JPS63207911A - Fluid heating device - Google Patents

Fluid heating device

Info

Publication number
JPS63207911A
JPS63207911A JP3991287A JP3991287A JPS63207911A JP S63207911 A JPS63207911 A JP S63207911A JP 3991287 A JP3991287 A JP 3991287A JP 3991287 A JP3991287 A JP 3991287A JP S63207911 A JPS63207911 A JP S63207911A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat transfer
tube group
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3991287A
Other languages
Japanese (ja)
Inventor
Noriyuki Oda
紀之 織田
Satoshi Ebato
江波戸 智
Susumu Morita
進 森田
Kozo Sakurai
桜井 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Gas Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3991287A priority Critical patent/JPS63207911A/en
Publication of JPS63207911A publication Critical patent/JPS63207911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

PURPOSE:To effectively transfer combustion heat without burning a fire combustion means and a heat exchange part so as to prevent incomplete combustion by providing block-shaped or column-shaped radiators disposed in a gas- permeable manner between heat transfer tubes of a first heat transfer tube group and/or at the downstream in the vicinity thereof and a second transfer tube group disposed at the downstream in the vicinity of the radiators. CONSTITUTION:Block-shaped or column-shaped radiation elements are disposed between heat transfer tubes of a first heat transfer tube group and/or at the downstream in the vicinity thereof in a combustion gas permeable manner. Each of the block-shaped or column-shaped radiators are preferably made from a heat-resisting material such as silicon carbide, silicon nitride, ceramics such as cordierite or the like, or heat-resisting steel. The second heat transfer tube group is disposed at the downstream in the vicinity of heat transfer tube group 21. The block-shaped radiation element 20 emits radiant heat to both the first heat transfer group 19 and the second heat transfer group 21 disposed in a zigzag manner. The radiator 20 has a configuration of a spherical body, a cubic body, a rectangular parallelpiped, or a shape analogous thereto such as a golf ball or a Rugby ball.

Description

【発明の詳細な説明】 「技術分野」 本発明は、湯沸器、風呂釜、温水ボイラなどに使用され
る流体加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a fluid heating device used in water heaters, bathtubs, hot water boilers, and the like.

「従来技術およびその問題点」 従来、湯沸器、風呂釜、温水ボイラなどの流体加熱装置
においては、バーナの下流の燃焼室にて燃料をvAmさ
せた後、燃焼ガスを伝熱管群間に導き、主に対決熱伝達
を利用して、伝熱管群の内部を流れる水などの流体を加
熱するようになっていた。
"Prior Art and its Problems" Conventionally, in fluid heating devices such as water heaters, bathtubs, and hot water boilers, after increasing the fuel to vAm in the combustion chamber downstream of the burner, the combustion gas is transferred between a group of heat transfer tubes. It was designed to heat a fluid such as water flowing inside a group of heat exchanger tubes, mainly by using confrontational heat transfer.

近年、これらの流体加熱装置においては、極力コンパク
トにするため、燃焼、室をできる限り小型化すると共に
、熱交換部の単位容積当りの伝熱量を増加させる傾向に
ある。
In recent years, in order to make these fluid heating devices as compact as possible, there has been a trend to reduce the size of the combustion chamber as much as possible and to increase the amount of heat transferred per unit volume of the heat exchange section.

ところで、燃焼室を単純に小型化すると、燃焼!内で燃
焼反応が完結しないまま熱交換部にまで火炎が伸び、そ
の結果、燃焼反応途中の燃料が伝熱管の壁に接触して火
炎が冷却されることにより燃焼反応が停止して、不完全
燃焼を起こすことがあった。このことは、燃料の損失と
なるばかりか、−酸化炭素、スス、アルデヒド等が発生
し、人体にも悪影響を及ぼす結果となる。
By the way, if you simply downsize the combustion chamber, it will burn! The flame extends to the heat exchanger without completing the combustion reaction inside the tube, and as a result, the fuel in the middle of the combustion reaction comes into contact with the wall of the heat exchanger tube and the flame is cooled, stopping the combustion reaction and causing incomplete combustion. Combustion could occur. This not only results in a loss of fuel, but also generates carbon oxide, soot, aldehyde, etc., which has an adverse effect on the human body.

また、燃趙室を小型化して熱交換部と一体化すると、伝
熱管表面に未燃燃料成分などが付着堆積した場合、伝熱
管が過熱されて損傷したつ、燃焼室内の燃焼ガスの混合
が悪くなって温度分布か大きくなりやすく、局部的に伝
熱負荷か増大しで同しく伝熱管を損傷させることがあっ
た。
In addition, if the combustion chamber is downsized and integrated with the heat exchange section, if unburned fuel components are deposited on the surface of the heat exchanger tube, the heat exchanger tube may be overheated and damaged, and the mixture of combustion gases in the combustion chamber may be disrupted. When the temperature distribution worsens, the temperature distribution tends to widen, and the heat transfer load increases locally, which can also damage the heat transfer tubes.

このため燃焼室の小型化には限界があり、例えば現在市
販されているガス湯沸器においては、燃焼室と熱交換部
との大きざを比較すると約2:1であり、バーナ先端と
下流の伝熱管との距離は20〜30cmもあり、燃1!
ff負荷としては5x 10’ kcal/m3/hr
程度以下に押えられでいた。これ以上燃焼室を小ざくし
て熱交換部を火炎に近づけることは、伝熱管の損傷を早
めたり、COの発生を増加させるなどの理由で困難とな
っていた。
For this reason, there is a limit to the miniaturization of the combustion chamber; for example, in currently commercially available gas water heaters, the size ratio between the combustion chamber and the heat exchanger is about 2:1, and the size difference between the burner tip and the downstream The distance from the heat exchanger tube is 20 to 30 cm, and the temperature is 1!
ff load is 5x 10' kcal/m3/hr
It was suppressed to a certain extent. It has become difficult to make the combustion chamber any smaller and bring the heat exchanger closer to the flame because this may accelerate damage to the heat exchanger tubes or increase the generation of CO.

