JPS63207910A - Fluid heater with radiation cloth - Google Patents

Fluid heater with radiation cloth

Info

Publication number
JPS63207910A
JPS63207910A JP3991187A JP3991187A JPS63207910A JP S63207910 A JPS63207910 A JP S63207910A JP 3991187 A JP3991187 A JP 3991187A JP 3991187 A JP3991187 A JP 3991187A JP S63207910 A JPS63207910 A JP S63207910A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
tube group
heat
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3991187A
Other languages
Japanese (ja)
Inventor
Noriyuki Oda
紀之 織田
Satoshi Ebato
江波戸 智
Kozo Sakurai
桜井 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Gas Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3991187A priority Critical patent/JPS63207910A/en
Publication of JPS63207910A publication Critical patent/JPS63207910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

PURPOSE:To effectively transmit combustion heat without burning a fire combustion means and a heat exchanging part thereby to suppress incomplete combustion by providing a second heat transfer tube group at the downstream in the vicinity of a gas-permeable radiation cloth disposed by deflecting the same in a wave form at the downstream in the vicinity of a heat transfer tube of a first heat transfer tube group. CONSTITUTION:A gas-permeable radiation cloth 20 is disposed along heat transfer tubes arranged in a zigzag manner in a first heat transfer tube group 19. The radiation cloth 20 is held by flanges of an upper casing 12a and a lower casing 12b, and is disposed by being deflected in a wave form so that it is placed alternately on the upper stage heat transfer tubes and the lower stage heat transfer tubes of the first heat transfer tube group 19. The radiation cloth 20 radiates radiation heat to both the first heat transfer tube group 19 and a second heat transfer tube group 21. A heat conduction by a direct contact with fins is carried out from the radiation cloth to the first heat transfer group. For this reason, the temperature at this part slightly lowers. However, since in the vicinity of this part a high-temperature gas flows therein through gaps between fins, and passes through the radiation cloth, this part is heated to a high temperature, a strong radiation emitted from this part to the heat transfer tubes.

Description

【発明の詳細な説明】 「技術分野」 本発明は、湯沸器、風呂釜、温水ボイラなどに使用され
る流体加熱装置に間する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a fluid heating device used in water heaters, bathtubs, hot water boilers, and the like.

「従来技術およびその問題点」 従来、湯沸器、風呂釜、温水ボイラなどの流体加熱装置
においては、バーナの下流の燃焼室にて燃料を燃焼させ
た後、燃焼ガスを伝熱管群間に導き、主に対流熱伝達を
利用しで、伝熱管群の内部を流れる水などの流体を加熱
するようになっていた。
"Prior art and its problems" Conventionally, in fluid heating devices such as water heaters, bathtubs, and hot water boilers, fuel is combusted in a combustion chamber downstream of a burner, and then the combustion gas is transferred between a group of heat transfer tubes. It was designed to heat fluids such as water flowing inside a group of heat transfer tubes, mainly by using convective heat transfer.

近年、これらの流体加熱装置においては、極力コンパク
トにするため、燃焼室をできる限り小型化すると共に、
熱交換部の単位容積当りの伝熱量を増加させる傾向にあ
る。
In recent years, in order to make these fluid heating devices as compact as possible, the combustion chamber has been made as small as possible, and
This tends to increase the amount of heat transferred per unit volume of the heat exchange section.

ところで、mm室を単純に小型化すると、燃焼室内で燃
焼反応が完結しないまま熱交換部にまで火炎が伸び、そ
の結果、燃焼反応途中の燃料が伝熱管の壁に接触して火
炎が冷却されることにより燃焼反応が停止して、不完全
燃焼を起こすことがあった、このことは、燃料の損失と
なるばかりか、−酸化炭素、スス、アルデヒド等が発生
し、人体にも悪影1#を及ぼす結果となる。
By the way, if the mm chamber is simply downsized, the flame will extend to the heat exchange part without completing the combustion reaction within the combustion chamber, and as a result, the fuel in the middle of the combustion reaction will come into contact with the wall of the heat transfer tube and the flame will be cooled. As a result, the combustion reaction stopped and incomplete combustion occurred.This not only resulted in a loss of fuel, but also produced carbon oxides, soot, aldehydes, etc., which had a negative impact on the human body. This results in #.

また、燃焼室を小型化して熱交換部と一体化すると、伝
熱管表面に未燃燃料成分などが付着堆積した場合、伝熱
管が過熱されで損傷したり、燃焼室内の燃焼ガスの混合
が悪くなって温度分布が大きくなりやすく、局部的に伝
熱負荷が増大して同じく伝熱管を損傷させることがあっ
た。
In addition, if the combustion chamber is downsized and integrated with the heat exchange section, if unburned fuel components adhere to and accumulate on the surface of the heat transfer tube, the heat transfer tube may be overheated and damaged, or the combustion gas in the combustion chamber may not mix well. As a result, the temperature distribution tends to become large, and the heat transfer load increases locally, which can also damage the heat transfer tubes.

このため燃焼室の小型化には限界があり、例えば現在市
販されているガス湯沸器においでは、燃焼室と熱交換部
との大きざを比較すると約2=1であり、バーナ先端と
下流の伝熱管との距離は20〜30cmもあり、燃焼室
負荷としでは5x Io’ kcal/m 3/hr程
度以下に抑えられていた。これ以上燃焼室を小ざくして
熱交換部を火炎に近づけることは、伝熱管の損傷を早め
たり、COの発生を増加させるなどの理由で困難となっ
ていた。
For this reason, there is a limit to the miniaturization of the combustion chamber. For example, in gas water heaters currently on the market, the size difference between the combustion chamber and the heat exchanger is approximately 2 = 1, and the size difference between the burner tip and the downstream The distance from the heat exchanger tubes was 20 to 30 cm, and the combustion chamber load was suppressed to about 5x Io' kcal/m 3 /hr or less. It has become difficult to make the combustion chamber any smaller and bring the heat exchanger closer to the flame because this may accelerate damage to the heat exchanger tubes or increase the generation of CO.

対流熱伝達を利用している限りにあいでは、熱交換部の
単位容積当りの伝熱量を増加させるためには、プレート
フィン間隔を狭くするとともにその枚数を増して単位容
積当りの伝熱面積を増加させるか、燃焼ガスの流速を上
げて熱伝達率を増加させるか、あるいは熱交換部へ流入
する燃焼ガスの温度を上昇させて加熱側と被加熱側との
温度差を大きくするなどの対策が必要となる。
As long as convective heat transfer is used, in order to increase the amount of heat transferred per unit volume of the heat exchanger, the distance between plate fins should be narrowed and the number of plate fins should be increased to increase the heat transfer area per unit volume. Measures such as increasing the heat transfer rate by increasing the flow rate of the combustion gas, or increasing the temperature of the combustion gas flowing into the heat exchanger to increase the temperature difference between the heating side and the heated side. Is required.

