JPS63210514A - Improved fluid heating device - Google Patents

Improved fluid heating device

Info

Publication number
JPS63210514A
JPS63210514A JP4496887A JP4496887A JPS63210514A JP S63210514 A JPS63210514 A JP S63210514A JP 4496887 A JP4496887 A JP 4496887A JP 4496887 A JP4496887 A JP 4496887A JP S63210514 A JPS63210514 A JP S63210514A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heat transfer
tube group
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4496887A
Other languages
Japanese (ja)
Other versions
JPH0810046B2 (en
Inventor
Satoshi Ebato
江波戸 智
Takatoshi Shiyudou
崇聡 首藤
Susumu Morita
進 森田
Yoshimasa Arai
新井 義正
Kozo Sakurai
桜井 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Gas Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4496887A priority Critical patent/JPH0810046B2/en
Publication of JPS63210514A publication Critical patent/JPS63210514A/en
Publication of JPH0810046B2 publication Critical patent/JPH0810046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To transfer combustion heat effectively, miniaturize the whole of a device and prevent a combustion means from deforming, breaking and backfiring, by a method wherein a first heat transfer tube group is constituted so that heat transfer tubes are arranged in a plurality of stages with respect to the flow direction of combustion gas while at least a part of the heat transfer tubes in a stage, not the lowest, is located at the upstream side of a gap between the heat transfer tubes in the most downstream stage. CONSTITUTION:The mixture of air and fuel, which is formed in a mixing chamber 23, is supplied into a combustion chamber 24 through the flame ports of a burner plate 27 and becomes high-temperature combustion gas. The combustion gas passes through a gap between the heat transfer tubes 13a of a first heat transfer tube group 13 and heats a radiator 14 so as to become white-hot while keeping the high temperature. In this case, the radiator 14 is kept in the high temperature and heats the first heat transfer tube group 13 principally by radiation. The radiation heat passes through the gap between the heat transfer tubes 13a and is projected toward the burner plate 27, however, is intercepted by the heat transfer tubes 13b, located at the upstream of the gap; thereby, the radiation heat, projected against the burner plate 27, is reduced remarkably. When a projection area ratio is 0%, substantially no heat is directly radiated to the burner plate 27. Accordingly, the burner plate 27 may be prevented from being damaged by fusion due to radiation heat, thermally deforming, cracking under heat stress, and backfiring when used for a long period of time.

Description

【発明の詳細な説明】 「技術分野」 本発明は、湯沸器、風呂釜、温水ボイラなどに使用され
る流体加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a fluid heating device used in water heaters, bathtubs, hot water boilers, and the like.

[従来技術およびその問題点」 従来、湯沸器、風呂釜、温水ボイラなどの流体加熱装置
においては、バーナの下流の燃焼室にて燃料を燃焼させ
た後、燃焼ガスを伝熱管群間に導き、主に対流熱伝達を
利用しで、伝熱管群の内部を流れる水などの流体を加熱
するようになっていた。
[Prior art and its problems] Conventionally, in fluid heating devices such as water heaters, bathtubs, and hot water boilers, fuel is combusted in a combustion chamber downstream of a burner, and then the combustion gas is passed between a group of heat transfer tubes. It was designed to heat fluids such as water flowing inside a group of heat transfer tubes, mainly by using convective heat transfer.

近年、これらの流体加熱装置においては、極力コンパク
トにするため、燃焼室をできる限り小型化すると共に、
熱交換部の単位容積当りの伝熱量を増加させる傾向にあ
る。
In recent years, in order to make these fluid heating devices as compact as possible, the combustion chamber has been made as small as possible, and
This tends to increase the amount of heat transferred per unit volume of the heat exchange section.