対流熱伝達を利用している限りにおいでは、熱交換部の
単位容積当りの伝熱量を増加させるためには、プレート
フィン間隔を狭くするとともにその枚数を増して単位容
積当りの伝熱面積を増加させるか、燃焼ガスの流速を上
げて熱伝達率を増加させるか、あるいは熱交換部へ流入
する燃焼ガスの温度を上昇させて加熱側と被加熱側との
温度差を大きくするなどの対策が必要となる。
As long as convection heat transfer is used, in order to increase the amount of heat transferred per unit volume of the heat exchange section, the distance between plate fins should be narrowed and the number of plate fins should be increased to increase the heat transfer area per unit volume. Measures can be taken to increase the heat transfer coefficient by increasing the flow rate of the combustion gas, or by increasing the temperature of the combustion gas flowing into the heat exchanger to increase the temperature difference between the heating side and the heated side. It becomes necessary.

しかし、プレートフィン間の目詰まりを防ぐためにプレ
ートフィン間隔は2.6mm程度が下限である。圧力損
失を抑えるためには燃焼ガス流速も10m/s程度が上
限である。ざらに、熱交換部へ流入する燃焼ガス温度を
上げると、プレートフィン先端の温度か上昇して、耐熱
性や耐久性に問題が発生するため、燃焼ガス流入温度も
1000℃程度が上限である。かくして熱交換部の小型
化にも限界が生じでいた。
However, in order to prevent clogging between the plate fins, the lower limit of the plate fin interval is about 2.6 mm. In order to suppress pressure loss, the upper limit of the combustion gas flow velocity is about 10 m/s. Roughly speaking, if the temperature of the combustion gas flowing into the heat exchange section is increased, the temperature at the tip of the plate fin will rise, causing problems with heat resistance and durability, so the upper limit of the combustion gas inflow temperature is about 1000℃. . Thus, there has been a limit to the miniaturization of the heat exchange section.

本発明者らは、さきに特願昭60−223980におい
て、バーナなどの下流に第一の伝熱管群、ついで第二の
伝熱管群を設け、第一の伝熱管群と第二の伝熱管群の間
に通気性輻射体を配置した流体加熱袋Mを提案した。こ
の流体加熱装置では輻射体としてセラミックスハニカム
平板などを採用していたため、輻射体の強度が充分確保
できないことがあり、あるいは輻射体の面内にかなりの
温度差が生じて破損に至ることもあった。
The present inventors previously disclosed in Japanese Patent Application No. 60-223980 that a first heat exchanger tube group and then a second heat exchanger tube group were provided downstream of a burner, etc., and the first heat exchanger tube group and the second heat exchanger tube group were We have proposed a fluid heating bag M in which a breathable radiator is placed between the groups. Since this fluid heating device uses a ceramic honeycomb flat plate as the radiator, the radiator may not have sufficient strength, or a considerable temperature difference may occur within the plane of the radiator, leading to damage. Ta.

「発明の目的」 本発明の目的は、上記従来技術の問題点を解消し、燃焼
手段および熱交換部を焼損させることなく燃焼熱を効果
的に伝熱させ、さらには不完全燃焼を抑制し、装置全体
の小型化を図ることのできる流体加熱製雪ヲ提供するこ
とにある。
"Objective of the Invention" An object of the present invention is to solve the problems of the prior art described above, to effectively transfer combustion heat without burning out the combustion means and the heat exchange part, and to suppress incomplete combustion. The object of the present invention is to provide a fluid-heated snow making device that can reduce the size of the entire device.

「発明の構成」 本発明による流体加熱装置は、燃焼手段と、燃焼手段の
近接下流(ζ配置された第一の伝熱管群°と、第一の伝
熱管群の間および/または近接下流に通気可能に配置さ
れた塊状もしくは柱状の輻射体と、輻射体の近接下流に
配置された第二の伝熱管群とを備えることを特徴とする
"Structure of the Invention" The fluid heating device according to the present invention includes a combustion means, a first heat exchanger tube group arranged in the vicinity downstream of the combustion means (between the first heat exchanger tube group and/or the first heat exchanger tube group and/or adjacent downstream of the combustion means). It is characterized by comprising a block-like or columnar radiator arranged to allow ventilation, and a second group of heat exchanger tubes arranged close to and downstream of the radiator.

本発明の好ましい態様では、前記輻射体はセラミックス
からなる。
In a preferred embodiment of the invention, the radiator is made of ceramics.

本発明の別の好ましい態様では、前記輻射体は前記第一
の伝熱管群に載置されでなる。
In another preferred embodiment of the present invention, the radiator is placed on the first group of heat exchanger tubes.

本発明にて、燃焼手段としては、都市ガス、プロパンガ
ス、天然ガスなどの気体燃料、もしくは灯油などの液体
燃料を気化させたものを燃料とし、燃焼用空気と燃料と
を別々に燃焼室へ供給する拡散燃焼型バーナ、あるいは
燃焼用空気と上記したような燃料とを予め所要割合で混
合させた後に燃焼室へ供給する予混合燃焼型バーナなど
が使用される。
In the present invention, the combustion means uses gaseous fuel such as city gas, propane gas, and natural gas, or vaporized liquid fuel such as kerosene, and the combustion air and fuel are separately sent to the combustion chamber. A diffusion combustion type burner is used, or a premix combustion type burner is used, in which combustion air and the above-mentioned fuel are mixed in advance at a required ratio and then supplied to the combustion chamber.

第一の伝熱管群は好ましくは複数段、特には千鳥状に配
置され、全体として燃焼手段の下流に、かつ、燃焼手段
に近接して設けられる。
The first heat exchanger tube group is preferably arranged in multiple stages, particularly in a staggered manner, and is generally provided downstream of and close to the combustion means.

第一の伝熱管群を構成する伝熱管(複数段ある場合には
最上流の伝熱管)の上流縁は、例えば燃焼手段によって
形成される火炎中、あるいは火炎の先端に近接した位置
に配置される。具体的には燃焼手段の燃料ガス吐出口(
例えばバーナ先端)と上述した伝熱管の上流縁との距離
は5〜50mmとすることが好ましい、言い換えると、
火炎の□長さは、燃焼手段の設計によって異なるが、一
般には5〜50mm程度であるため、結局第一の伝熱管
群における最上流段の伝熱管は、火炎の先端付近に配置
されることになる。
The upstream edge of the heat exchanger tube (the most upstream heat exchanger tube when there are multiple stages) constituting the first heat exchanger tube group is placed, for example, in the flame formed by the combustion means or at a position close to the tip of the flame. Ru. Specifically, the fuel gas discharge port of the combustion means (
For example, the distance between the burner tip) and the upstream edge of the heat transfer tube described above is preferably 5 to 50 mm. In other words,
The length of the flame varies depending on the design of the combustion means, but is generally about 5 to 50 mm, so the most upstream heat exchanger tube in the first heat exchanger tube group is ultimately placed near the tip of the flame. become.