しかし、プレートフィン間の目詰まりを防ぐためにプレ
ートフィン間隔は2.6mm程度が下限である。圧力損
失を抑えるためには燃焼ガス流速も10m/s程度が上
限である。ざらに、熱交換部へ流入する燃焼ガス温度を
上げると、プレートフィン先端の温度が上昇して、耐熱
性や耐久性1こ問題が発生するため、燃焼ガス流入温度
も1000℃程度が上限である。かくして熱交換部の小
型化(こも限界が生じていた。
However, in order to prevent clogging between the plate fins, the lower limit of the plate fin interval is about 2.6 mm. In order to suppress pressure loss, the upper limit of the combustion gas flow velocity is about 10 m/s. Roughly speaking, if the temperature of the combustion gas flowing into the heat exchange section is increased, the temperature at the tip of the plate fin will rise, causing problems with heat resistance and durability, so the upper limit of the combustion gas inflow temperature is about 1000℃. be. Thus, there was a limit to the miniaturization of the heat exchange section.

本発明者らは、さきに特願昭60−223980におい
て、バーナなどの下流に第一の伝熱管群、ついで第二の
伝熱管群を設け、第一の伝熱管群と第二の伝熱管群の間
に通気性輻射体を配置した流体加熱装置を提案した。こ
の流体加熱装置では通気性輻射体として剛体ヲ採用しで
いたため、使用中に大きな熱応力が発生して、この通気
性輻射体の耐久性が問題となる恐れがあった。
The present inventors previously disclosed in Japanese Patent Application No. 60-223980 that a first heat exchanger tube group and then a second heat exchanger tube group were provided downstream of a burner, etc., and the first heat exchanger tube group and the second heat exchanger tube group were A fluid heating device is proposed in which a breathable radiator is placed between the groups. Since this fluid heating device employs a rigid body as the breathable radiator, large thermal stress is generated during use, which may pose a problem in the durability of the breathable radiator.

「発明の目的」 本発明の目的は、上記従来技術の問題点を解消し、燃焼
手段および熱交換部を焼損させることなく燃焼熱を効果
的に伝熱させ、ざらには不完全燃焼を抑制し、装置全体
の小型化を図ることのできる流体加熱装MIFr提供す
ること(こある。
"Objective of the Invention" The object of the present invention is to solve the problems of the prior art described above, to effectively transfer combustion heat without burning out the combustion means and the heat exchanger, and to suppress incomplete combustion. To provide a fluid heating device MIFr that can reduce the size of the entire device.

「発明の構成J 本発明による流体加熱装置は、燃焼手段と、この燃焼手
段の近接下流に配置した第一の伝熱管群と、この第一の
伝熱管群の少なくとも一の伝熱管の近接下流に波状に撓
ませて配置した通気性の輻射クロスと、この輻射クロス
の近接下流に配置した第二の伝熱管群とを備えることを
特徴とする。
"Structure of the Invention J The fluid heating device according to the present invention includes a combustion means, a first heat exchanger tube group disposed adjacently downstream of the combustion means, and adjacently downstream of at least one heat exchanger tube of the first heat exchanger tube group. It is characterized by comprising an air-permeable radiation cloth arranged in a wave-like manner, and a second group of heat exchanger tubes arranged adjacent to and downstream of the radiation cloth.

本発明の好ましい態様においては、前記輻射り0スはセ
ラミックス繊維製とされる。
In a preferred embodiment of the present invention, the radiation source is made of ceramic fiber.

本発明の別の好ましい態様では、前記輻射クロスは前記
第一の伝熱管群に載置されている。
In another preferred embodiment of the present invention, the radiation cloth is placed on the first heat exchanger tube group.

本発明のさらに別の好ましい態様では、前記第一の伝熱
管群は複数段となるように配置され、前記輻射クロスは
、前記第一の伝熱管群の最下流段の伝熱管と非最下流段
の伝熱管に交互に接しでいる。
In still another preferred aspect of the present invention, the first heat exchanger tube group is arranged in multiple stages, and the radiation cross is connected to a downstream heat exchanger tube of the first heat exchanger tube group and a non-most downstream heat exchanger tube. They are in contact with the heat exchanger tubes of the stages alternately.

本発明にて、燃焼手段としては、都市ガス、プロパンガ
ス、天然ガスなどの気体燃料、もしくは灯油などの液体
燃料を気化させたものを燃料とし、燃焼用空気と燃料と
を別々に燃焼室へ供給する拡散燃焼型バーナ、あるいは
燃焼用空気と上記したような燃料とを予め所要割合で混
合させた後に燃焼室へ供給する予混合燃焼型バーナなど
が使°用される。
In the present invention, the combustion means uses gaseous fuel such as city gas, propane gas, and natural gas, or vaporized liquid fuel such as kerosene, and the combustion air and fuel are separately sent to the combustion chamber. A diffusion combustion type burner is used, or a premix combustion type burner is used, in which combustion air and the fuel as described above are mixed in advance at a required ratio and then supplied to the combustion chamber.

第一の伝熱管群は好ましくは複数段、特には千鳥状に配
置され、全体として燃焼手段の下流に、かつ、燃焼手段
に近接して設けられる。
The first heat exchanger tube group is preferably arranged in multiple stages, particularly in a staggered manner, and is generally provided downstream of and close to the combustion means.

第一の伝熱管群を構成する伝熱管(複数段ある場合には
最上流の伝熱管)の上流縁は、例えば燃焼手段によって
形成される火炎中、あるいは火炎の先端に近接した位置
に配置される。具体的には燃焼手段の燃料ガス吐出口(
例えばバーナ先端)と上述した伝熱管の上流縁との距離
は5〜50mmとすることが好ましい。言い換えると、
火炎の長さは、燃焼手段の設計によって異なるが、一般
には5〜50mm程度であるため、結局第一の伝熱管群
における最上流段の伝熱管は、火炎の先端付近に配置さ
れることになる。
The upstream edge of the heat exchanger tube (the most upstream heat exchanger tube when there are multiple stages) constituting the first heat exchanger tube group is placed, for example, in the flame formed by the combustion means or at a position close to the tip of the flame. Ru. Specifically, the fuel gas discharge port of the combustion means (
For example, the distance between the burner tip) and the upstream edge of the heat exchanger tube is preferably 5 to 50 mm. In other words,
The length of the flame varies depending on the design of the combustion means, but is generally about 5 to 50 mm, so the most upstream heat exchanger tube in the first heat exchanger tube group is ultimately placed near the tip of the flame. Become.