そこで、本発明者らは、先に特願昭60−223980
においで、第7図および第8図に示すような流体加熱装
置を提案した。この流体加熱装置10では、ケーシング
11内の下部にバーナなどの燃焼手段12を配)し、こ
の燃焼手段12の上部に、下から順に第一の伝熱管群1
3、通気性の輻射体14、および第二の伝熱管群15r
8配置している。菓−の伝熱管群13は複数本の伝熱管
が所定間隔で一段に配置されており、この第一の伝熱管
群13と第二の伝熱管群15には水などの被加熱流体が
流されるようになっている。
Therefore, the inventors of the present invention previously applied for patent application No. 60-223980.
proposed a fluid heating device as shown in FIGS. 7 and 8. In this fluid heating device 10, a combustion means 12 such as a burner is disposed in the lower part of the casing 11, and a first heat exchanger tube group 1 is arranged in the upper part of the combustion means 12 in order from the bottom.
3. Breathable radiator 14 and second heat exchanger tube group 15r
8 are arranged. In the heat exchanger tube group 13 of the confectionery, a plurality of heat exchanger tubes are arranged in a row at predetermined intervals, and a fluid to be heated such as water flows through the first heat exchanger tube group 13 and the second heat exchanger tube group 15. It is now possible to

そして、燃焼手段12のノズルから噴出された燃料ガス
は火炎を形成して燃焼する。この燃焼ガスは第一の伝熱
管群13を加熱するとともに、第一の伝熱管群13の各
伝熱管の間隙を通過して輻射体14をも加熱する。この
加熱された輻射体14は輻射熱を主に第一の伝熱管群1
3に照射し、第一の伝熱管群13は、燃焼ガスによる対
流熱伝達と輻射体14からの輻射熱伝達の双方により加
熱される。また、第二の伝熱管群15も、燃焼ガスによ
る対流熱伝達と輻射体14からの輻射熱によって加熱さ
れる。かくして第一の伝熱管群13および第二の伝熱管
群15内を流れる被加熱流体が加熱される。
Then, the fuel gas ejected from the nozzle of the combustion means 12 forms a flame and burns. This combustion gas not only heats the first heat exchanger tube group 13 but also passes through the gaps between the heat exchanger tubes of the first heat exchanger tube group 13 and heats the radiator 14 . This heated radiator 14 mainly transfers radiant heat to the first heat exchanger tube group 1.
3, and the first heat exchanger tube group 13 is heated by both convective heat transfer by the combustion gas and radiant heat transfer from the radiator 14. Further, the second heat transfer tube group 15 is also heated by convection heat transfer by the combustion gas and radiant heat from the radiator 14 . In this way, the fluid to be heated flowing through the first heat exchanger tube group 13 and the second heat exchanger tube group 15 is heated.

上記の流体加熱装置10によると、輻射体14がらの輻
射熱が、第一の伝熱管群13ばかりか第二の伝熱管群1
5にも照射されて燃焼熱を有効に利用することができ、
第一の伝熱管群13P8燃焼手段12に近接させである
ので、燃焼室間を大幅に縮小でき、装置全体をコンパク
ト化できる。ざらに、不完全燃焼生成物が発生しても、
高温に保たれている輻射体14を通過する際に酸化され
るので、不完全燃焼生成物の排出を抑制することができ
る。
According to the fluid heating device 10 described above, the radiant heat from the radiator 14 is transmitted not only to the first heat exchanger tube group 13 but also to the second heat exchanger tube group 1.
5 can also be irradiated and the combustion heat can be used effectively,
Since the first heat transfer tube group 13P8 is located close to the combustion means 12, the distance between the combustion chambers can be significantly reduced, and the entire device can be made compact. Even if incomplete combustion products occur,
Since it is oxidized when passing through the radiator 14 kept at a high temperature, the discharge of incomplete combustion products can be suppressed.