第一の伝熱管群を燃焼手段に対し上記位置より離れた位
置に配置した場合には、熱損失あるいは燃焼室を囲むケ
ーシングの冷却管などにより燃焼ガスの温度が低下し、
本発明の効果を充分には得られなくなったり、ガス厚み
が増大して高温燃焼ガスからバーナへの輻射入熱が増大
し、バーナの損傷、逆火を招く可能性がある。第一の伝
熱管群は、燃焼手段に最も近接し高温の燃焼ガスにざら
されるが、内部を流れる水等の流体により冷却されるの
で、熱損傷が防止される。
If the first heat transfer tube group is placed at a position farther from the combustion means than the above position, the temperature of the combustion gas will decrease due to heat loss or cooling pipes in the casing surrounding the combustion chamber.
There is a possibility that the effects of the present invention cannot be sufficiently obtained, or the gas thickness increases and the radiant heat input from the high temperature combustion gas to the burner increases, leading to damage to the burner and backfire. The first heat transfer tube group is closest to the combustion means and is exposed to high-temperature combustion gas, but is cooled by fluid such as water flowing inside, so thermal damage is prevented.

第一の伝熱管群は、周囲の燃焼ガス温度が高く、しかも
後述する輻射体よりの輻射伝熱によって熱伝達率も高く
なるため、外面にはフィンを付(すないものが好ましい
が、伝熱量増大の観点より、例えば高さ2mm以下のフ
ィンを有するいわゆるローフイン型とすることも可能で
ある。
The first group of heat transfer tubes has fins on the outer surface (although it is preferable to do so without fins), since the surrounding combustion gas temperature is high and the heat transfer coefficient is also high due to radiation heat transfer from the radiator, which will be described later. From the viewpoint of increasing the amount of heat, it is also possible to use a so-called lo-fin type having fins with a height of 2 mm or less, for example.

上記第一の伝熱管群の間および/または近接下流には、
塊状もしくは柱状の輻射体が燃焼ガスの通気が可能なよ
うに配置される。このように本発明ではセラミックスハ
ニカム板やセラミックス通気性多孔質板などに比べて単
純形状である塊状体もしくは柱状体を輻射体として採用
しているので、輻射体の製作や形状選択が容易となり、
加熱温度条件や加熱量などが種々異なる流体加熱装百の
いずれにも採用できる利点もある。また、単純形状であ
るため、プレス成形体、ないしはセラミックスホットプ
レス焼結体なども採用でき、その結果、輻射体がざらさ
れる温度’H100〜1300℃といった高温にするこ
とも可能となり、輻射伝熱量を大幅に向上できる。
Between the first heat exchanger tube group and/or adjacent downstream,
A block or columnar radiator is arranged to allow ventilation of combustion gases. In this way, in the present invention, a lump or columnar body, which has a simpler shape than a ceramic honeycomb plate or a porous ceramic plate, is used as the radiator, making it easier to manufacture the radiator and select the shape.
It also has the advantage that it can be used in any of the fluid heating devices with various heating temperature conditions, heating amounts, etc. In addition, since it has a simple shape, press molded bodies or ceramic hot press sintered bodies can be used, and as a result, it is possible to heat the radiator to a high temperature of 100 to 1300 degrees Celsius, which allows radiation to be transmitted. The amount of heat can be significantly increased.

この塊状もしくは柱状の輻射体は、高温で効果的な輻射
熱を発生させるよう、耐熱性材料、例えば炭化ケイ素、
窒化ケイ素、コージライトなどのセラミックス、あるい
は耐熱鋼などが好ましい。
This block-shaped or columnar radiator is made of heat-resistant material, such as silicon carbide, to generate effective radiant heat at high temperatures.
Ceramics such as silicon nitride and cordierite, or heat-resistant steel are preferred.

塊状もしくは柱状の輻射体は、燃焼ガスが有している熱
エネルギを強力な輻射エネルギに変換し、燃焼ガスの流
れとは無関係に、主に第一の伝熱管群に輻射熱を照射す
る。この輻射体からの輻射熱伝達と燃焼ガスによる対流
熱伝達により、第一の伝熱管群が加熱され、その内部を
流れる流体が加熱される。ざらに、上記輻射体は高温に
加熱されているため、燃焼ガス中に含まれているC01
ICなどの未燃成分の酸化反応を促進させ、一種の触媒
作用の効果を発揮する。
The block-like or columnar radiator converts the thermal energy of the combustion gas into strong radiant energy, and mainly irradiates the first heat exchanger tube group with the radiant heat, regardless of the flow of the combustion gas. The first heat transfer tube group is heated by the radiant heat transfer from the radiator and the convective heat transfer by the combustion gas, and the fluid flowing therein is heated. In general, since the radiator is heated to a high temperature, the CO1 contained in the combustion gas
It promotes the oxidation reaction of unburned components such as IC and exerts a kind of catalytic effect.

第二の伝熱管群は、上記輻射体の近接下流に配置される
。この第二の伝熱管群も、燃焼ガスからの対流熱伝達と
輻射体からの輻射熱伝達により加熱され、その内部を流
れる流体が加熱される。第二の伝熱管群は、伝熱効率を
向上させるため、外面にフィンを有するものが好ましい
、また燃焼ガスが平均して接触するようにするため、第
二の伝熱管群は、伝熱管を千鳥状に配列することもでき
る。
The second heat exchanger tube group is arranged adjacent to and downstream of the radiator. This second heat transfer tube group is also heated by convective heat transfer from the combustion gas and radiant heat transfer from the radiant, and the fluid flowing inside it is heated. In order to improve heat transfer efficiency, the second heat transfer tube group preferably has fins on the outer surface.In order to ensure that the combustion gases come into contact with each other evenly, the second heat transfer tube group has heat transfer tubes arranged in a staggered manner. They can also be arranged in a shape.

