of view, it is also possible to use a so-called loaf-in type having fins with a height of 2 mm or less, for example.

ところで、本発明者らは、特願昭60−223980に
おいて、第一の伝熱管群と第二の伝熱管群の間に板状通
気性輻射体lF!:燃焼ガス流れ方向に垂直に配置した
流体加熱装@を提案した。かがる構造にあっては、第一
の伝熱管群に関しては、主として輻射体側の片面にのみ
輻射体からの輻射熱を受け、他の片面には輻射熱をほと
んど受けられない、また、第一の伝熱管群を構成する伝
熱管の間に、燃焼ガス流れ方向に沿って輻射体を配置す
ることも考えられるが、この場合には燃焼ガスが輻射体
の外表面に沿って流れやすく、燃焼ガスから輻射体への
伝熱が充分でなく、したがって輻射体から第一の伝熱管
群への輻射伝熱も充分でないうらみがある。
By the way, the present inventors proposed in Japanese Patent Application No. 60-223980 that a plate-shaped air permeable radiator IF! is provided between the first heat exchanger tube group and the second heat exchanger tube group! : We proposed a fluid heating device @ arranged perpendicular to the flow direction of combustion gas. In this structure, the first heat exchanger tube group mainly receives radiant heat from the radiator only on one side on the radiator side, and hardly receives radiant heat on the other side. It is also possible to arrange a radiator along the flow direction of the combustion gas between the heat exchanger tubes constituting the heat exchanger tube group, but in this case, the combustion gas tends to flow along the outer surface of the radiator, and the combustion gas There is a problem that the heat transfer from the radiator to the radiator is not sufficient, and therefore the radiant heat transfer from the radiator to the first heat transfer tube group is also insufficient.

そこで本発明では、第一の伝熱管群を構成する伝熱管の
間に、複数の通気性輻射体が燃焼ガスの流れ方向に対し
で傾斜させて配置される。
Therefore, in the present invention, a plurality of breathable radiators are arranged between the heat exchanger tubes constituting the first heat exchanger tube group so as to be inclined with respect to the flow direction of the combustion gas.

これにより、燃焼ガスは輻射体の一方の面から内部を通
気して他方の面へと通りぬけでゆき、その際に燃焼ガス
の熱エネルギは確実かつ充分に輻射体に与えられる。そ
して輻射体は白熱し、その両面から輻射熱を放射する。
As a result, the combustion gas passes through the interior of the radiator from one surface to the other surface, and at this time, the thermal energy of the combustion gas is reliably and sufficiently provided to the radiator. The radiator becomes incandescent and emits radiant heat from both sides.

第一の伝熱管群を構成する伝熱管の多くはその外側に位
置する複数枚の輻射体から輻射熱を受けることとなり、
各伝熱管の輻射熱受熱面積は大きく増加し、効果的に輻
射体からこの伝熱管への輻射熱伝達がなされる。こうし
た輻射体からの輻射熱伝達と燃焼ガスからの対流熱伝達
により、第一の伝熱管群が加熱され、その内部を流れる
流体が加熱される。
Many of the heat exchanger tubes that make up the first heat exchanger tube group receive radiant heat from multiple radiators located outside them,
The radiant heat receiving area of each heat exchanger tube increases greatly, and radiant heat is effectively transferred from the radiator to this heat exchanger tube. By such radiant heat transfer from the radiator and convective heat transfer from the combustion gas, the first heat transfer tube group is heated, and the fluid flowing therein is heated.

なお、輻射体からの輻射熱の一部は燃焼手段にも照射さ
れつるが、輻射体の傾斜角度を調節したり、輻射体とP
A焼手段との門に伝熱管を配置して、燃焼手段に照射さ
れる輻射熱量は比較的少量とすることができる。したが
って、燃焼手段がこの輻射熱によって焼損されることは
ない。
Note that some of the radiant heat from the radiator is also irradiated to the combustion means, but the inclination angle of the radiator may be adjusted or the radiator and P
By arranging a heat transfer tube at the gate to the A-burning means, the amount of radiant heat irradiated to the combustion means can be made relatively small. Therefore, the combustion means will not be burned out by this radiant heat.

ざらに輻射体は高温に加熱されでいるので、燃焼ガス中
に含まれているC01HCなどの未燃成分の酸化反応を
促進し、燃焼ガスの浄化にも資する。
Since the radiator is heated to a high temperature, it promotes the oxidation reaction of unburned components such as CO1HC contained in the combustion gas, and also contributes to the purification of the combustion gas.

第二の伝熱管群は、第一の伝熱管群の近接下流に配置さ
れる。すなわち、燃焼ガスの流れ方向に関して、前記輻
射体および第一の伝熱管群の下流側位置に配置される。
The second heat exchanger tube group is arranged adjacent to and downstream of the first heat exchanger tube group. That is, it is arranged at a downstream position of the radiator and the first heat exchanger tube group with respect to the flow direction of combustion gas.