しかしながら、上記の流体加熱装置10では、燃焼手段
12と輻射体14との間に介在する第一の伝熱管群13
の各伝熱管の間隔が管外径よりも広くなっていると、輻
射体14からの輻射熱が第一の伝熱管群13の各伝熱管
の間を通過して燃焼手段12に多量に到達するため、こ
の輻射熱によって燃焼手段12までが加熱されでしまう
ことが判明した。
However, in the fluid heating device 10 described above, the first heat exchanger tube group 13 interposed between the combustion means 12 and the radiator 14
When the interval between the heat transfer tubes is wider than the tube outer diameter, a large amount of radiant heat from the radiator 14 passes between the heat transfer tubes of the first heat transfer tube group 13 and reaches the combustion means 12. Therefore, it has been found that even the combustion means 12 is heated by this radiant heat.

このため、燃焼手段12は輻射熱の直射を受ける部分に
熱損@を起こしたり、直射を受ける部分とそうでない部
分とで大きな温度差を生じ、燃焼手段がセラミックス装
面バーナの場合には、その表面と裏面とでも大きな温度
差を生し、これらはひいでは燃焼手段12の変形、破損
、ざらには燃焼手段12が予混合型バーナであると逆火
という危険な事態を招くことにもなる。
For this reason, the combustion means 12 causes heat loss @ in the part that receives direct radiation from the radiant heat, or a large temperature difference occurs between the part that receives direct radiation and the part that does not. There is also a large temperature difference between the front and back surfaces, which can lead to deformation and damage to the combustion means 12, and even lead to dangerous backfires if the combustion means 12 is a premix burner. .

「発明の目的」 本発明の目的は、上記の問題点を解消し、燃焼熱を効果
的に伝熱させ、装置全体の小型化を図るとともに、輻射
熱による燃焼手段の高温過熱とこれに伴なう燃焼手段内
の大きな温度差の発生を抑制し、燃焼手段の変形、破損
や逆火を防止することのできる流体加熱装置を提供する
ことにある。
"Objective of the Invention" The object of the present invention is to solve the above-mentioned problems, to effectively transfer combustion heat, to downsize the entire device, and to reduce the high temperature overheating of the combustion means by radiant heat. An object of the present invention is to provide a fluid heating device capable of suppressing the occurrence of a large temperature difference within a combustion means and preventing deformation, damage, and backfire of the combustion means.

[発明の構成J 本発明による流体加熱装置は、燃焼手段と、燃焼手段の
近接下流に複数段に配Mされた第一の伝熱管群と、第一
の伝熱管群の近接下流に通気可能に設けられた輻射体と
、輻射体の近接下流に配置された第二の伝熱管群とを備
え、第一の伝熱管群の最下流段を構成する伝熱管の間隙
の上流には第一の伝熱管群の非最下流段を構成する伝熱
管の少なくとも一部を位置せしめてなることを特徴とす
る。
[Structure of the Invention J The fluid heating device according to the present invention includes a combustion means, a first heat exchanger tube group arranged in multiple stages adjacent to and downstream of the combustion means, and a ventilable portion adjacent to and downstream of the first heat exchanger tube group. and a second heat exchanger tube group disposed close to and downstream of the radiator, and the first It is characterized in that at least a part of the heat exchanger tubes constituting the non-downstream stage of the heat exchanger tube group is positioned.

本発明にで、燃料としては、都市ガス、プロパンガス、
天然ガスなどの気体燃料、もしくは灯油などの液体燃料
を気化させたものが採用できる。
In the present invention, the fuel includes city gas, propane gas,
Gaseous fuels such as natural gas or vaporized liquid fuels such as kerosene can be used.

燃焼手段としては、燃焼用空気と燃料とを別々に燃焼室
へ供給する拡散燃焼型バーナ、あるいは燃焼用空気と燃
料とを予め所要割合で混合させた後に燃焼室へ供給する
予混合燃焼型バーナなどが使用される。予混合燃焼型バ
ーナとしでは面状バーナが好適である。
Combustion means include a diffusion combustion type burner that supplies combustion air and fuel separately to the combustion chamber, or a premix combustion type burner that supplies combustion air and fuel to the combustion chamber after mixing them in a predetermined ratio. etc. are used. A planar burner is suitable as the premix combustion type burner.