なお、第一および第二の伝熱管群の伝熱管の材質は、銅
、ステンレス、アルミニウム、アルミニウム合金、チタ
ン、チタン合金、炭化ケイ素、窒化ケイ素などの熱伝導
性、耐食性に優れた材質であることが好ましく、特に、
高熱伝導率、高輻射率、低線膨張係数、高強度を有し、
成形性にも優れた反応焼結炭化ケイ素、あるいは高熱伝
導性材料である銅が最も好ましい。
The heat exchanger tubes of the first and second heat exchanger tube groups are made of materials with excellent thermal conductivity and corrosion resistance, such as copper, stainless steel, aluminum, aluminum alloy, titanium, titanium alloy, silicon carbide, and silicon nitride. It is preferable that, in particular,
It has high thermal conductivity, high emissivity, low coefficient of linear expansion, and high strength.
Most preferred are reactive sintered silicon carbide, which has excellent formability, or copper, which is a highly thermally conductive material.

本発明の場合、第一の伝熱管を燃焼手段に近接゛させた
ことにより、第一および第二の伝熱管群が大きな伝熱負
荷を受けて局部的に高温となることが考えられる。また
、条件によっては、水などの被加熱流体が局部沸騰を起
こしで、発生した蒸気などにより伝熱を聞書され、局部
的に非常に高温となることも考えられる。したがって、
耐熱性に乏しい金属製とした場合には、伝熱管が加熱さ
れて激しく酸化され、極端な場合は溶損することも考え
られるので、材質、レイアウト、使用条件等の設定を適
宜選択することが望ましい、この点、セラミックス製と
すると充分な耐熱性が得られるため、特に高温部の伝熱
管には好ましい。また、燃焼ガスの保有する熱を顕熱の
みならず潜熱まで回収しようとする場合には、低温の熱
交換部に硝酸の発生をきたすことがあり(天然ガス自体
はクリーンであるが、高温の燃焼により発生したNOX
が伝熱管表面の低温部で結露した水分と結び付いて硝酸
となる)、その点からも低温の熱交換部では特に耐腐食
性を有するセラミックス製とすることが好ましい。
In the case of the present invention, by placing the first heat exchanger tube close to the combustion means, it is conceivable that the first and second heat exchanger tube groups receive a large heat transfer load and become locally high temperature. Furthermore, depending on the conditions, it is possible that the fluid to be heated, such as water, may locally boil and the generated steam may cause heat transfer, resulting in a locally extremely high temperature. therefore,
If the heat transfer tube is made of metal with poor heat resistance, the heat transfer tube will be heated and violently oxidized, and in extreme cases, it may melt, so it is desirable to select the material, layout, usage conditions, etc. appropriately. In this respect, ceramics are particularly preferable for heat exchanger tubes in high-temperature parts because sufficient heat resistance can be obtained. Additionally, when attempting to recover not only the sensible heat but also the latent heat of the combustion gas, nitric acid may be generated in the low-temperature heat exchanger (natural gas itself is clean, but the high-temperature NOX generated by combustion
(condensed with moisture condensed on the surface of the heat exchanger tube to form nitric acid); from this point of view as well, it is preferable that the low-temperature heat exchange section be made of ceramic, which has corrosion resistance.

同様な理由で、高温部あるいは低温部の伝熱管の外面に
設けるフィンの材質も、セラミックスが好ましい。
For the same reason, the material of the fins provided on the outer surface of the heat exchanger tube in the high temperature section or the low temperature section is also preferably ceramic.

「発明の実施例」 以下に、本発明による流体加熱装置の実施例を図面に基
いて説明する。
"Embodiments of the Invention" Examples of the fluid heating device according to the present invention will be described below with reference to the drawings.

第1図に示す流体加熱装=11は、上方が図示せぬ排気
口に接続されたケーシング12で全体が囲まれており、
このケージジグ12は、ファンケーシング13、混合室
14および燃焼室15が連通して構成されている。
The fluid heating device 11 shown in FIG. 1 is entirely surrounded by a casing 12 whose upper part is connected to an exhaust port (not shown).
The cage jig 12 includes a fan casing 13, a mixing chamber 14, and a combustion chamber 15 that communicate with each other.

ファンケーシング13には、ファン16が組み込まれ、
このファン16の吐出部に燃料ガスノズル17が配設さ
れている。燃料ガスノ′ズル17には、図示しないガス
供給源から燃料ガスが導入される。したがって、ファン
16からの空気流と燃料ガスノズル17からの燃料ガス
とが、ファンケーシング13より混合室14へ供給され
て、燃料ガスと空気との予混合気が作られる。
A fan 16 is incorporated in the fan casing 13,
A fuel gas nozzle 17 is disposed at the discharge portion of the fan 16. Fuel gas is introduced into the fuel gas nozzle 17 from a gas supply source (not shown). Accordingly, the air flow from the fan 16 and the fuel gas from the fuel gas nozzle 17 are supplied from the fan casing 13 to the mixing chamber 14 to create a premixed mixture of fuel gas and air.

混合室14と燃焼室15の境目には、燃焼手段としでの
面バーナプレート18が配置すれでいる。この面バーナ
プレート18は多孔を有し、この多孔を通過した予混合
気は面バーナプレート18の下流側で面状に火炎を形成
する。なお、始動時に必要な点火源は図示を略した。
At the boundary between the mixing chamber 14 and the combustion chamber 15, a surface burner plate 18 is disposed as a combustion means. This surface burner plate 18 has porous holes, and the premixture that has passed through these holes forms a flame in a planar shape on the downstream side of the surface burner plate 18. Note that the ignition source necessary for starting is omitted from the illustration.

ケーシング12内の面バーナプレート18に近接した位
百には、第一の伝熱管群19が千鳥状に配置されている
。この実施例の場合、第一の伝熱管群19の各伝熱管は
、外径12〜20mm、肉厚0.6〜2.0 mrnと
されている。
A first heat exchanger tube group 19 is arranged in a staggered manner in the vicinity of the surface burner plate 18 within the casing 12 . In this embodiment, each heat exchanger tube of the first heat exchanger tube group 19 has an outer diameter of 12 to 20 mm and a wall thickness of 0.6 to 2.0 mrn.