第一の伝熱管群を燃焼手段に対し上記位置より離れた位
置に配置した場合には、熱損失あるいは燃焼室を囲むケ
ーシングの冷却管などにより燃焼ガスの温度が低下し、
本発明の効果を充分には得られなくなったり、ガス厚み
が増大して高温燃焼ガスからバーナへの輻射入熱が増大
し、バーナの損傷、逆火を招く可能性がある。第一の伝
熱管群は、燃焼手段に最も近接し高温の燃焼ガスにざら
されるが、内部を流れる水等の流体により冷却されるの
で、熱損傷が防止される。
If the first heat transfer tube group is placed at a position farther from the combustion means than the above position, the temperature of the combustion gas will decrease due to heat loss or cooling pipes in the casing surrounding the combustion chamber.
There is a possibility that the effects of the present invention cannot be sufficiently obtained, or the gas thickness increases and the radiant heat input from the high temperature combustion gas to the burner increases, leading to damage to the burner and backfire. The first heat transfer tube group is closest to the combustion means and is exposed to high-temperature combustion gas, but is cooled by fluid such as water flowing inside, so thermal damage is prevented.

第一の伝熱管群は、周囲の燃焼ガス温度が高く、しかも
猜述する輻射クロスよりの輻射伝熱によって熱伝達率も
高くなるため、外面にはフィンを付けないものが好まし
いが、伝熱面積増大の観点より、例えば高さ2mm以下
のフィンを有するいわゆるローフイン型とすることも可
能である。
The first group of heat transfer tubes is preferably one without fins on the outer surface because the temperature of the surrounding combustion gas is high and the heat transfer coefficient is also high due to the radiant heat transfer from the radiant cloth described in detail. From the viewpoint of increasing area, it is also possible to use a so-called lo-fin type having fins with a height of 2 mm or less, for example.

上記第一の伝熱管群の少なくとも一の伝熱管の近接下流
には、通気性の輻射クロスが、例えば千鳥配置された伝
熱管に治うごとく、波状に配置される。剛体の通気性輻
射体では製作した流体加熱装置の運搬時の振動(こよる
姿勢変化、位置ズレ、ズレ落ち、あるいは破損などの問
題が生じろる。
Adjacent downstream of at least one heat exchanger tube of the first heat exchanger tube group, a breathable radiant cloth is arranged in a wavy manner, for example, so as to cover the staggered heat exchanger tubes. With a rigid breathable radiator, problems such as vibration (change in posture, misalignment, falling off, or damage) may occur during transportation of the manufactured fluid heating device.

これに対し、輻射クロスでは、自由に平面形状を変えら
れることを利用して、第一の伝熱管群の各伝熱管へ、効
果的に輻射熱を放射できる形状に配置することが容易と
なり、ざらに、一枚の輻射クロスの凹凸形状を利用して
特別な部品を必要とせずに安定した位置で配置できる。
In contrast, with radiant cloth, the planar shape can be changed freely, making it easy to arrange the tubes in a shape that can effectively radiate radiant heat to each heat transfer tube in the first heat transfer tube group. In addition, by utilizing the uneven shape of a single piece of radiation cloth, it can be placed in a stable position without the need for special parts.

この通気性の輻射クロスは、高温で効果的な輻射熱を発
生させるよう、耐熱性材料、例えば炭化ケイ素、富化ケ
イ素、アルミノシリケート、ジルコニアなどのセラミッ
クス繊維を織ったものが好ましい。
The breathable radiant cloth is preferably woven from a heat-resistant material, such as ceramic fibers such as silicon carbide, enriched silicon, aluminosilicate, and zirconia, so as to generate effective radiant heat at high temperatures.

また、燃焼ガスがこの輻射クロスを通過する際の通気抵
抗が過大とならないように、クロスの織り密度、厚さな
どを適宜選択して、所要の通気性を確保する。
In addition, the weave density, thickness, etc. of the cloth are appropriately selected to ensure the required ventilation so that the ventilation resistance when the combustion gas passes through the radiant cloth does not become excessive.

輻射クロスは、燃焼ガスが有しでいる熱エネルギを強力
な輻射エネルギに変換し、燃焼ガスの流れとは無関係に
、主に第一の伝熱管群に輻射熱を照射する。この輻射ク
ロスの輻射熱伝達と燃焼ガスによる対流熱伝達により、
第一の伝熱管群が加熱され、その内部を流れる流体が加
熱される。さらに、輻射クロスは高温に加熱されている
ため、燃焼ガス中に含まれでいるC01HC等の未燃成
分の酸化反応を促進させ、一種の触媒作用の効果を発揮
する。
The radiant cloth converts the thermal energy of the combustion gas into strong radiant energy, and irradiates mainly the first heat transfer tube group with the radiant heat, regardless of the flow of the combustion gas. Due to the radiant heat transfer of this radiant cross and the convective heat transfer by the combustion gas,
The first heat exchanger tube group is heated, and the fluid flowing therein is heated. Furthermore, since the radiant cloth is heated to a high temperature, it promotes the oxidation reaction of unburned components such as CO1HC contained in the combustion gas, and exerts a kind of catalytic effect.

第二の伝熱管群は、輻射クロスの近接下流に配置される
。この第二の伝熱管群も、燃焼ガスからの対流熱伝達と
輻射クロスからの輻射熱伝達により加熱され、内部を流
れる流体が加熱される。第二の伝熱管群は、伝熱効率を
向上させるため、外面にフィンを有するものが好ましい
、また、燃焼ガスが平均して接触するようにするため、
第二の伝熱管群は、伝熱管を千鳥状に配列することもで
きる。
The second heat exchanger tube group is arranged adjacent to and downstream of the radiant cross. This second heat transfer tube group is also heated by convective heat transfer from the combustion gas and radiant heat transfer from the radiant cross, thereby heating the fluid flowing inside. In order to improve the heat transfer efficiency, the second heat transfer tube group preferably has fins on the outer surface, and in order to ensure that the combustion gas comes into contact with each other evenly,
In the second heat exchanger tube group, the heat exchanger tubes can also be arranged in a staggered manner.

なお、第一および第二の伝熱管群の伝熱管の材質は、銅
、ステンレス、アルミニウム、アルミニウム合金、チタ
ン、チタン合金、炭化ケイ素、窒化ケイ素などの熱伝導
性、耐食性に優れた材質であることが好ましく、特に、
高熱伝導率、高輻射率、低線膨張係数、高強度を有し、
成形性にも優れた反応fi結炭化ケイ素、あるいは高熱
伝導性材料である銅が最も好ましい。
The heat exchanger tubes of the first and second heat exchanger tube groups are made of materials with excellent thermal conductivity and corrosion resistance, such as copper, stainless steel, aluminum, aluminum alloy, titanium, titanium alloy, silicon carbide, and silicon nitride. It is preferable that, in particular,
It has high thermal conductivity, high emissivity, low coefficient of linear expansion, and high strength.
Most preferred are reactive fi silicon carbide, which has excellent moldability, or copper, which is a highly thermally conductive material.