複数の伝熱管からなる第一の伝熱管群は、燃焼ガス流れ
方向に関して複数段に配置され、全体として燃焼手段の
下流に、がっ、燃焼手段に近接しで設けられる。
The first heat exchanger tube group consisting of a plurality of heat exchanger tubes is arranged in multiple stages in the combustion gas flow direction, and is generally provided downstream of the combustion means and close to the combustion means.

第一の伝熱管群の最上流段の伝熱管の上流縁は例えば燃
焼手段によって形成される火炎中、あるいは火炎の先端
に近接した位置に配置される。具体的には燃焼手段の燃
料ガス吐出口(例えばバーナ先端)と上述した伝熱管上
流縁との距離は5〜50mmとすることが好ましい。換
言すると、火炎の長さは燃焼手段の設計によって異なる
が一般には5〜50mm程度であるため、上述の伝熱管
上流縁は火炎の先端付近に配置されることになる。
The upstream edge of the most upstream heat transfer tube of the first heat transfer tube group is placed, for example, in the flame formed by the combustion means or in a position close to the tip of the flame. Specifically, the distance between the fuel gas discharge port of the combustion means (for example, the tip of the burner) and the upstream edge of the heat transfer tube is preferably 5 to 50 mm. In other words, the length of the flame varies depending on the design of the combustion means, but is generally about 5 to 50 mm, so the upstream edge of the heat exchanger tube is placed near the tip of the flame.

第一の伝熱管群を燃焼手段に対し上記位置より離れた位
置に配置した場合には、熱損失あるいは燃焼室を囲むケ
ーシングの冷却管などにより燃焼ガスの温度が低下し、
本発明の効果を充分に(よ得られなくなったり、ガス厚
みが増大して高温燃焼ガスからバーナへの輻射入熱が増
大し、バーナの損傷、逆火を招く可能性がある。
If the first heat transfer tube group is placed at a position farther from the combustion means than the above position, the temperature of the combustion gas will decrease due to heat loss or cooling pipes in the casing surrounding the combustion chamber.
The effects of the present invention may not be fully obtained, or the gas thickness will increase, increasing radiant heat input from the high-temperature combustion gas to the burner, which may cause damage to the burner and flashback.

第−の伝熱管群の近接下流には輻射体か配置される。輻
射体は、燃焼ガスか有1.でいる熱エネルギを強力な輻
射エネルギに変換し、主に第一の伝熱管群に、ざらには
第二の伝熱管群に輻射熱を照射する。この輻射体からの
輻射伝熱と高温の燃焼ガスからの対流伝熱とて両伝熱管
群が加熱され、その内部を流れる流体か効率的に加熱さ
れる。
A radiator is arranged adjacent to and downstream of the -th heat exchanger tube group. The radiant is a combustion gas or a gas. The generated heat energy is converted into strong radiant energy, and the radiant heat is applied mainly to the first heat exchanger tube group, and more generally to the second heat exchanger tube group. Both heat transfer tube groups are heated by radiant heat transfer from the radiator and convection heat transfer from the high temperature combustion gas, and the fluid flowing inside them is efficiently heated.

輻射体は高温で効果的な輻射熱を発生させるよう、炭化
ケイ素、富化ケイ素、窒化アルミニウム、コージライト
、ムライト、リチウムアルミニウムシリケート、アルミ
ニウムチタネートなどのセラミックスか好適な材質とし
て挙げられ、特に高耐熱、高強度、高熱伝導性のセラミ
ックス、例えば炭化ケイ素、窒化ケイ素、窒化アルミニ
ウムなどのセラミックスが好ましい。温度条件などによ
っては耐熱鋼などの全屈材料も採用しつる。
The radiator is preferably made of ceramics such as silicon carbide, enriched silicon, aluminum nitride, cordierite, mullite, lithium aluminum silicate, aluminum titanate, etc., in order to generate effective radiant heat at high temperatures. Ceramics with high strength and high thermal conductivity, such as silicon carbide, silicon nitride, and aluminum nitride, are preferred. Fully flexible materials such as heat-resistant steel may also be used depending on temperature conditions.