伝熱管の外径は、小ざいほど内部を流れる流体の単位体
積当りの伝熱管外表面面積割合が増大し輻射熱受熱量が
増大するが、一方で、必要な伝熱管本数も増加し、ざら
に管内で沸騰が起きた場合の気泡による流路閉塞の可能
性も高くなる。本発明の流体加熱装置の効率性を考慮す
ると、湯沸器などにあっては上記寸法範囲が好ましい。
As the outer diameter of the heat transfer tube becomes smaller, the ratio of the outer surface area of the heat transfer tube per unit volume of the fluid flowing inside increases, and the amount of radiant heat received increases, but on the other hand, the number of required heat transfer tubes also increases, and the If boiling occurs within the pipe, the possibility of blockage of the flow path due to bubbles also increases. Considering the efficiency of the fluid heating device of the present invention, the above size range is preferable for water heaters and the like.

伝熱管の配列間隔は6〜30mmと、はぼ伝熱管の外径
と同程度の間隔を設けるのが好ましい。この間隔が小さ
すぎると、燃焼ガス通過時の圧損が大きくなったり、伝
熱管を複数段に配置した場合に輻射体から離れた段の伝
熱管への輻射体からの輻射熱量が不足したりする。
It is preferable that the heat exchanger tubes be arranged at intervals of 6 to 30 mm, which is approximately the same as the outer diameter of the heat exchanger tubes. If this interval is too small, the pressure drop when the combustion gas passes through will increase, or if heat transfer tubes are arranged in multiple stages, the amount of radiant heat from the radiator to the heat transfer tubes in the stage far away from the radiator will be insufficient. .

面バーナプレート18端面からの最下段の伝熱管までの
距離aは5〜50mmとされる。なお、第一の伝熱管群
19の伝熱管は、通常の円筒状のものでもよく、あるい
は断面楕円形などの管でもよい。また、フィンなし管で
もよいが、輻射をより効果的に利用するため、この実施
例では2mm以下のフィンを有するローフイン型伝熱管
とされでいる。
The distance a from the end surface of the surface burner plate 18 to the lowest heat exchanger tube is 5 to 50 mm. Note that the heat exchanger tubes of the first heat exchanger tube group 19 may be of a normal cylindrical shape or may be tubes having an elliptical cross section. Further, although a finless tube may be used, in order to utilize radiation more effectively, in this embodiment, a loaf-in type heat exchanger tube having fins of 2 mm or less is used.

第一の伝熱管群19@構成する上段の伝熱管の上で管と
管との間には、複数の塊状の輻射体20が載置されてい
る。この塊状の輻射体20は、千鳥配置され−た第一の
伝熱管群19および後述の第二の伝熱管群21の双方に
輻射熱を照射する。塊状の輻射体20としては、球体、
立方体、直方体、あるいはこれらに類するゴルフボール
状、ラグビーボール状のものでもよく、コンペイトウ状
、イガグリ状、テトラボッド状などのやや複雑形状の小
団塊も含まれる。また、このような塊状の輻射体20に
はセラミックスを用いることが好ましい。
A plurality of lump-shaped radiators 20 are placed between the tubes on the upper heat transfer tubes constituting the first heat transfer tube group 19@. This block-shaped radiator 20 irradiates radiant heat to both a first heat exchanger tube group 19 and a second heat exchanger tube group 21, which will be described later, which are arranged in a staggered manner. As the lump-like radiator 20, a sphere,
They may be cubes, rectangular parallelepipeds, or similar shapes such as golf balls or rugby balls, and also include small nodules with somewhat complex shapes such as konpeito, burr, and tetrabod shapes. Moreover, it is preferable to use ceramics for such a lump-like radiator 20.

塊状の輻射体20のざらに下流には、この輻射体20に
近接して第二の伝熱管群21が配!されている。この実
施例では第二の伝熱管群21を、多数の平板フィン22
と、このフィン22ヲ貫通し、かつ、熱的に接する複数
の伝熱管とで構成している。各伝熱管は、フィン22の
平面に直交して配置され、相互に平行を保っでいる。ま
た、第二の伝熱管群21も千鳥状に配置することができ
る。
Roughly downstream of the block-like radiator 20, a second heat transfer tube group 21 is arranged close to the radiator 20! has been done. In this embodiment, the second heat exchanger tube group 21 is composed of a large number of flat plate fins 22.
and a plurality of heat transfer tubes that pass through the fins 22 and are in thermal contact with them. The heat exchanger tubes are arranged perpendicularly to the plane of the fins 22 and remain parallel to each other. Moreover, the second heat exchanger tube group 21 can also be arranged in a staggered manner.

第二の伝熱管群21の各伝熱管は、外径が12〜20m
m、肉厚が0.6〜2.0mmとされ、伝熱管の配列間
隔は6〜30mm、フィン22の肉厚は0.3〜1.5
mm、フィン22の配列間隔は2.6〜6.0mmとさ
れる。
Each heat exchanger tube of the second heat exchanger tube group 21 has an outer diameter of 12 to 20 m.
m, the wall thickness is 0.6 to 2.0 mm, the arrangement interval of the heat exchanger tubes is 6 to 30 mm, and the wall thickness of the fins 22 is 0.3 to 1.5 mm.
mm, and the arrangement interval of the fins 22 is 2.6 to 6.0 mm.

なお、第一の伝熱管群19、第二の伝熱管群21の伝熱
管は、一般には水平に配置されるが、被加熱流体が沸騰
した際に気泡が抜けやすいように、被加熱流体の入口側
に比べ、出口側が上方となるように傾斜させてもよい。
The heat exchanger tubes of the first heat exchanger tube group 19 and the second heat exchanger tube group 21 are generally arranged horizontally, but the heat exchanger tubes of the first heat exchanger tube group 19 and the second heat exchanger tube group 21 are generally arranged horizontally. It may be inclined so that the outlet side is higher than the inlet side.

第一の伝熱管群19および第二の伝熱管群21内には被
加熱流体が流される。被加熱流体としては、液体、特に
水が好適である。この被加熱流体は、第一の伝熱管群1
9と第二の伝熱管群21にそれぞれ独立に流しでもよい
が、好ましくは両者間を直列に流される。この場合、温
度効率を大きくする上では、被加熱流体をまず第二の伝
熱管群21に流し、次いで第一の伝熱管群19に流しで
、燃焼ガスの流れに対して向流とすることが好ましい。
A fluid to be heated is flowed into the first heat exchanger tube group 19 and the second heat exchanger tube group 21. A liquid, particularly water, is suitable as the fluid to be heated. This fluid to be heated is supplied to the first heat exchanger tube group 1
Although the heat exchanger tubes 9 and the second heat exchanger tube group 21 may be flown independently, preferably they are flown in series between them. In this case, in order to increase the temperature efficiency, the fluid to be heated should first flow through the second heat exchanger tube group 21 and then flow through the first heat exchanger tube group 19, so that the fluid flows counter-currently to the flow of the combustion gas. is preferred.