本発明の場合、第一の伝熱管を燃焼手段に近接させたこ
とにより、第一および第二の伝熱管群が大きな伝熱負荷
を受けて局部的に高温となることが考えられる。また、
条件によっては、水などの被加熱流体が局部沸騰を起こ
して、発生した蒸気などζこより伝熱を朗害され、局部
的(こ非常1こ高温となることも考えられる。したがっ
て、耐熱性に乏しい金属製とした場合には、伝熱管が加
熱されて激しく酸化され、極端な場合は溶損することも
考えられるので、材質、レイアウト、使用条件等の設定
を適宜選択することが望ましい、この点、セラミックス
製とすると充分な耐熱性が得られるため、特に高温部の
伝熱管には好ましい、また、燃焼ガスの保有する熱を顕
熱のみならず潜熱まで回収しようとする場合には、低温
の熱交換部に硝酸の発生をきたすことがあり(天然ガス
自体はクリーンであるが、高温の燃焼により発生したN
Oxが伝熱管表面の低温部で結露した水分と結び付いて
硝酸となる)、その点からも低温の熱交換部では特に耐
腐食性を有するセラミックス製とすることか好ましい。
In the case of the present invention, by bringing the first heat exchanger tube close to the combustion means, it is conceivable that the first and second heat exchanger tube groups receive a large heat transfer load and become locally high temperature. Also,
Depending on the conditions, the fluid to be heated, such as water, may locally boil, and the heat transfer may be affected by the generated steam, resulting in local (very high) temperatures. If the heat exchanger tube is made of poor metal, it will be heated and violently oxidized, and in extreme cases, it may melt. Therefore, it is desirable to select the material, layout, usage conditions, etc. appropriately. Ceramic is particularly preferred for heat exchanger tubes in high-temperature sections because it provides sufficient heat resistance.Also, when it is desired to recover not only sensible heat but also latent heat from the combustion gas, low-temperature Nitric acid may be generated in the heat exchanger (natural gas itself is clean, but nitrogen generated from high-temperature combustion
(Ox combines with moisture condensed on the surface of the heat exchanger tube at a low temperature to form nitric acid.) From this point of view as well, it is particularly preferable that the low-temperature heat exchange section be made of corrosion-resistant ceramics.

同様な理由で、高温部あるいは低温部の伝熱管の外面に
設けるフィンの材質も、セラミックスが好ましい。
For the same reason, the material of the fins provided on the outer surface of the heat exchanger tube in the high temperature section or the low temperature section is also preferably ceramic.

「発明の実施例」 以下に、本発明による流体加熱装置の実施例を図面に基
いて説明する。
"Embodiments of the Invention" Examples of the fluid heating device according to the present invention will be described below with reference to the drawings.

第1図に示す流体加熱装M11は、上方が図示せぬ排気
口に接続されたケーシング12で全体が囲まれてあり、
このケーシング12は、ファンケーシング13、混合室
14および燃焼室15が連通して構成され、上部ケーシ
ング12aと下部ケーシング+2bにわかれている。
The fluid heating device M11 shown in FIG. 1 is entirely surrounded by a casing 12 whose upper part is connected to an exhaust port (not shown).
The casing 12 includes a fan casing 13, a mixing chamber 14, and a combustion chamber 15 that communicate with each other, and is divided into an upper casing 12a and a lower casing +2b.

ファンケージジグ13には、ファン16が組み込まれ、
このファン16の吐出部に燃料ガスノズル17が配設さ
れている。燃料ガスノズル17には、図示しないガス供
給源から燃料ガスが導入される。したがって、ファン1
6からの空気流と燃料ガスノズル17からの燃料ガスと
が、ファンケーシング13より混合室14へ供給されで
、燃料ガスと空気との予混合気が作られる。
A fan 16 is incorporated into the fan cage jig 13,
A fuel gas nozzle 17 is disposed at the discharge portion of the fan 16. Fuel gas is introduced into the fuel gas nozzle 17 from a gas supply source (not shown). Therefore, fan 1
6 and fuel gas from the fuel gas nozzle 17 are supplied from the fan casing 13 to the mixing chamber 14 to create a premixed mixture of fuel gas and air.

混合室14と燃焼室15の境目には、燃焼手段としての
面バーナプレート18が配置されている。この面バーナ
プレート18は多孔を有し、この多孔を通過した予混合
気は面バーナプレート18の下流側で面状に火炎を形成
する。なお、始動時に必要な点火源は図示を略した。
A surface burner plate 18 as a combustion means is arranged at the boundary between the mixing chamber 14 and the combustion chamber 15. This surface burner plate 18 has porous holes, and the premixture that has passed through these holes forms a flame in a planar shape on the downstream side of the surface burner plate 18. Note that the ignition source necessary for starting is omitted from the illustration.

ケーシング12内の面バーナプレート18に近接した位
置には、第一の伝熱管群19が千鳥状に配置されている
。この実施例の場合、第一の伝熱管群19の各伝熱管は
、外径12〜20mm、肉厚0.6〜2.0 mmとさ
れている。
A first heat exchanger tube group 19 is arranged in a staggered manner at a position in the casing 12 close to the surface burner plate 18 . In this embodiment, each heat exchanger tube of the first heat exchanger tube group 19 has an outer diameter of 12 to 20 mm and a wall thickness of 0.6 to 2.0 mm.

伝熱管の外径は、小さいほど内部を流れる流体の単位体
積当りの伝熱管外表面面積割合が増大し輻射熱受熱量が
増大するが、一方で、必要な伝熱管本数も増加し、ざら
に管内で沸騰が起きた場合の気泡による流路閉塞の可能
性も高くなる4本発明の流体加熱装置の効率性を考慮す
ると、湯沸器などにあっては上記寸法範囲が好ましい。
The smaller the outer diameter of the heat transfer tube, the larger the ratio of the outer surface area of the heat transfer tube per unit volume of fluid flowing inside the tube, increasing the amount of radiant heat received. However, on the other hand, the number of required heat transfer tubes also increases, and the inside In consideration of the efficiency of the fluid heating device of the present invention, the above dimension range is preferable for water heaters and the like.

伝熱管の配列開隔は6〜30mmと、はぼ伝熱管の外径
と同程度の間隔を設けるのが好ましい、この間隔が小さ
すぎると、燃焼ガス通過時の圧損が増加するばかりでな
く、輻射クロスの曲げ半径が小ざくなって損傷を起こし
やすい。
It is preferable that the arrangement spacing of the heat exchanger tubes is 6 to 30 mm, which is approximately the same as the outer diameter of the heat exchanger tubes.If this spacing is too small, not only will the pressure loss increase when the combustion gas passes, The bending radius of the radiant cloth becomes small, making it more likely to be damaged.