この第二の伝熱管群は、燃焼ガスからの対流熱伝達が主
体となるが、上流の輻射体からの輻射熱をも受けて加熱
される。これにより、内部を流れる流体が加熱される。
This second heat transfer tube group is heated mainly by convective heat transfer from the combustion gas, but also receives radiant heat from the upstream radiator. This heats the fluid flowing inside.

 ・第二の伝熱管群の配fil域へ流入する燃焼ガスは
、第一の伝熱管群および輻射体の配H域を通過する際の
伝熱管内の流体との熱交換によって、その温度が低下し
ているため、第二の伝熱管群は、伝熱効率を向上させる
観点より、外面にフィンを有するものが好ましい、また
、燃焼ガスが平均して接触するようにするため、第二の
伝熱管群は、伝熱管を千鳥状に配列することもできる。
・The temperature of the combustion gas flowing into the distribution area of the second heat exchanger tube group increases due to heat exchange with the fluid in the heat exchanger tubes when passing through the first heat exchanger tube group and the distribution area of the radiator. Therefore, from the viewpoint of improving heat transfer efficiency, it is preferable that the second heat transfer tube group has fins on the outer surface. In the heat tube group, heat transfer tubes can also be arranged in a staggered manner.

本発明の好ましい態様によれば、通気性の輻射体は燃焼
ガス流路横断面の実質的全域にわたって全体として縦断
面が鋸歯状となるように配置されている。輻射体を上記
のように配置することによって、燃焼ガスのほぼ全量が
強制的に輻射体の一面から他面に通りぬけることとなり
、輻射体からの輻射伝熱が増加する。ざらに、第一の伝
熱管群と第二の伝熱管群の双方に対して、輻射熱を複数
方向から照射し、第一の伝熱管群と第二の伝熱管群全体
に均一に輻射熱が伝達され、効率の良い燃焼熱利用が図
られる。
According to a preferred embodiment of the invention, the air-permeable radiator is arranged in such a way that its overall longitudinal cross-section is serrated over substantially the entire cross-section of the combustion gas flow path. By arranging the radiator as described above, almost the entire amount of combustion gas is forced to pass through from one surface of the radiator to the other surface, increasing radiant heat transfer from the radiator. Roughly, radiant heat is applied to both the first heat exchanger tube group and the second heat exchanger tube group from multiple directions, and the radiant heat is uniformly transferred to the entire first heat exchanger tube group and the second heat exchanger tube group. This enables efficient combustion heat utilization.

通気性輻射体としては、板状体の両面IWlをガスが流
通しろるハニカム体、三次元網状体、連通気泡体などが
挙げられる。
Examples of the breathable radiator include a honeycomb body, a three-dimensional network body, and an open-air foam body in which gas flows through both sides IWl of a plate-like body.

この輻射体は、高温で効果的な輻射熱を発生させるよう
、耐熱性材料、例えば炭化ケイ素、窯化ケイ素、コージ
ライトなどのセラミックス、あるいは耐熱鋼などが好ま
しい。
This radiator is preferably made of a heat-resistant material, such as ceramics such as silicon carbide, silicon silicide, cordierite, or heat-resistant steel, so as to generate effective radiant heat at high temperatures.

なお、第一および第二の伝熱管群の伝熱管は、銅、ステ
ンレス、アルミニウム合金などの金属、あるいは炭化ケ
イ素、富化ケイ素などのセラミックスといった熱伝導性
、耐食性に優れた材質からなることが好ましく、特に、
高熱伝導率、高輻射率、低線膨張係数、高強度を菅し、
成形性にも優れた反応焼結炭化ケイ素あるいは高熱伝導
性材料である銅が最も好ましい。
The heat exchanger tubes of the first and second heat exchanger tube groups may be made of a material with excellent thermal conductivity and corrosion resistance, such as metals such as copper, stainless steel, and aluminum alloys, or ceramics such as silicon carbide and enriched silicon. Preferably, especially
With high thermal conductivity, high emissivity, low coefficient of linear expansion, and high strength,
Most preferred are reactive sintered silicon carbide, which has excellent formability, or copper, which is a highly thermally conductive material.