第一の伝熱管群域を通過した燃焼ガスが輻射体に接触し
、ざらに下流へと流れていくことが可能なように、すな
わち燃焼ガスの通気が可能なように、この輻射体は設け
られる。
The radiator is designed so that the combustion gas that has passed through the first heat transfer tube group comes into contact with the radiator and can flow roughly downstream, that is, to allow ventilation of the combustion gas. It will be done.

このような設は方の好ましい一例は、棒状あるいは細長
板状の輻射体を多数本相互に平行に、がっ、相互間には
スリットを形成して配置するものである。このとき、棒
状あるいは細長板状の輻射体は、その長平方向が燃焼ガ
ス流れ方向と直交するのがよいが、斜交しでもよい。こ
の場合、輻射体自体は非通気性でも通気性でもよい。
A preferred example of such an arrangement is one in which a large number of rod-shaped or elongated plate-shaped radiators are arranged parallel to each other with slits formed between them. At this time, it is preferable that the elongated direction of the rod-shaped or elongated plate-shaped radiator is orthogonal to the flow direction of the combustion gas, but it may be oblique. In this case, the radiator itself may be non-breathable or breathable.

より好ましい輻射体の設は方は、例えば平板状などの通
気゛注輻射体を採用することである。通気性輻射体は、
板状体の両面間をガスか流通しつるような流路が全体と
しでは均一に分布しでいるもので、典型的にはハニカム
体、三次元網状体、連通気泡体、網状物積層体などが挙
げられる。このような通気性輻射体を、例えば燃焼ガス
流路の寅雲的全t91iを横断するように配置するもの
で、これにより燃焼ガスが上流側から通気゛注輻射体の
内部を通りぬけで下流側に通気する。
A more preferable way to install the radiator is to use, for example, a flat plate-shaped ventilation/injection radiator. The breathable radiator is
A plate-shaped body in which gas flows through both sides and the flow paths are uniformly distributed as a whole, typically honeycomb bodies, three-dimensional nets, open-cell foams, network laminates, etc. can be mentioned. Such a ventilation radiator is arranged, for example, so as to cross the entire length of the combustion gas flow path, so that the combustion gas passes from the upstream side through the inside of the ventilation radiator and flows downstream. Vent on the side.

かかる通気性輻射体のうちで特に好適なのはセラミック
ス製のハニカム板であるにのハニカム板は、板面の表M
(こ貫通する多数の平行セルを有するもので、セル形状
は、正方形、長方形、六角形など適宜選択できる。また
、ハニカム板は、波板同士、あるいは波板と平板を多数
積層して形成されたようなものでもよい。
Among such breathable radiators, a honeycomb plate made of ceramics is particularly suitable.
(It has a large number of parallel cells passing through it, and the cell shape can be selected as appropriate, such as square, rectangle, or hexagon.) Honeycomb board is also formed by laminating a large number of corrugated sheets or corrugated sheets and flat sheets. It could be something like this.

第二の伝熱管群は、輻射体の近接下流に配置される。第
二の伝熱管群域へ流入する燃焼ガスは、第一の伝熱管群
および輻射体の配置1F!tを通過する際の熱交換によ
り、その温度が低下しでいる。そこで、第二の伝熱管群
は外面にフィンを有するものとしで、対流伝熱を向上さ
せるのが好ましい。
The second heat exchanger tube group is arranged adjacent to and downstream of the radiator. The combustion gas flowing into the second heat exchanger tube group area is 1F where the first heat exchanger tube group and radiator are located! Due to the heat exchange during passing through t, its temperature begins to decrease. Therefore, it is preferable that the second heat transfer tube group has fins on its outer surface to improve convective heat transfer.