面バーナプレート18端面からの最下段の伝熱管までの
距Haは5〜50mmとされる。なお、第一の伝熱管群
19の伝熱管は、通常の円筒状のものでもよく、あるい
は断面楕円形などの管でもよい。また、フィンなし管で
もよいが、輻射をより効果的に利用するため、この実施
例では2mm以下のフィンを有するローフイン型伝熱管
とされている。
The distance Ha from the end surface of the surface burner plate 18 to the lowest heat exchanger tube is 5 to 50 mm. Note that the heat exchanger tubes of the first heat exchanger tube group 19 may be of a normal cylindrical shape or may be tubes having an elliptical cross section. Further, although a finless tube may be used, in order to utilize radiation more effectively, in this embodiment, a loaf-in type heat exchanger tube having fins of 2 mm or less is used.

第一の伝熱管群19には、千鳥配置された各伝熱管に沿
って通気性の輻射クロス20が配置されている。この輻
射クロス20は上部ケーシング12aと下部ケーシング
+2bのフランジで把持され、第一の伝熱管群19の上
段と下段の伝熱管とに交互にff12置されるように、
波状に撓ませて配置されでおり、第一の伝熱管群19お
よび復述する第二の伝熱管群21の双方に輻射熱を照射
する。
In the first heat exchanger tube group 19, an air-permeable radiation cloth 20 is arranged along each of the staggered heat exchanger tubes. This radiation cross 20 is held by the flanges of the upper casing 12a and the lower casing +2b, and is placed alternately ff12 on the upper and lower heat exchanger tubes of the first heat exchanger tube group 19.
The heat exchanger tubes are arranged in a wave-like manner, and radiant heat is applied to both the first heat exchanger tube group 19 and the second heat exchanger tube group 21, which will be described later.

輻射クロス20の把持は第一と第二の伝熱管群を接近さ
せ両者で挟みこむことによってもよいし、ケーシングを
貫通するボルトで端部を固定しでもよい、おさえ具23
は輻射クロス20がガス流によって浮き上がるのを防ぐ
もので、ケーシング12から突出させたセラミックス製
の腕からなる。おさえ具23は必須のものではない。
The radiation cross 20 may be held by bringing the first and second heat exchanger tube groups close together and sandwiching them between them, or by fixing the ends with bolts that pass through the casing.
This prevents the radiation cross 20 from being lifted up by the gas flow, and consists of a ceramic arm protruding from the casing 12. The holding tool 23 is not essential.

輻射クロス20を固定するため、第1図において輻射ク
ロス20を下段の伝熱管上に載せるのに代えて、下段の
伝熱管の下縁1こ巻きつけるように通して、上方に反転
させるごとくすることも提案できる(第2図参照)、こ
の場合には、輻射クロス20から面バーナプレート18
への輻射入熱が増大するため、ざらに下方に少なくとも
もう一段伝熱管を配置するのかよい。
In order to fix the radiation cloth 20, instead of placing the radiation cloth 20 on the lower heat exchanger tube in FIG. 1, it is passed around the lower edge of the lower heat exchanger tube and turned upward. It can also be proposed (see FIG. 2), in which case the radiant cross 20 is connected to the surface burner plate 18.
In order to increase the amount of radiant heat input into the tube, it is advisable to place at least one more stage of heat exchanger tubes roughly below.

輻射クロス20は伝熱管に接しでいる部分と接していな
い部分とで大きな温度分布ができ、また、流体加熱装置
の着火・停止時には大きな温度変化が与えられるため、
耐熱性、耐熱衝撃性、熱伝導性に優れたセラミックス繊
維製とされている。
The radiation cloth 20 has a large temperature distribution between the part that is in contact with the heat transfer tube and the part that is not in contact with it, and a large temperature change is given when the fluid heating device is ignited and stopped.
It is made of ceramic fiber that has excellent heat resistance, thermal shock resistance, and thermal conductivity.

なお、輻射クロス20が伝熱管に接しでいることは必須
ではなく、例えば、第1図においで、波状の輻射クロス
20の谷部が下段の伝熱管19の上縁と離れていてもよ
いし、あるいは適宜な支持具で輻射クロス20を支持す
ることにより、上段の伝熱管19の上縁と輻射クロス2
0の山部とが離れていてもよい。
Note that it is not essential that the radiation cloth 20 be in contact with the heat exchanger tubes; for example, in FIG. , or by supporting the radiation cross 20 with an appropriate support, the upper edge of the upper heat exchanger tube 19 and the radiation cross 2
The peak of 0 may be separated.

輻射クロス20のざらに下流には、輻射クロス2゜に近
接して第二の伝熱管群21が配置されている。
Roughly downstream of the radiation cross 20, a second heat exchanger tube group 21 is arranged close to the radiation cross 2°.

この実施例では、第二の伝熱管群21を、多数の平板フ
ィン22と、このフィン22ヲ貫通し、かつ、熱的に接
する複数の伝熱管とで構成しでいる。各伝熱管は、フィ
ン22の平面に直交して配置され、相互に平行を保っで
いる。また、第二の伝熱管群21も千鳥状に配置するこ
とができる。
In this embodiment, the second heat exchanger tube group 21 is composed of a large number of flat plate fins 22 and a plurality of heat exchanger tubes that penetrate through the fins 22 and are in thermal contact with them. The heat exchanger tubes are arranged perpendicularly to the plane of the fins 22 and remain parallel to each other. Moreover, the second heat exchanger tube group 21 can also be arranged in a staggered manner.

第二の伝熱管群21の各伝熱管は、外径が12〜20m
m、肉厚が0.6〜2.0mmとされ、伝熱管の配列間
隔は6〜30mm、フィン22の肉厚は0.3〜1.5
mm、フィン22の配列間隔は2.6〜6.0mmとさ
れる。
Each heat exchanger tube of the second heat exchanger tube group 21 has an outer diameter of 12 to 20 m.
m, the wall thickness is 0.6 to 2.0 mm, the arrangement interval of the heat exchanger tubes is 6 to 30 mm, and the wall thickness of the fins 22 is 0.3 to 1.5 mm.
mm, and the arrangement interval of the fins 22 is 2.6 to 6.0 mm.

なあ、第一の伝熱管群19、第二の伝熱管群21の伝熱
管は、一般には水平に配Nされるが、被加熱流体が沸騰
した際に気泡が抜けやすいように、被加熱流体の入口側
に比べ、出口側が上方となるように傾斜させてもよい。
The heat exchanger tubes of the first heat exchanger tube group 19 and the second heat exchanger tube group 21 are generally arranged horizontally, but in order to make it easier for air bubbles to escape when the heated fluid boils, The outlet side may be inclined higher than the inlet side.