本発明の場合、第一の伝熱管を燃焼手段に近接させたこ
とにより、第一および第二の伝熱管群が大きな伝熱負荷
を受けで局部的に高温となることが考えられる。また、
条件によっては、水などの被加熱流体が局部沸騰を起こ
し、発生した蒸気により伝熱を阻害され、局部的に非常
に高温となることも考えられる。したがって、耐熱性に
乏しい金属製とした場合には、伝熱管が過熱・酸化され
、極端な場合は溶損することも考えろるので、材質、レ
イアウト、使用条件などの設定を適宜選択することが望
ましい、この点、セラミックス製とすると充分な耐熱性
が得られ、特に高温部の伝熱管への使用には好ましい。
In the case of the present invention, by placing the first heat exchanger tube close to the combustion means, it is conceivable that the first and second heat exchanger tube groups are subjected to a large heat transfer load and become locally high temperature. Also,
Depending on the conditions, it is conceivable that the fluid to be heated, such as water, may locally boil, and the generated steam may inhibit heat transfer, resulting in a locally extremely high temperature. Therefore, if the heat transfer tube is made of metal with poor heat resistance, it may overheat and oxidize, and in extreme cases, it may melt, so it is desirable to select settings such as material, layout, and usage conditions appropriately. In this respect, if the tube is made of ceramic, sufficient heat resistance can be obtained, and it is particularly preferable for use in a heat exchanger tube in a high temperature section.

また、t!A焼ガスの保有する熱を顕熱のみならず潜熱
まで回収しようとする場合には、低温の熱交換部に硝酸
の発生をきたすことがあり(天然ガス自体はクリーンで
あるが、高温の燃焼により発生したNOxが伝熱管表面
の低温部で結露した水分と結び付いて硝酸となる)、そ
の点からも低温の熱交換部では特に耐腐食性を有するセ
ラミックス製とするのが好ましい。
Also, t! When trying to recover not only the sensible heat but also the latent heat held by A-burning gas, nitric acid may be generated in the low-temperature heat exchanger (natural gas itself is clean, but the high-temperature combustion (The NOx generated by this combines with moisture condensed on the low-temperature portion of the heat exchanger tube surface to form nitric acid.) From this point of view as well, it is preferable that the low-temperature heat exchange section be made of ceramic, which has corrosion resistance.

同様な理由で、高温部あるいは低温部の伝熱管の外面に
設けるフィンの材質も、セラミックスが好ましいが、銅
、ステンレスなどの金属も使用できる。
For the same reason, the material of the fins provided on the outer surface of the heat exchanger tube in the high temperature section or the low temperature section is preferably ceramic, but metals such as copper and stainless steel can also be used.

「発明の実施例」 以下に、本発明による流体加熱装置の実施例を図面に基
いて説明する。
"Embodiments of the Invention" Examples of the fluid heating device according to the present invention will be described below with reference to the drawings.

第1図は本発明の第1寅施例を示す、この流体加熱装置
111は、上方が図示せぬ排気口に接続されたケーシン
グ12で全体が囲まれており、このケーシング12は、
下方より順にファンケーシング13、混合室14および
燃焼室15が連通して構成されでいる。ファンケーシン
グ13には、ファン16が組み込まれ、ファン16の吐
出部に、燃料ガスノズル17が配設されている。ファン
16からの空気流と燃料ガスノズル17からの燃料ガス
がファンケーシング13を経て混合室14に供給されて
燃料ガスと空気との混合気が作られる。
FIG. 1 shows a first embodiment of the present invention. This fluid heating device 111 is entirely surrounded by a casing 12 whose upper part is connected to an exhaust port (not shown).
A fan casing 13, a mixing chamber 14, and a combustion chamber 15 are configured to communicate with each other in order from the bottom. A fan 16 is incorporated in the fan casing 13, and a fuel gas nozzle 17 is disposed at a discharge portion of the fan 16. Air flow from the fan 16 and fuel gas from the fuel gas nozzle 17 are supplied to the mixing chamber 14 via the fan casing 13 to create a mixture of fuel gas and air.

混合室14と燃焼室15の境目には、燃焼手段としての
面バーナプレート18が配置されている。この面バーナ
プレート18は多数の炎口を有し、この炎口を通過した
混合気は面バーナプレート18の下流面に面状の火炎を
形成する。すなわち、この実施例では、予混合面バーナ
方式が採用されている。
A surface burner plate 18 as a combustion means is arranged at the boundary between the mixing chamber 14 and the combustion chamber 15. The surface burner plate 18 has a large number of flame ports, and the air-fuel mixture that has passed through the flame ports forms a planar flame on the downstream surface of the surface burner plate 18. That is, in this embodiment, a premixed surface burner method is adopted.

ケーシング12内の面バーナプレート18に近接した上
方には、複数の伝熱管19a 、19bが相互に平行に
、かつ、千鳥状に横行配置されて第一の伝熱管群19を
構成している。伝熱管19a 、+9bは、外径12〜
20 mm 、肉厚0.6〜2.0 mmとされている
Above and close to the surface burner plate 18 inside the casing 12, a plurality of heat exchanger tubes 19a and 19b are arranged horizontally in parallel with each other in a staggered manner to form a first heat exchanger tube group 19. The heat exchanger tubes 19a and +9b have an outer diameter of 12~
20 mm, with a wall thickness of 0.6 to 2.0 mm.