一方、管内での局部沸騰を防止するためには、これと逆
に接続して、燃焼ガスの流れに対して並流とすることが
好ましい。また、各伝熱管群内では、いずれも直列に接
続されるのが通例であるが、同段の伝熱管を並列に接続
したのち、異段間を直列に接続するなど、適宜の選択も
できる。
On the other hand, in order to prevent local boiling within the tube, it is preferable to connect the tube in the opposite direction so that the flow is parallel to the flow of combustion gas. In addition, although it is customary for each heat exchanger tube group to be connected in series, it is also possible to make an appropriate selection, such as connecting heat exchanger tubes in the same stage in parallel and then connecting different stages in series. .

以下に、本発明製雪の作用を説明する。The operation of the snowmaking according to the present invention will be explained below.

燃料ガスノズル17によって燃料ガスがファンケーシン
グ13出口部に噴射され、ファン16よつの空気流によ
って燃焼用空気とともに混合室14に送られ、予混合気
が形成される。予混合気は面バーナプレート18を通過
して燃焼室15へ供給されて火炎に形成され、燃焼ガス
となる。
The fuel gas is injected into the outlet of the fan casing 13 by the fuel gas nozzle 17, and is sent to the mixing chamber 14 together with combustion air by the airflow from the fan 16, thereby forming a premixture. The premixture passes through the surface burner plate 18 and is supplied to the combustion chamber 15, where it is formed into a flame and becomes combustion gas.

予混合燃焼の場合には、燃焼ガス温度を高めるため、空
気比は極力1.0に近づけるのがよいが、未燃成分発生
tを抑える観点から、空気比を1.1〜1.4程度に設
定するのが好ましい。その結果、燃焼ガスは1500〜
1650℃の高温となり、燃焼室15内に配置された第
一の伝熱管群19に導かれ、対流熱伝達によって燃焼ガ
スが何している熱エネルギの一部を第一の伝熱管群19
の伝熱管内を流れる水などの流体へ伝達する。ざらに燃
焼ガスは、高温のまま塊状の輻射体20の相互間を通過
して流れ、この輻射体201Frも加熱して白熱化させ
る。
In the case of premix combustion, in order to increase the combustion gas temperature, it is best to keep the air ratio as close to 1.0 as possible, but from the perspective of suppressing the generation of unburned components, the air ratio should be around 1.1 to 1.4. It is preferable to set it to . As a result, the combustion gas is 1500 ~
The combustion gas reaches a high temperature of 1650° C. and is guided to the first heat exchanger tube group 19 arranged in the combustion chamber 15, and a part of the thermal energy of the combustion gas is transferred to the first heat exchanger tube group 19 by convection heat transfer.
The heat is transferred to the fluid such as water flowing inside the heat transfer tube. Roughly, the combustion gas flows through the lumpy radiators 20 while remaining at a high temperature, and this radiator 201Fr is also heated and becomes incandescent.

塊状の輻射体20は、1100〜1300℃の高温に保
持され、第一の伝熱管群19をほぼ全体1こ輻射加熱す
る。輻射伝熱の観点からは輻射体の温度を極力高めるの
が好ましいのだが、着火・停止時の温度変化あるいは輻
射体上での温度分布などを考慮すると、輻射体の耐久性
のために、上記温度範囲となるようにして使用するのが
好ましい、その際、輻射熱は、面バーナプレート18方
向にも照射されるが、第一の伝熱管群19の下段の伝熱
管によってかなりの量が逼られるため、面バーナプレー
ト1日がこの輻射熱によって焼損されることはない。
The block-shaped radiator 20 is maintained at a high temperature of 1100 to 1300° C. and radiates substantially the entire first heat exchanger tube group 19 . From the perspective of radiant heat transfer, it is preferable to raise the temperature of the radiator as much as possible, but when considering temperature changes during ignition and stopping, and temperature distribution on the radiator, the above-mentioned It is preferable to use the radiant heat within the temperature range. In this case, the radiant heat is also irradiated in the direction of the surface burner plate 18, but a considerable amount is concentrated by the lower heat exchanger tubes of the first heat exchanger tube group 19. Therefore, the surface burner plate will not be burned out by this radiant heat.

燃焼ガスは、第一の伝熱管群19および輻射体20の配
置域を通過する間に、伝熱管内を流れる流体との熱交換
によってその温度が800〜1000℃に低下し、第二
の伝熱管群21に導かれ、内部を流れる流体に再び熱エ
ネルギを伝達する。ざらに輻射体20からの輻射熱が第
二の伝熱管群21にも照射される。第二の伝熱管群21
内部の水などの流体は、40〜80℃に加熱されて、装
置外へ導出される。
While the combustion gas passes through the area where the first heat transfer tube group 19 and the radiator 20 are arranged, its temperature decreases to 800 to 1000°C by heat exchange with the fluid flowing inside the heat transfer tubes, and the temperature of the combustion gas decreases to 800 to 1000°C. It is guided to the heat tube group 21 and transfers heat energy again to the fluid flowing inside. The radiant heat from the radiator 20 is also irradiated to the second heat exchanger tube group 21 . Second heat exchanger tube group 21
Fluid such as water inside is heated to 40 to 80°C and led out of the device.

上記実施例の流体加熱装置11と、これとは異なる構成
の流体加熱装置とを用いて性能評価実験を行なった。実
験条件および実験結果は次の通り。
A performance evaluation experiment was conducted using the fluid heating device 11 of the above embodiment and a fluid heating device having a different configuration. The experimental conditions and results are as follows.

(実験条件) ■燃料:天然ガス、空気比1.2 ■被加熱流体二人ロ水温20℃の水を、まず第一の伝熱
管群19に流し、ここを出た後、第二の伝熱管群21に
流す。
(Experimental conditions) ■Fuel: natural gas, air ratio 1.2 ■Heated fluid for two people Water at a water temperature of 20°C is first flowed through the first heat transfer tube group 19, and after leaving here, it is passed through the second heat transfer tube group 19. It flows into the heat tube group 21.