第一の伝熱管群19および第二の伝熱管群21内には被
加熱流体が流される。被加熱流体としでは、液体、特に
水が好適である。この被加熱流体は、第一の伝熱管群1
9と第二の伝熱管群21にそれぞれ独立に流してもよい
が、好ましくは両者lWlを直列に流される。この場合
、温度効率を大きくする上では、被加熱流体をまず第二
の伝熱管群21に流し、次いで第一の伝熱管群19に流
して、燃焼ガスの流れに対して向流とすることが好まし
い、一方、管内での局部沸騰を防止するためには、これ
と逆に接続しで、燃焼ガスの流れに対して並流とするこ
とが好ましい、また、各伝熱管群内では、いずれも直列
に接続されるのが通例であるが、同段の伝熱管を並列に
接続したのち、異段閤を直列に接続するなど、適宜の選
択もできる。
A fluid to be heated is flowed into the first heat exchanger tube group 19 and the second heat exchanger tube group 21. A liquid, especially water, is suitable as the fluid to be heated. This fluid to be heated is supplied to the first heat exchanger tube group 1
9 and the second heat exchanger tube group 21, respectively, but preferably both lWl are flowed in series. In this case, in order to increase the temperature efficiency, the fluid to be heated should first flow through the second heat exchanger tube group 21 and then flow through the first heat exchanger tube group 19 to flow countercurrently to the flow of combustion gas. On the other hand, in order to prevent local boiling within the tubes, it is preferable to connect them in the opposite direction so that the flow is parallel to the flow of combustion gas. Usually, the heat exchanger tubes are connected in series, but it is also possible to make an appropriate selection, such as connecting the heat exchanger tubes of the same stage in parallel and then connecting the heat exchanger tubes of different stages in series.

以下に、本発明装置の作用を説明する。The operation of the device of the present invention will be explained below.

燃料ガスノズル17によって燃料ガスがファンケーシン
グ13出口部に噴射され、ファン16よりの空気流によ
って燃焼用空気とともに混合室14に送られ、予混合気
が形成される。予混合気は面バーナプレート18を通過
して燃焼室15へ供給されて火炎に形成され、燃焼ガス
となる。
The fuel gas is injected into the outlet of the fan casing 13 by the fuel gas nozzle 17, and is sent to the mixing chamber 14 together with combustion air by the airflow from the fan 16 to form a premixed mixture. The premixture passes through the surface burner plate 18 and is supplied to the combustion chamber 15, where it is formed into a flame and becomes combustion gas.

予混合燃焼の場合には、燃焼ガス温度を高めるため、空
気比は極力1.0に近づけるのがよいが、未燃成分発生
量を抑える観点から、空気比を1.1〜1,4程度に設
定するのが好ましい、その結果、燃焼ガスは1500〜
1650℃の高温となり、燃焼室15内に配IIされた
第一の伝熱管群19に導かれ、対流熱伝達によって燃焼
ガスが有している熱エネルギの一部を第一の伝熱管群1
9の伝熱管内を流れる水などの流体へ伝達する。ざらに
燃焼ガスは、高温のまま輻射クロス20を通過して流れ
、この輻射クロス20をも加熱して白熱化させる。
In the case of premix combustion, in order to increase the combustion gas temperature, it is best to keep the air ratio as close to 1.0 as possible, but from the perspective of suppressing the amount of unburned components generated, the air ratio should be around 1.1 to 1.4. It is preferable to set the combustion gas to 1500 ~
The temperature reaches a high temperature of 1650°C, and the combustion gas is guided to the first heat exchanger tube group 19 arranged in the combustion chamber 15, and a part of the thermal energy possessed by the combustion gas is transferred to the first heat exchanger tube group 1 by convection heat transfer.
It is transmitted to the fluid such as water flowing inside the heat transfer tube 9. Roughly, the combustion gas flows through the radiant cloth 20 while remaining at a high temperature, and the radiant cloth 20 is also heated to become incandescent.

輻射クロスが第一の伝熱管群に接している部分では輻射
クロスから第一の伝熱管にフィンへの直接接触熱伝導が
行なわれ、このため、この部分は若干温度が低下するが
、その近傍では、フィンとフィンの間隙から高温ガスが
流れこみ、輻射クロスを通過して流れるため高温に加熱
され、この部分から伝熱管への強い輻射が放射される。
In the part where the radiation cross contacts the first heat exchanger tube group, direct contact heat conduction from the radiation cross to the first heat exchanger tube and the fins occurs, so the temperature in this part decreases slightly, but the temperature in the vicinity In this case, high-temperature gas flows in from the gap between the fins, passes through the radiation cross, is heated to a high temperature, and strong radiation is emitted from this part to the heat transfer tube.

第3図、第4図はこのことを説明するもので、第一の伝
熱管群19の伝熱管のフィン19aに載置された輻射ク
ロス20と高温ガスの流れ、輻射線の間係を示している
。第3図、第4図において、白抜矢印は高温ガスの流れ
、波線矢印は輻射線、実線矢印は直接接触熱伝導を示す
、輻射クロスとフィンによって囲まれた空間では、輻射
クロスから放射された輻射線はほとんど外に漏れ出るこ
とがなく、完全に近い輻射熱伝達が行なわれる。
Figures 3 and 4 explain this and show the relationship between the radiation cloth 20 placed on the fins 19a of the heat exchanger tubes of the first heat exchanger tube group 19, the flow of high temperature gas, and the radiation. ing. In Figures 3 and 4, white arrows indicate the flow of high-temperature gas, wavy arrows indicate radiation, and solid arrows indicate direct contact heat conduction. Almost no radiation leaks out, and almost perfect radiant heat transfer occurs.

したがって輻射クロス20はできるだけ撓ませて伝熱管
を包むように配置するのが好ましい、しかし、第一の伝
熱管群19の伝熱管がフィン付きでない場合には、伝熱
管に対し輻射クロスが断熱材のような役目をするので、
できるだけ輻射クロスと伝熱管の接触部を小さくする方
が好ましい。
Therefore, it is preferable to bend the radiation cloth 20 as much as possible and arrange it so as to wrap around the heat exchanger tubes.However, if the heat exchanger tubes of the first heat exchanger tube group 19 are not equipped with fins, the radiation cloth 20 should be bent as much as possible to wrap around the heat exchanger tubes. Because it plays a role like
It is preferable to make the contact area between the radiation cloth and the heat transfer tube as small as possible.

輻射クロス20は、800〜1200℃の高温に保持さ
れ、第一の伝熱管群19をほぼ全体に輻射加熱する。輻
射伝熱の観点からは輻射クロスの温度を極力高めるのが
好ましいのだが、着火・停止時の温度変化あるいは輻射
クロス各部での温度分布などを考慮すると、輻射クロス
の耐久性のために、上記温度範囲となるようにして使用
するのが好ましい、その際、輻射熱は、面バーナプレー
ト18方向にも照射されるが、第一の伝熱管群19の下
段の伝熱管によってかなりの量が遣られるため、面バー
ナプレート18がこの輻射熱によって焼損されることは
ない。
The radiation cloth 20 is maintained at a high temperature of 800 to 1200° C., and radiantly heats almost the entire first heat exchanger tube group 19. From the perspective of radiant heat transfer, it is preferable to raise the temperature of the radiant cloth as much as possible, but when considering temperature changes during ignition and stopping, and temperature distribution at various parts of the radiant cloth, the above-mentioned It is preferable to use the radiant heat within a temperature range. In this case, radiant heat is also irradiated in the direction of the surface burner plate 18, but a considerable amount is used by the lower heat exchanger tubes of the first heat exchanger tube group 19. Therefore, the surface burner plate 18 is not burned out by this radiant heat.