伝熱管の径は小さい(まど内部を流れる流体の単位容積
あたりの伝熱管外表面積割合が増大し、輻射熱受熱量が
増大するが、一方で、必要な伝熱管本数も増加し、ざら
に管内で沸騰が起きた場合の気泡による流路閉塞の可能
性も高くなるため、本発明を湯沸器に適用する場合には
上記寸法が好ましい。
The diameter of the heat transfer tube is small (the ratio of the external surface area of the heat transfer tube per unit volume of fluid flowing inside the window increases, increasing the amount of radiant heat received, but on the other hand, the number of required heat transfer tubes also increases, and the inside The above dimensions are preferable when the present invention is applied to a water heater, since there is a high possibility that the flow path will be blocked by air bubbles when boiling occurs.

伝熱管の配列間隔は12〜20mmとほぼ伝熱管の外径
と同様な間隔を設けるのが好ましい、この間隔が小さす
ぎると、燃焼ガス通過時の圧力損失が増加したり、その
間隔を通して輻射体より離れた位置に配置された伝熱管
列へ到達する輻射熱量が大きく減少する。
It is preferable to arrange the heat exchanger tubes at intervals of 12 to 20 mm, which is approximately the same as the outer diameter of the heat exchanger tubes.If this interval is too small, pressure loss may increase when combustion gas passes, or the radiator may pass through the interval. The amount of radiant heat reaching the rows of heat transfer tubes located further away is greatly reduced.

面バーナプレート18上面から第一の伝熱管群19(フ
ィン付きの場合はフィンを含む)の下線までの距Haは
50mm以内とされている。伝熱管19a、+9bの断
面形状は、通常の円筒状に限られず、楕円形なとでもよ
い。
The distance Ha from the upper surface of the surface burner plate 18 to the underline of the first heat exchanger tube group 19 (including the fins if provided with fins) is within 50 mm. The cross-sectional shape of the heat exchanger tubes 19a and +9b is not limited to the usual cylindrical shape, but may be elliptical.

伝熱管19a 、+9bの相互間には、通気性輻射体2
0が伝熱管19a 、19bと平行に、かつ、燃焼ガス
の流れ方向(ご対して傾斜して配置されており、輻射体
20の両側に位置する第一の伝熱管群19のみならず第
二の伝熱管群21にも輻射熱を照射するようになってい
る。
A breathable radiator 2 is placed between the heat exchanger tubes 19a and +9b.
0 is arranged parallel to the heat exchanger tubes 19a and 19b and inclined with respect to the flow direction of the combustion gas, not only the first heat exchanger tube group 19 but also the second The heat exchanger tube group 21 is also irradiated with radiant heat.

この実施例では、輻射体20にハニカム板が用いられて
いる。輻射体は伝熱管に近い部分と遠い部分とで大きな
温度分布がつきやすく、また、流体加熱装置の着火、消
火時には大きな温度変化が与えられるので、耐熱性、耐
熱衝撃性に優れたセラミックス製とされている。このハ
ニカム板は、板面の表裏に貫通・する多数の平行セルを
有するもので、セル形状は、正方形、長方形、六角形な
ど適宜選択することができる。また、ハニカム板は、波
板同士、あるいは波板と平板を多数積層して形成された
ようなものでもよい。
In this embodiment, a honeycomb plate is used for the radiator 20. The radiator tends to have a large temperature distribution between the parts near and far from the heat transfer tube, and the temperature changes greatly when the fluid heating device is ignited and extinguished, so it should be made of ceramic, which has excellent heat resistance and thermal shock resistance. has been done. This honeycomb plate has a large number of parallel cells penetrating the front and back sides of the plate surface, and the cell shape can be appropriately selected from square, rectangular, hexagonal, etc. Further, the honeycomb plate may be formed by laminating a large number of corrugated plates or a large number of corrugated plates and flat plates.

第一の伝熱管群19および輻射体20に近接した上方に
は、第二の伝熱管群21が配置される。この実施例では
、第二の伝熱管群21を、多数の平行な平板状のフィン
22とこのフィン22を直交して貫通する複数の千鳥配
置された横行伝熱管とで構成しているが、例えば各伝熱
管ごとにその外面に複数のフィシを形成して構成したも
のであってもよい。
A second heat exchanger tube group 21 is arranged close to and above the first heat exchanger tube group 19 and the radiator 20 . In this embodiment, the second heat exchanger tube group 21 is composed of a large number of parallel flat plate-shaped fins 22 and a plurality of staggered transverse heat exchanger tubes passing orthogonally through the fins 22. For example, each heat transfer tube may have a plurality of fissures formed on its outer surface.