■第一の伝熱管群19:内径11 、4mm、外径12
.7mm、フィン高ざ1.6mm、フィン外径15.9
mmの銅製ローフインチューブを配列間隔16mm(ピ
ッチ約32mm)で5本千鳥状に配置。
■First heat exchanger tube group 19: inner diameter 11, 4mm, outer diameter 12
.. 7mm, fin height 1.6mm, fin outer diameter 15.9
Five mm copper loaf-in tubes are arranged in a staggered manner with an interval of 16 mm (pitch approximately 32 mm).

■輻射体20:代表外径20mmの常圧焼結SiC製コ
ンペイトウ状球体8個を、第1図のように、第一の伝熱
管19の上段伝熱管の2本にまたがって4個ずつ@置、
伝熱管19の走行方向にはピッチ約44mmのほぼ等間
隔とした。
■Radiator 20: 8 pressureless sintered SiC spheres each having a typical outer diameter of 20 mm are placed across the two upper heat exchanger tubes of the first heat exchanger tube 19, four each. @place,
The heat exchanger tubes 19 were arranged at approximately equal intervals with a pitch of about 44 mm in the running direction.

■第二の伝熱管群21:伝熱管の内径11.5mm、外
径12.7mmの銅チューブとフィン厚さ0.35mm
、フィンピッチ2.7mmのフィシとを組合わせたプレ
ートフィンチューブ。
■Second heat transfer tube group 21: Copper tubes with inner diameter of heat transfer tubes of 11.5 mm and outer diameter of 12.7 mm, and fin thickness of 0.35 mm.
, a plate fin tube combined with a fin pitch of 2.7 mm.

なお、実施例の装置においては、面バーナプレート18
の端面から第一の伝熱管群19の下段の伝熱管のフィン
下縁までの距Haを20mm、面バーナプレート18の
端面から第二の伝熱管群21のフィン下縁までの距ub
を83mmとした。
In addition, in the apparatus of the embodiment, the surface burner plate 18
The distance Ha from the end face of the first heat exchanger tube group 19 to the lower edge of the fins of the lower heat exchanger tubes is 20 mm, and the distance ub from the end face of the surface burner plate 18 to the lower edge of the fins of the second heat exchanger tube group 21.
was set to 83 mm.

また、対照例の装置においては、上記した塊状の輻射体
20に代えで、200セル/in2、厚ざ5mmの常圧
焼結SiC製ハニカム板を輻射体として配置するととも
に、輻射体の温度を約100℃下げるために、第一の伝
熱管群19を構成する伝熱管の本数を7本とした。また
、実施例と対照例とで供給熱量および交換熱量は同じと
なるように第二の伝熱管21の伝熱面積を調整した。
In addition, in the control example device, a pressureless sintered SiC honeycomb plate with 200 cells/in2 and a thickness of 5 mm is arranged as a radiator instead of the bulk radiator 20 described above, and the temperature of the radiator is controlled. In order to lower the temperature by about 100°C, the number of heat exchanger tubes constituting the first heat exchanger tube group 19 was set to seven. Further, the heat transfer area of the second heat transfer tube 21 was adjusted so that the amount of heat supplied and the amount of heat exchanged were the same between the example and the control example.

(実験結果) 燃焼空間容積+熱交換部容積 対照例:実施例= 1・0.74 伝熱面積     対照例:実施例= I:1.03輻
射体温度    対照例1140℃、実施例+250”
C排出CO濃度    対照例15ppm、実施例10
ppmこの結果からもわかるように、同一交換熱量を得
るのに要する熱交換器容積はハニカム板の場合に比べて
塊状の輻射体の場合には大幅にコンパクト化できた。こ
れは塊状の輻射体とすることにより輻射体の温度を約1
00℃高く設定できたことによるものである。実施例の
装置に対照例で用いたハニカム板輻射体をそのまま用い
ると、ハニカム板輻射体に亀裂が発生する。
(Experimental results) Combustion space volume + heat exchanger volume Control example: Example = 1.0.74 Heat transfer area Control example: Example = I: 1.03 Radiant temperature Control example 1140°C, Example + 250"
C discharge CO concentration Control example 15 ppm, Example 10
ppm As can be seen from this result, the volume of the heat exchanger required to obtain the same amount of heat exchanged could be made much more compact in the case of the block-shaped radiator than in the case of the honeycomb plate. By making this a lumpy radiator, the temperature of the radiator can be reduced by approximately 1
This is because the temperature could be set 00°C higher. If the honeycomb plate radiator used in the control example is used as is in the device of the example, cracks will occur in the honeycomb plate radiator.

第2図には、本発明の別の実施例が示されでいる。この
実施例では、第一の伝熱管群19の上段の伝熱管上に、
槽数の柱状の輻射体23が第一の伝熱管群19の走行方
向と交差しで等間隔で@雪されでいる。この実施例では
、柱状の輻射体23として半割れ筒体24が用いられで
いる。半割れ筒体24には多数の貫通孔25が穿けられ
でおり、高温の燃焼ガスはこの貫通孔24ヲ通過しつつ
半割れ筒体24を加熱する。そして、この白熱した半割
れ筒体24は主として第一の伝熱管群19を輻射加熱し
、あわせて第二の伝熱管群21をも加熱する。
Another embodiment of the invention is shown in FIG. In this embodiment, on the upper heat exchanger tube of the first heat exchanger tube group 19,
The columnar radiators 23 of the number of tanks intersect with the running direction of the first heat exchanger tube group 19 and are spaced at equal intervals. In this embodiment, a half-split cylinder 24 is used as the columnar radiator 23. A large number of through holes 25 are bored in the half-split cylinder 24, and high temperature combustion gas heats the half-split cylinder 24 while passing through the through-holes 24. The incandescent half-split cylinder body 24 mainly radiates and heats the first heat exchanger tube group 19 and also heats the second heat exchanger tube group 21 as well.