燃焼ガスは、第一の伝熱管群19と輻射クロス20を通
過する間に、伝熱管内を流れる流体との熱交換によって
その温度が600〜800℃に低下し、第二の伝熱管群
21に導かれ、内部を流れる流体に再び熱エネルギを伝
達する。ざらに輻射りOス20がらの輻射熱が第二の伝
熱管群21にも照射される。
While the combustion gas passes through the first heat exchanger tube group 19 and the radiation cloth 20, its temperature decreases to 600 to 800°C by heat exchange with the fluid flowing inside the heat exchanger tubes, and then the combustion gas passes through the second heat exchanger tube group 21. The heat energy is transferred back to the fluid flowing inside. The second heat transfer tube group 21 is also irradiated with the radiant heat from the radiant oxygen 20 .

かくして、第二の伝熱管群21内部の水などの流体は、
40〜80℃となって、装薗外へ導出される。
Thus, the fluid such as water inside the second heat exchanger tube group 21 is
It reaches a temperature of 40 to 80°C and is led out of the container.

上記実施例の流体加熱装置11と、これとは異なる構成
の流体加熱装置とを用いて性能評価実験を行なった。実
験条件および実験結果は次の通り。
A performance evaluation experiment was conducted using the fluid heating device 11 of the above embodiment and a fluid heating device having a different configuration. The experimental conditions and results are as follows.

(実験条件) ■燃料:天然ガス、空気比1.2 ■被加熱流体二人ロ水温20℃の水を、まず第一の伝熱
管群19に流し、ここを出た後、第二の伝熱管群21に
流す。
(Experimental conditions) ■Fuel: natural gas, air ratio 1.2 ■Heated fluid for two people Water at a water temperature of 20°C is first flowed through the first heat transfer tube group 19, and after leaving here, it is passed through the second heat transfer tube group 19. It flows into the heat tube group 21.

■第一の伝熱管群19:内径11.4mm、外径12.
7mm、フィン高さ1.6 mm、フィン外径15.9
mmの銅製ローフインチューブを配列間隔16mm(ピ
ッチ約32mm)で5本千鳥状に横行配置。
■First heat exchanger tube group 19: inner diameter 11.4 mm, outer diameter 12.
7mm, fin height 1.6mm, fin outer diameter 15.9
5 mm copper loaf-in tubes are arranged horizontally in a staggered manner with an interval of 16 mm (pitch approximately 32 mm).

■輻射クロス20 : 15u SiC500フイラメ
ント/ヤーンの連続繊維を5ヤ一ン/インチにからみ織
りしたものを第1図のように配置。
■Radiation Cloth 20: 15u SiC500 filament/yarn continuous fibers twisted and woven at 5 yarns/inch, arranged as shown in Figure 1.

■第二の伝熱管群21:伝熱管の内径11 、5mm、
外径12.7mmの銅チューブとフィン厚さ0.35m
m、フィンと・ソチ2.7mmのフィンとを組合わせた
プレートフィンチューブ。
■Second heat exchanger tube group 21: inner diameter of heat exchanger tubes 11, 5mm,
Copper tube with outer diameter 12.7mm and fin thickness 0.35m
Plate fin tube that combines m, fins and Sochi 2.7mm fins.

なお、実施例の装置においては、面バーナプレート18
の端面から第一の伝熱管群19の下段の伝熱管のフィン
下縁までの距Maを20mm、面バーナプレート18の
端面から第二の伝熱管群21のフィン下縁までの距離す
を68mmとした。
In addition, in the apparatus of the embodiment, the surface burner plate 18
The distance Ma from the end face to the lower edge of the fin of the lower heat exchanger tube of the first heat exchanger tube group 19 is 20 mm, and the distance Ma from the end face of the surface burner plate 18 to the lower edge of the fin of the second heat exchanger tube group 21 is 68 mm. And so.

また、対照例の装置においでは、第一の伝熱管群19お
よび輻射クロス201Fr設けず、実施例の装置に用い
たのと同一の第二の伝熱管群21のみを距離すが200
mmとなる位置に設けた。
In addition, in the apparatus of the control example, the first heat exchanger tube group 19 and the radiation cross 201Fr were not provided, and only the second heat exchanger tube group 21, which was the same as that used in the apparatus of the example, was installed at a distance of 200 Fr.
It was installed at a position of mm.

(実験結果) 燃焼空間容積+熱交換部容積 対照例:実施例=  I:0.28 伝熱面積     対照例:実施例= 1・1.18受
熱量      対照例:実施例= I:1.64排出
CO濃度    対照例80ppm、実施例15ppm
この結果からもわかるように、実施例の装置では、燃焼
室15に、第一の伝熱管群19と輻射クロス20を前記
のような関係で配置したことで、CO濃度を低く抑えつ
つ、バーナを伝熱管に近接させて燃焼空間を大幅に縮小
化することができたとともに、伝熱面積を18%増加さ
せただけで、64%もの交換熱量の増加が得られた。
(Experimental results) Combustion space volume + heat exchange section volume Control example: Example = I: 0.28 Heat transfer area Control example: Example = 1.1.18 Heat received Control example: Example = I: 1.64 Exhaust CO concentration: Control example 80 ppm, Example 15 ppm
As can be seen from this result, in the apparatus of the example, by arranging the first heat exchanger tube group 19 and the radiation cross 20 in the above-mentioned relationship in the combustion chamber 15, the burner can be heated while keeping the CO concentration low. It was possible to significantly reduce the combustion space by placing the heat transfer tube close to the heat transfer tube, and by increasing the heat transfer area by only 18%, an increase in the amount of heat exchanged by 64% was obtained.

なお、実施例の装置では、燃焼室負荷を対照例の約30
倍となる1、5 x 10’ kcal/m 3/hr
にまで増加古せである。
In addition, in the device of the example, the combustion chamber load is about 30% compared to the control example.
1.5 x 10' kcal/m 3/hr
It has become increasingly obsolete.

「発明の効果」 以上説明したように、本発明によれば、第一および第二
の伝熱管群に対して、燃焼ガスによる対流熱伝達と輻射
クロスによる輻射熱伝達とが同時に行なわれるので、燃
焼熱を効果的に利用することができる。゛また、輻射ク
ロスからの輻射熱は第一の伝熱管群の下段の伝熱管によ
ってがなりの量が逼られるので、輻射熱による燃焼手段
の焼損が防止される。さらに、輻射クロスは高温に保た
れるため、燃焼室で不完全燃焼生成物が発生したとしで
も、この高温の輻射クロスによって酸化反応が促進され
て不完全燃焼生成物の排出量を抑制することかできる。
"Effects of the Invention" As explained above, according to the present invention, convective heat transfer by the combustion gas and radiant heat transfer by the radiation cross are performed simultaneously with respect to the first and second heat transfer tube groups. Heat can be used effectively. Furthermore, since the amount of radiant heat from the radiant cross is limited by the heat transfer tubes in the lower stage of the first heat transfer tube group, burning out of the combustion means due to the radiant heat is prevented. Furthermore, since the radiant cloth is kept at a high temperature, even if incomplete combustion products are generated in the combustion chamber, the oxidation reaction is promoted by this high temperature radiant cloth, suppressing the amount of incomplete combustion products emitted. I can do it.