第二の伝熱管群21の各伝熱管は、外径12〜20mm
、肉厚0.6〜2.0mm、伝熱管の配列間隔12〜2
0mm、フィン22の肉厚0.3〜1.5 mm、フィ
ン22の配列間隔2.6〜6.0 mmとされでいる。
Each heat exchanger tube of the second heat exchanger tube group 21 has an outer diameter of 12 to 20 mm.
, wall thickness 0.6-2.0mm, heat exchanger tube arrangement interval 12-2
0 mm, the wall thickness of the fins 22 is 0.3 to 1.5 mm, and the arrangement interval of the fins 22 is 2.6 to 6.0 mm.

両伝熱管群19.21の伝熱管は、一般には水平に配置
されるが、被加熱流体の沸騰時に気泡が抜けやすいよう
に、被加熱流体の入口側に比べ、出口側が上方となるよ
うに傾斜させてもよい。
The heat exchanger tubes in both heat exchanger tube groups 19 and 21 are generally arranged horizontally, but in order to make it easier for air bubbles to escape when the heated fluid boils, they are arranged so that the outlet side is higher than the inlet side of the heated fluid. It may be tilted.

第一の伝熱管群19および第二の伝熱管群21内には被
加熱流体が流される。被加熱流体としては、液体、特に
水が好適である。この被加熱流体は、第一の伝熱管群1
9と第二の伝熱管群21にそれぞれ独立に流してもよい
が、好ましくは両者間をシリーズに流される。この場合
、温度効率を大きくする上では、まず第二の伝熱管群2
1に流し、ここを出た被加熱流体を、次いで第一の伝熱
管群19に流すことにより、燃焼ガスの流れに対して向
流に流すことが好ましい、一方、管内での局部沸騰を防
止するためには、これと逆に接続して、燃焼ガスの流れ
に対して並流とすることが好ましい。また、各伝熱管群
内では相互にシリーズに接続されるのが通例であるが、
適宜、シリーズ接続とパラレル接続とを組み合わせでも
よい。
A fluid to be heated is flowed into the first heat exchanger tube group 19 and the second heat exchanger tube group 21. A liquid, particularly water, is suitable as the fluid to be heated. This fluid to be heated is supplied to the first heat exchanger tube group 1
9 and the second heat exchanger tube group 21, respectively, but preferably it is flowed in series between them. In this case, in order to increase the temperature efficiency, first the second heat exchanger tube group 2
1, and the fluid to be heated that exits here is then allowed to flow through the first heat transfer tube group 19, so that it flows countercurrently to the flow of combustion gas. On the other hand, local boiling within the tubes is prevented. In order to achieve this, it is preferable to connect the combustion gas in the opposite direction so that the flow is parallel to that of the combustion gas. Furthermore, although it is customary for each heat exchanger tube group to be connected in series,
Series connection and parallel connection may be combined as appropriate.

以下に、本発明装置の作用を説明する。The operation of the device of the present invention will be explained below.

燃料ガスノズル17からの燃料ガスとファン16からの
空気流が混合室14に送られ、予混合気が形成される。
The fuel gas from the fuel gas nozzle 17 and the air flow from the fan 16 are sent to the mixing chamber 14 to form a premixture.

予混合気は面バーナプレート18を通過してWS焼室1
5へ供給されて火炎に形成され、燃焼ガスとなる。予混
合気の空気比は、燃焼ガス温度を高くとるには極力1.
0に近づけるが、未燃成分発生を抑制するため、空気比
を1.1〜1.4程度にするのが好ましい、その結果、
燃焼ガスは、1500〜1650℃の高温に生成されで
、第一の伝熱管群19に導かれ、対流熱伝達によって燃
焼ガスが有している熱エネルギの一部を第一の伝熱管群
19の伝熱管内を流れる流体へ伝達する。
The premixture passes through the surface burner plate 18 and enters the WS baking chamber 1.
5, it is formed into a flame and becomes combustion gas. The air ratio of the premixture should be set to 1.0 as much as possible in order to maintain a high combustion gas temperature.
However, in order to suppress the generation of unburned components, it is preferable to set the air ratio to about 1.1 to 1.4. As a result,
The combustion gas is generated at a high temperature of 1500 to 1650°C and is guided to the first heat exchanger tube group 19, where a part of the thermal energy of the combustion gas is transferred to the first heat exchanger tube group 19 by convection heat transfer. The heat is transferred to the fluid flowing inside the heat transfer tube.

ざらに燃焼ガスの多くは、高温のまま傾斜配置された輻
射体20に当たり、その内部をも流れてこの輻射体20
を充分に加熱し白熱化させる。このときの輻射体20は
800〜1200℃の高温に保持され、その周辺に配N
されている第一の伝熱管群19を輻射体20の両側面か
ら輻射加熱する。輻射体の温度は輻射伝熱の観点からは
極力高めるのがよいが、着火・停止時の温度変化や作動
時における輻射偉容部間の温度差などを考慮して上記温
度範囲に保持されるように設定するのがよい。
Most of the combustion gas hits the radiator 20, which is arranged at an angle, while remaining at a high temperature, and flows through the inside of the radiator 20.
Heat enough to make it incandescent. At this time, the radiator 20 is maintained at a high temperature of 800 to 1200°C, and N is placed around it.
The first heat exchanger tube group 19 is heated by radiation from both sides of the radiator 20. The temperature of the radiator should be as high as possible from the perspective of radiant heat transfer, but it should be maintained within the above temperature range, taking into account temperature changes during ignition and shutdown, and temperature differences between the radiant body parts during operation. It is recommended to set it to .