柱状の輻射体23は、上記半割れ筒体24のほか、例え
ば横断面形状が多角状、半月状その他の適宜形状で形成
することもできる。また、第2図では柱状の輻射体23
を第一の伝熱管群19の上段の伝熱管上に載置したが、
下段の伝熱管上に載置してもよい。その他の構成および
作用は第1実施例に準するので、説明を省略する。
In addition to the half-split cylinder 24 described above, the columnar radiator 23 can also be formed, for example, in a polygonal, half-moon, or other appropriate cross-sectional shape. In addition, in FIG. 2, a columnar radiator 23
was placed on the upper heat exchanger tube of the first heat exchanger tube group 19,
It may be placed on the lower heat exchanger tube. Other configurations and operations are similar to those in the first embodiment, so their explanations will be omitted.

「発明の効果」 以上説明したように、本発明によれば、第一および第二
の伝熱管群に対しで、燃焼ガスによる対流熱伝達と輻射
体による輻射熱伝達とが同時に行なわれ、かつ、比較的
単純な形状の輻射体を用いでいるので、高強度のセラミ
ックス体が利用できる。その結果、輻射体の温度を上げ
て輻射伝熱量を増加させることができるので、燃焼熱を
効果的に利用することができる。また、輻射体からの輻
射熱は第一の伝熱管群によってかなりの量が遮られるの
で、輻射熱による燃焼手段の焼損が防止される。ざらに
、輻射体は高温に保たれるため、燃焼室で不完全燃焼生
成物が発生したとしても、この高温の輻射体によって酸
化反応が促進されて、不完全燃焼生成物の排出量を抑制
することができる。ざらにまた、装置全体の小型化を図
ることができる。
"Effects of the Invention" As explained above, according to the present invention, convective heat transfer by the combustion gas and radiant heat transfer by the radiator are simultaneously performed with respect to the first and second heat exchanger tube groups, and, Since a radiator with a relatively simple shape is used, a high-strength ceramic body can be used. As a result, the temperature of the radiator can be raised and the amount of radiant heat transferred can be increased, so combustion heat can be effectively utilized. Moreover, since a considerable amount of the radiant heat from the radiator is blocked by the first heat transfer tube group, burning out of the combustion means due to the radiant heat is prevented. In general, since the radiator is kept at a high temperature, even if incomplete combustion products are generated in the combustion chamber, the oxidation reaction is promoted by this high temperature radiator, suppressing the amount of incomplete combustion products emitted. can do. Furthermore, the entire device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による流体加熱装置の第1実施例の断面
図、第2図は本発明による第2実施例の流体加熱装置の
要部の斜視図である。
FIG. 1 is a sectional view of a first embodiment of a fluid heating device according to the present invention, and FIG. 2 is a perspective view of essential parts of a fluid heating device according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、燃焼手段と、燃焼手段の近接下流に配置された第一
の伝熱管群と、第一の伝熱管群の間および/または近接
下流に通気可能に配置された塊状もしくは柱状の輻射体
と、輻射体の近接下流に配置された第二の伝熱管群とを
備えることを特徴とする流体加熱装置。 2、特許請求の範囲第1項において、前記輻射体はセラ
ミックスからなる流体加熱装置。 3、特許請求の範囲第1項または第2項において、前記
輻射体は前記第一の伝熱管群に載置されてなる流体加熱
装置。
[Scope of Claims] 1. Combustion means, a first heat exchanger tube group disposed proximately downstream of the combustion means, and a block-like structure disposed so as to be ventilated between and/or proximally downstream of the first heat exchanger tube group. Alternatively, a fluid heating device comprising a columnar radiator and a second heat transfer tube group disposed adjacent to and downstream of the radiator. 2. The fluid heating device according to claim 1, wherein the radiator is made of ceramics. 3. A fluid heating device according to claim 1 or 2, wherein the radiator is placed on the first heat exchanger tube group.
JP3991287A 1987-02-23 1987-02-23 Fluid heating device Pending JPS63207911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3991287A JPS63207911A (en) 1987-02-23 1987-02-23 Fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3991287A JPS63207911A (en) 1987-02-23 1987-02-23 Fluid heating device

Publications (1)

Publication Number Publication Date
JPS63207911A true JPS63207911A (en) 1988-08-29

Family

ID=12566157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3991287A Pending JPS63207911A (en) 1987-02-23 1987-02-23 Fluid heating device

Country Status (1)

Country Link
JP (1) JPS63207911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949452A3 (en) * 1998-04-08 2000-09-20 Schwank GmbH Radiant burner
JP2005332762A (en) * 2004-05-21 2005-12-02 Kyocera Corp Fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131957A (en) * 1981-02-09 1982-08-16 Matsushita Electric Ind Co Ltd Water heater by catalytic combustion burning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131957A (en) * 1981-02-09 1982-08-16 Matsushita Electric Ind Co Ltd Water heater by catalytic combustion burning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949452A3 (en) * 1998-04-08 2000-09-20 Schwank GmbH Radiant burner
JP2005332762A (en) * 2004-05-21 2005-12-02 Kyocera Corp Fuel cell

Similar Documents

Publication Publication Date Title
JP4819276B2 (en) Tube furnace
JPS63207911A (en) Fluid heating device
CN216408927U (en) Horizontal internal combustion steam boiler with porous ceramic medium combustion
CN107504487B (en) Continuous dispersion type combustion device and method for forming continuous dispersion type combustion
JP2006349255A (en) Boiler
JPS6284258A (en) Fluid heating device
CN109945150B (en) Optimization design method for pipe diameter of air outlet of combustor
JPS63207910A (en) Fluid heater with radiation cloth
JP2004069139A (en) Low nox combustion device
JPH05761Y2 (en)
JPS63207912A (en) Fluid heating device with radiator
JPS63207913A (en) Fluid heating device with radiator
JPS63210513A (en) Improved fluid heating device
JPS5844174B2 (en) bath kettle
CN109945151B (en) Design method for combustion atomization hole pipe diameter change
JPS63259332A (en) Heat exchanger using heat pipe
TWM332800U (en) An instantaneous heat superconducting tube boiler
JPH0810046B2 (en) Improved fluid heating device
JPS63251751A (en) Device for heating fluid
JPH0331603A (en) Hot water supplier
JPS63251750A (en) Fluid heater
KR200432038Y1 (en) Boiler of heat fin
JP4385272B2 (en) Combustion device
KR101429051B1 (en) Warming up Device of boiler
JPS61225542A (en) Heat exchanger