さらにまた、本発明のごとく構成することにより、製画
全体の小型化を図ることができる。そのうえ、輻射クロ
スは可撓性が大であるとともに熱伝達に優れ、熱応力、
熱衝撃の点でセラミックスハニカムなどより有利である
。セラミ・ンクスハニカムなどの剛体と比較すると、さ
らに位置決めなどのしやすぎ、すなわち、実施例で示し
たように簡単にケーシングフランジなどで把持でき、こ
のため運搬、使用などによる姿勢変化、ズレ落ちなどの
心配がない。
Furthermore, by configuring as in the present invention, it is possible to downsize the entire drawing. In addition, radiant cloth has great flexibility and excellent heat transfer, reducing thermal stress and
It is more advantageous than ceramic honeycomb in terms of thermal shock. Compared to rigid bodies such as ceramic honeycomb, it is also easier to position, as shown in the example, it can be easily gripped with a casing flange, etc., and this makes it difficult to change posture or fall off due to transportation or use. There is no need to worry about

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による流体加熱装置の断面図、第2図は
本発明による別の流体加熱装置の要部断面図である。第
3図は第1図の8部の拡大図、第4図は第3図のA−A
線に沿った断面図である。 11は流体加熱袋で、12はケーシング、13はファン
ケーシング、14は混合室、15は燃焼室、18は面バ
ーナプレート、19は第一の伝熱管群、20は輻射クロ
ス、21は第二の伝熱管群、22はフィン。
FIG. 1 is a cross-sectional view of a fluid heating device according to the present invention, and FIG. 2 is a cross-sectional view of a main part of another fluid heating device according to the present invention. Figure 3 is an enlarged view of part 8 of Figure 1, Figure 4 is A-A of Figure 3.
It is a sectional view along the line. 11 is a fluid heating bag, 12 is a casing, 13 is a fan casing, 14 is a mixing chamber, 15 is a combustion chamber, 18 is a surface burner plate, 19 is a first heat exchanger tube group, 20 is a radiation cross, 21 is a second 22 is a fin.

Claims (1)

【特許請求の範囲】 1、燃焼手段と、この燃焼手段の近接下流に配置した第
一の伝熱管群と、この第一の伝熱管群の少なくとも一の
伝熱管の近接下流に波状に撓ませて配置した通気性の輻
射クロスと、この輻射クロスの近接下流に配置した第二
の伝熱管群とを備えることを特徴とする流体加熱装置。 2、特許請求の範囲第1項において、前記輻射クロスは
セラミックス繊維製である流体加熱装置。 3、特許請求の範囲第1項または第2項において、前記
輻射クロスは前記第一の伝熱管群に載置されている流体
加熱装置。 4、特許請求の範囲第1項〜第3項のいずれか一におい
て、前記第一の伝熱管群は複数段となるように配置され
、前記輻射クロスは、前記第一の伝熱管群の最下流段の
伝熱管と非最下流段の伝熱管に交互に接する流体加熱装
置。
[Scope of Claims] 1. Combustion means, a first heat exchanger tube group disposed adjacently downstream of the combustion means, and a wave-like bending device adjacent to and downstream of at least one heat exchanger tube of the first heat exchanger tube group. 1. A fluid heating device comprising: an air-permeable radiant cloth disposed in the vicinity of the radiant cloth; and a second group of heat transfer tubes disposed adjacently downstream of the radiant cloth. 2. The fluid heating device according to claim 1, wherein the radiation cloth is made of ceramic fiber. 3. The fluid heating device according to claim 1 or 2, wherein the radiation cloth is placed on the first heat exchanger tube group. 4. In any one of claims 1 to 3, the first heat exchanger tube group is arranged in a plurality of stages, and the radiation cross is located at the top of the first heat exchanger tube group. A fluid heating device that alternately contacts downstream heat transfer tubes and non-downstream heat transfer tubes.
JP3991187A 1987-02-23 1987-02-23 Fluid heater with radiation cloth Pending JPS63207910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3991187A JPS63207910A (en) 1987-02-23 1987-02-23 Fluid heater with radiation cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3991187A JPS63207910A (en) 1987-02-23 1987-02-23 Fluid heater with radiation cloth

Publications (1)

Publication Number Publication Date
JPS63207910A true JPS63207910A (en) 1988-08-29

Family

ID=12566129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3991187A Pending JPS63207910A (en) 1987-02-23 1987-02-23 Fluid heater with radiation cloth

Country Status (1)

Country Link
JP (1) JPS63207910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213757B1 (en) * 1995-06-07 2001-04-10 Quantum Group Inc. Advanced emissive matrix combustion
CN106918042A (en) * 2017-04-26 2017-07-04 杨宝祥 Hot press heat-conducting plate Gas Direct-fired Machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213757B1 (en) * 1995-06-07 2001-04-10 Quantum Group Inc. Advanced emissive matrix combustion
CN106918042A (en) * 2017-04-26 2017-07-04 杨宝祥 Hot press heat-conducting plate Gas Direct-fired Machine

Similar Documents

Publication Publication Date Title
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
US5333597A (en) Abatement member and method for inhibiting formation of oxides of nitrogen
JP4819276B2 (en) Tube furnace
US20210199340A1 (en) Heat exchanger unit and method for manufacturing the same
JPS63207910A (en) Fluid heater with radiation cloth
JPH0739880B2 (en) Fluid heating device
JPS63207911A (en) Fluid heating device
JPS63207913A (en) Fluid heating device with radiator
JPS63207912A (en) Fluid heating device with radiator
JPH05761Y2 (en)
JP2005274063A (en) Catalyst combustion type fluid heating device
JPS63210514A (en) Improved fluid heating device
JPS63210513A (en) Improved fluid heating device
JPS63707B2 (en)
JPS61225543A (en) Heat exchanging method and heat exchanger directly used therefor
JPS63259332A (en) Heat exchanger using heat pipe
JPS61225542A (en) Heat exchanger
JPH0334602Y2 (en)
JPS63254348A (en) Fluid heating device
JPS62233639A (en) Fluid heating apparatus
JP3841956B2 (en) Catalytic combustion device
JP3726381B2 (en) Steam boiler
JPH01139937A (en) Heat exchanging device having heat pipe
JPS63217121A (en) Planar burner
JPS63286657A (en) Hot-water supplier