このとき、輻射熱の一部が面バーナプレート18にも照
射されるが、主に斜め方向からの照射であり、照射量も
第一の伝熱管群19に対するよりはるかに少ないため、
面バーナプレート18がこの輻射熱によって焼損される
ようなことはない。
At this time, some of the radiant heat is also irradiated to the surface burner plate 18, but the irradiation is mainly from an oblique direction and the amount of irradiation is much smaller than that to the first heat exchanger tube group 19.
The surface burner plate 18 will not be burned out by this radiant heat.

燃焼ガスは、第一の伝熱管群19と輻射体20の配置域
を通過する間に、伝熱管内を流れる流体との熱交換によ
って、その温度が600〜800℃に低下し、第二の伝
熱管群21に導かれ、内部を流れる流体に再び熱エネル
ギを伝達する。その際、輻射体20の輻射熱も、主に斜
め方向から第二の伝熱管群21に照射される。かくして
、第二の伝熱管群21内部の水などの流体は、例えば4
0〜80℃の湯となって、装置外へ導出される。
While the combustion gas passes through the area where the first heat exchanger tube group 19 and the radiator 20 are arranged, its temperature decreases to 600 to 800 °C due to heat exchange with the fluid flowing inside the heat exchanger tubes, and the temperature of the combustion gas decreases to 600 to 800 °C. It is guided to the heat transfer tube group 21 and transfers heat energy again to the fluid flowing inside. At this time, the radiant heat of the radiator 20 is also irradiated onto the second heat exchanger tube group 21 mainly from an oblique direction. In this way, the fluid such as water inside the second heat exchanger tube group 21 is, for example, 4
The hot water becomes hot water at a temperature of 0 to 80°C and is led out of the device.

上記実施例の流体加熱装置11と、対照例の流体加熱装
置とを用いて性能評価実験を行なった。実験条件および
実験結果は以下の通り。
A performance evaluation experiment was conducted using the fluid heating device 11 of the above example and the fluid heating device of the control example. The experimental conditions and experimental results are as follows.

(実験条件) ■燃料:天然ガス、空気比1.2 ■被加熱流体二人ロ水温20℃の水を、まず第一の伝熱
管群19に流し、ここを出た後、第二の伝熱管群21に
流す。
(Experimental conditions) ■Fuel: natural gas, air ratio 1.2 ■Heated fluid for two people Water at a water temperature of 20°C is first flowed through the first heat transfer tube group 19, and after leaving here, it is passed through the second heat transfer tube group 19. It flows into the heat tube group 21.

■第一の伝熱管群19:内径11.4mm、外径12.
7mm。
■First heat exchanger tube group 19: inner diameter 11.4 mm, outer diameter 12.
7mm.

フィン+9cの高ざI 、 6mm、フィン19cの外
径15.9mrnの銅製ローフインチューブを配列間隔
16mm(ピッチ約32mm)で5本千鳥状に配置。
Five copper loaf-in tubes with height I of fin +9c of 6 mm and outer diameter of fin 19c of 15.9 mrn are arranged in a staggered manner at an interval of 16 mm (pitch approximately 32 mm).

■輻射体20:板厚5mm 、セル数200個/in2
、セル断面正方形の常圧焼結炭化ケイ素製ハニカム板2
枚を第1図に示すごとく傾斜配置。
■Radiator 20: plate thickness 5mm, number of cells 200/in2
, pressureless sintered silicon carbide honeycomb plate 2 with square cell cross section
Arrange the sheets at an angle as shown in Figure 1.

■第二の伝熱管群21:伝熱管の内径11.5mm、外
径12.7mmの銅チューブとフィン厚さ0.35mm
、フィンピッチ2.7mmのフィンを組合わせたプレー
トフィンチューブ。
■Second heat transfer tube group 21: Copper tubes with inner diameter of heat transfer tubes of 11.5 mm and outer diameter of 12.7 mm, and fin thickness of 0.35 mm.
, a plate fin tube that combines fins with a fin pitch of 2.7mm.

なお、実施例の装置においては、面バーナブレーH8の
上面から伝熱管+9bのフィン19c下組までの距jf
la 820mm、面バーナプレート18の上面から第
二の伝熱管群21のフィン下縁までの距mbを68mm
とした。
In addition, in the apparatus of the embodiment, the distance jf from the upper surface of the surface burner brake H8 to the lower assembly of the fins 19c of the heat exchanger tube +9b
la 820 mm, and the distance mb from the top surface of the surface burner plate 18 to the lower edge of the fins of the second heat exchanger tube group 21 is 68 mm.
And so.