また、燃焼ガスか平均しで接触するようにするため、第
二の伝熱管群は、伝熱管を千鳥状に配列することもでき
る。
Moreover, in order to make contact with the combustion gas evenly, the second heat exchanger tube group can also have heat exchanger tubes arranged in a staggered manner.

なお、第一および第二の伝熱管群の伝熱管の材質は、銅
、アルミニウム、アルミニウム合金、ステンレスなどの
金属、あるいは炭化ケイ素、窒化ケイ素などの熱伝導性
、耐食性に優れたセラミックスであることか好ましく、
特に、高熱伝導率、低線膨張係数、高強度を有し、成形
性にも優れた反応焼結炭化珪素、あるいは高熱伝導性材
料である銅が最も好ましい。
The material of the heat exchanger tubes in the first and second heat exchanger tube groups shall be metals such as copper, aluminum, aluminum alloy, stainless steel, or ceramics with excellent thermal conductivity and corrosion resistance such as silicon carbide and silicon nitride. Preferably,
In particular, reaction sintered silicon carbide, which has high thermal conductivity, low coefficient of linear expansion, high strength, and excellent formability, or copper, which is a highly thermally conductive material, is most preferred.

ところで、第一の伝熱管群を輻射体と燃焼手段との間に
一段に配置し、かつ、輻射体から燃焼手段への輻射熱の
直射を低下させようとすると、第一の伝熱管群を構成す
る各伝熱管の間隙を小さくしなければならないか、この
間隙そ燃焼ガスが通過する際の圧損が大きくなったり、
伝熱管の管端同志を接続する0字管に制約を受ける。そ
こで本発明では、第一の伝熱管群を複数段に配置し、か
つ、このうちの最下流段を構成する伝熱管の間隙の上流
には非最下流段を構成する伝熱管の少なくとも一部を位
置せしめでいる。
By the way, if the first heat exchanger tube group is arranged in a single stage between the radiator and the combustion means and it is intended to reduce the direct radiation of radiant heat from the radiator to the combustion means, the first heat exchanger tube group The gap between each heat transfer tube must be made small, or the pressure drop when the combustion gas passes through this gap becomes large.
It is restricted by the zero-shaped tube that connects the tube ends of the heat exchanger tubes. Therefore, in the present invention, the first heat exchanger tube group is arranged in multiple stages, and at least a portion of the heat exchanger tubes that constitute the non-downstream stage is located upstream of the gap between the heat exchanger tubes that constitute the most downstream stage. is located.

しかしで、輻射体から燃焼手段への直射輻射熱の削減と
いう観点からは、後述する千鳥配置のようにして直射輻
射熱を実質的にセロとすることも可能であるが、これは
必須ではない。第一の伝熱管群を構成する各伝熱管の間
隙を通し″C燃焼手段の下流面に垂直な投影線によって
投影される輻射体の投影面積の総和か燃焼手段の下流面
の面積に占める割合(以下、投影面積比という)t40
%以下、特には35%以下とするのが好ましい。
However, from the viewpoint of reducing the direct radiant heat from the radiator to the combustion means, it is possible to substantially reduce the direct radiant heat by using the staggered arrangement described below, but this is not essential. The sum of the projected areas of the radiators projected by the projection line perpendicular to the downstream surface of the combustion means through the gaps between the heat exchanger tubes constituting the first heat exchanger tube group, or the ratio to the area of the downstream surface of the combustion means (hereinafter referred to as projected area ratio) t40
% or less, particularly preferably 35% or less.

このような伝熱管配置の好ましい典型例は、平行等間隔
の伝熱管群を、上流側と下流側とで同方向、かつ、位相
をすらして配置するもので、なかでも、下流側の伝熱管
の間隙の中央部の上流に上流側の伝熱管が位フする、い
わゆる千鳥配置が特に好ましい。
A typical preferable example of such a heat transfer tube arrangement is one in which a group of parallel heat transfer tubes are arranged at equal intervals in the same direction on the upstream and downstream sides and with even phase. A so-called staggered arrangement in which the upstream heat exchanger tubes are positioned upstream of the central portion of the gap between the heat tubes is particularly preferred.