また、対照例の装置においては、第一の伝熱管群19お
よび輻射体20を設けず、実施例の装置に用いたのと同
一の第二の伝熱管群21のみを設け、距111b 18
:200mmとした。
In addition, in the device of the control example, the first heat exchanger tube group 19 and the radiator 20 were not provided, and only the second heat exchanger tube group 21, which was the same as that used in the device of the example, was provided, and the distance 111b 18
:200mm.

(実験結果) 燃焼空周容積+熱交換部容積 対照例:実施例=I:0.28 伝熱面積      対照例:実施例=I:1.18交
換熱量      対照例:実施例=I:1.64この
結果からも分かるように、実施例の装置では、tli焼
室15に、第一の伝熱管群19と輻射体20を前記のよ
うな関係で配置したので、燃焼空間を大幅に縮小化する
ことができたとともに、伝熱面積を18%増加しただけ
で64%もの交換熱量の増加が得られた。また、排出C
O濃度も対照例に比べ、実施例では減少していた。なお
、実施例の装置では燃焼室負荷を対照例の約30倍にま
で増加させである。
(Experimental results) Combustion air circumferential volume + heat exchange section volume Control example: Example = I: 0.28 Heat transfer area Control example: Example = I: 1.18 Exchange heat amount Control example: Example = I: 1. 64 As can be seen from this result, in the apparatus of the example, the first heat exchanger tube group 19 and the radiator 20 were arranged in the above relationship in the tri-firing chamber 15, so the combustion space was significantly reduced. In addition, by increasing the heat transfer area by 18%, the amount of heat exchanged was increased by 64%. Also, emission C
The O concentration was also decreased in the example compared to the control example. In addition, in the apparatus of the example, the combustion chamber load was increased to about 30 times that of the control example.

第2図には、本発明の第2実施例が示されている。この
実施例が第1寅施例と異なるところは、複数の通気性輻
射体20が、千鳥配置された第一の伝熱管群19の上段
の伝熱管19aを両側から覆うよ・うに傾斜配置されて
いて、輻射体20の縦断面は全体として鋸歯状となって
いる。このため、燃焼ガス流路にはケーシング12を横
断する実質的全域にわたって輻射体20が配置されてい
ることになり、燃焼ガスの全量が輻射体20を通過する
こととなる。したがって、燃焼ガスの熱エネルギは充分
に輻射体に伝熱される。また、輻射体20の配置に要す
る空間も削減されている。そのうえ、輻射体20による
輻射熱の照射方向が双方向となるため、第一の伝熱管群
19と第二の伝熱管群21の全体に輻射熱が均一照射さ
れ、燃焼熱を効率良く回収することができる。その他の
構成および作用は第1実施例に準じるので、説明を省略
する。
FIG. 2 shows a second embodiment of the invention. This embodiment differs from the first embodiment in that the plurality of breathable radiators 20 are arranged at an angle so as to cover the upper heat exchanger tubes 19a of the staggered first heat exchanger tube group 19 from both sides. The longitudinal section of the radiator 20 has a sawtooth shape as a whole. Therefore, the radiator 20 is disposed in the combustion gas flow path over substantially the entire area across the casing 12, and the entire amount of combustion gas passes through the radiator 20. Therefore, the thermal energy of the combustion gas is sufficiently transferred to the radiator. Furthermore, the space required for arranging the radiator 20 is also reduced. Moreover, since the direction of irradiation of the radiant heat by the radiator 20 is bidirectional, the radiant heat is uniformly irradiated to the entire first heat exchanger tube group 19 and the second heat exchanger tube group 21, and combustion heat can be efficiently recovered. can. Other configurations and operations are similar to those in the first embodiment, so their explanations will be omitted.

「発明の効果」 以上説明したように、本発明によれば、第一および第二
の伝熱管群に対して、燃焼ガスによる対流伝熱と輻射体
による輻射伝熱とが同時に作用するので、燃焼熱を効果
的に利用することができ、伝熱効果の向上を図ることが
できる。また、輻射体からの輻射熱は第一の伝熱管群に
よってかなりの量が遮られるので、輻射熱による燃焼手
段の焼損が防止される。ざらに、輻射体は高温に保たれ
るため、燃焼室で不完全燃焼生成物が発生したとしても
、この高温の輻射体によって酸化反応が促進されるので
、不完全燃焼生成物の排出量を抑制することができる。
"Effects of the Invention" As explained above, according to the present invention, convective heat transfer by the combustion gas and radiant heat transfer by the radiator act simultaneously on the first and second heat exchanger tube groups. Combustion heat can be used effectively, and the heat transfer effect can be improved. Moreover, since a considerable amount of the radiant heat from the radiator is blocked by the first heat transfer tube group, burning out of the combustion means due to the radiant heat is prevented. In general, since the radiator is kept at a high temperature, even if incomplete combustion products occur in the combustion chamber, the oxidation reaction is promoted by this high temperature radiator, reducing the amount of incomplete combustion products emitted. Can be suppressed.

さらにまた、製雪全体の小型化を図ることができる。Furthermore, the overall size of snow making can be reduced.

【図面の簡単な説明】 第1図、蔦2図は本発明の流体加熱装置のそれぞれ第1
実施例、第2実施例の断面図である。 11は流体加熱装置、12はケーシング、13はファン
ケーシング、14は混合室、15は燃焼室、18は面バ
ーナプレート、19は第一の伝熱管群、20は輻射体、
21は第二の伝熱管群、22はフィン。 ′i41図 第2Fs
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 and Fig. 2 show the first and second parts of the fluid heating device of the present invention, respectively.
FIG. 2 is a cross-sectional view of an embodiment and a second embodiment. 11 is a fluid heating device, 12 is a casing, 13 is a fan casing, 14 is a mixing chamber, 15 is a combustion chamber, 18 is a surface burner plate, 19 is a first heat exchanger tube group, 20 is a radiator,
21 is a second heat exchanger tube group, and 22 is a fin. 'i41 Figure 2Fs

Claims (1)

【特許請求の範囲】 1、燃焼手段と、燃焼手段の近接下流に配置された第一
の伝熱管群と、第一の伝熱管群を構成する伝熱管の間に
燃焼ガスの流れ方向に対して傾斜させて配置された複数
の通気性輻射体と、第一の伝熱管群の近接下流に配置さ
れた第二の伝熱管群とを備えることを特徴とする流体加
熱装置。 2、特許請求の範囲第1項において、前記通気性輻射体
は燃焼ガス流路横断面の実質的全域にわたって全体とし
て縦断面が鋸歯状となるように配置されている流体加熱
装置。
[Claims] 1. Between the combustion means, the first heat exchanger tube group disposed adjacent to and downstream of the combustion means, and the heat exchanger tubes constituting the first heat exchanger tube group, in the flow direction of the combustion gas, 1. A fluid heating device comprising: a plurality of air-permeable radiators disposed at an angle; and a second heat exchanger tube group disposed adjacently downstream of the first heat exchanger tube group. 2. The fluid heating device according to claim 1, wherein the permeable radiator is arranged so that its longitudinal section as a whole has a sawtooth shape over substantially the entire cross section of the combustion gas flow path.
JP3991487A 1987-02-23 1987-02-23 Fluid heating device with radiator Pending JPS63207913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3991487A JPS63207913A (en) 1987-02-23 1987-02-23 Fluid heating device with radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3991487A JPS63207913A (en) 1987-02-23 1987-02-23 Fluid heating device with radiator

Publications (1)

Publication Number Publication Date
JPS63207913A true JPS63207913A (en) 1988-08-29

Family

ID=12566209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3991487A Pending JPS63207913A (en) 1987-02-23 1987-02-23 Fluid heating device with radiator

Country Status (1)

Country Link
JP (1) JPS63207913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793758B1 (en) * 2007-02-06 2008-01-10 엘지전자 주식회사 Surface burning burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793758B1 (en) * 2007-02-06 2008-01-10 엘지전자 주식회사 Surface burning burner

Similar Documents

Publication Publication Date Title
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
KR19990013605A (en) Combustion device
JPS63207913A (en) Fluid heating device with radiator
CN210425564U (en) Combustion heat exchange assembly and gas water heater with same
JPS63207912A (en) Fluid heating device with radiator
JPH10510912A (en) Gas burners for heating devices, especially water heaters
JPS58193039A (en) Heater
JPH0739880B2 (en) Fluid heating device
JPS63210513A (en) Improved fluid heating device
JPH0810046B2 (en) Improved fluid heating device
JPS63207910A (en) Fluid heater with radiation cloth
JPS63207911A (en) Fluid heating device
JPS63251751A (en) Device for heating fluid
JPH05761Y2 (en)
JPS61256113A (en) Surface combustion burner and heat exchanger utilizing this burner
JP2000018729A (en) Heat exchanger with heat transfer fin
KR940008441B1 (en) Heat exchanger constructing porous
RU160540U1 (en) WATER BOILER
JPH0612196B2 (en) Heat exchange method and heat exchange device used directly in the method
JP3841956B2 (en) Catalytic combustion device
JPS62233639A (en) Fluid heating apparatus
JP2918375B2 (en) Gas water heater
CN111692751A (en) Combustion heat exchange assembly and gas water heater with same
JPS63251750A (en) Fluid heater
JPH0427450B2 (en)