別の好ましい配置例は、平行等間隔の伝熱管群を上流側
と下流側とて異方向に走るように配置するものである。
Another preferable arrangement is to arrange a group of parallel, equally spaced heat exchanger tubes so that the upstream and downstream sides run in different directions.

ざらに、例えば渦巻状の伝熱管の2つを上流側と下流側
とで位Mをずらして配置するのもよい。
For example, it is also good to arrange two spiral heat exchanger tubes with the positions M shifted between the upstream side and the downstream side.

各伝熱管をこのように配置すると、各伝熱管によって、
輻射体からの輻射熱を逼る量が多くなるので、燃焼手段
に直接到達する輻射熱量が減少する。よって、輻射熱に
よる燃焼手段の高温過熱およびこれに伴なう燃焼手段内
の大きな温度差の発生が抑制され、燃焼手段の熱変形、
破損や逆火が防止される。また輻射体から伝熱管にM接
に照射される輻射熱も増大して伝熱効率が向上する。ま
た、伝熱管相互の間隙はさほど小さくする必要がなく、
燃焼ガス通過圧損や、管端接続時の制約も受けない、な
お、内部に被加熱流体が流れているため、伝熱管は熱損
傷を受けない。
If each heat exchanger tube is arranged in this way, each heat exchanger tube will
Since the amount of radiant heat from the radiator increases, the amount of radiant heat directly reaching the combustion means decreases. Therefore, high-temperature overheating of the combustion means due to radiant heat and the occurrence of large temperature differences within the combustion means due to this are suppressed, and thermal deformation of the combustion means,
Breakage and backfire are prevented. In addition, the radiant heat irradiated from the radiator to the heat transfer tube in the M contact direction also increases, improving heat transfer efficiency. In addition, the gap between the heat exchanger tubes does not need to be so small,
There is no pressure drop when the combustion gas passes through, and there are no restrictions when connecting the tube ends.Furthermore, since the fluid to be heated flows inside, the heat exchanger tubes do not suffer thermal damage.

特に前述したような千鳥配置とし、かつ、上流段、下流
段のそれぞれにおいで管間隔を管外径以下とした場合な
どには投影面積比が0%、すなわち、燃焼手段の下流面
に垂直に直射する輻射線をなくすることができる。この
ように投影面積比を0%とした場合には、燃焼ガスが伝
熱管の間隙を低圧損で通過可能であり、かつ、輻射体か
らの輻射熱のほとんどが第一の伝熱管群によって逼られ
て燃焼手段には到達しない。
In particular, when the above-mentioned staggered arrangement is used and the tube spacing in each of the upstream and downstream stages is less than or equal to the outer diameter of the tubes, the projected area ratio is 0%, that is, when the tubes are arranged perpendicularly to the downstream surface of the combustion means. Direct radiation can be eliminated. In this way, when the projected area ratio is 0%, the combustion gas can pass through the gap between the heat transfer tubes with low pressure loss, and most of the radiant heat from the radiator is absorbed by the first group of heat transfer tubes. does not reach the combustion means.

なお、周囲の燃焼ガス温度が高く、しかも輻射体よりの
輻射伝熱もあって熱伝達率も高くなるため、第一の伝熱
管群の各伝熱管の外面にはフィンを付けないものが好ま
しいが、例えばフィン高さが2mm程度以下のフィンを
付けたものも採用可能である。
In addition, since the temperature of the surrounding combustion gas is high and there is also radiant heat transfer from the radiator, the heat transfer coefficient is also high, so it is preferable that no fins be attached to the outer surface of each heat transfer tube in the first heat transfer tube group. However, it is also possible to use a fin with a fin height of about 2 mm or less, for example.

なお、本発明で伝熱管群とは、例えば燃焼ガス−流れ方
向に沿った適宜断面においで櫂数本の伝熱管断面が認め
られることを意味する。したがって各伝熱管はそれぞれ
別異の伝熱管であってもよいし、一本の伝熱管が蛇行、
渦巻またはうセン状に配置されていて、その複数箇所の
断面が認められるものであってもよい。
Incidentally, in the present invention, a group of heat exchanger tubes means that, for example, a cross section of several paddles of heat exchanger tubes is recognized in an appropriate cross section along the combustion gas flow direction. Therefore, each heat exchanger tube may be a different heat exchanger tube, or one heat exchanger tube may meander,
It may be arranged in a spiral or spiral shape, and cross sections at multiple locations can be recognized.

なお、燃焼手段としでは一般には平面状のバーナプレー
トを有するものが想定されるが、適宜わん曲した曲面状
のものでもよい。また面状のバーナプレートに代えて、
例えば小円筒状の燃料出口が田に突設されているものな
どでもよく、この場合にはこの燃料出口群が形成する燃
焼面が本発明でいう燃焼手段下流面とされる。ざらに例
えば小円筒状の燃料出口が疎に突設されているものなど
にあっては、その小円筒断面が本発明でいう燃焼手段下
流面とされる。
The combustion means is generally assumed to have a flat burner plate, but it may also have a curved surface as appropriate. Also, instead of a planar burner plate,
For example, a small cylindrical fuel outlet may be provided protruding into the rice field, and in this case, the combustion surface formed by this group of fuel outlets is the downstream surface of the combustion means in the present invention. For example, in the case of a small cylindrical fuel outlet in which the fuel outlet is sparsely protruded, the cross section of the small cylinder is the downstream face of the combustion means in the present invention.

「発明の実施例」 以下に、本発明による流体加熱装置の実施例を図面に基
いで説明する。
"Embodiments of the Invention" Examples of the fluid heating device according to the present invention will be described below with reference to the drawings.

第1図および第2図に示す本発明の一実施例の流体加熱
装置20は、上方か図示せぬ排気口に接続されたケーシ
ング21で全体が囲まれており、ケーシング21はその
下方で混合室23および燃焼室24が接続しで構成され
でいる。図示せぬ下方より空気と燃料ガスが混合室23
に供給されて所定空気比の混合気が作られる。
A fluid heating device 20 according to an embodiment of the present invention shown in FIGS. 1 and 2 is entirely surrounded by a casing 21 connected to an exhaust port (not shown) above the fluid heating device 20. The chamber 23 and the combustion chamber 24 are connected to each other. Air and fuel gas are supplied to the mixing chamber 23 from below (not shown).
is supplied to create a mixture with a predetermined air ratio.

混合室23と燃焼室24の境目には、燃焼手段としての
コージライト質セラミックスからなる面状のバーナプレ
ート27が配置されている。このバーナプレート27は
多数の炎口を有し、この炎口を通過した混合気はバーナ
、プレート27の下流面27aに面状の火炎を形成する
。すなわち、この実施例では予混合面バーナ方式が採用
されている。
At the boundary between the mixing chamber 23 and the combustion chamber 24, a planar burner plate 27 made of cordierite ceramic is arranged as a combustion means. This burner plate 27 has a large number of flame ports, and the air-fuel mixture that has passed through the flame ports forms a planar flame on the downstream surface 27a of the burner plate 27. That is, in this embodiment, a premixed surface burner method is adopted.

ケーシング21内のバーナプレート27に近接した上方
には、それぞれ複数の伝熱管13a、 13bが2段に
、かつ、相互に平行に等間隔で横行配置されて第一の伝
熱管群13を構成している。各伝熱管13a。
Above the burner plate 27 in the casing 21, a plurality of heat exchanger tubes 13a and 13b are arranged in two stages and parallel to each other at equal intervals, forming a first heat exchanger tube group 13. ing. Each heat exchanger tube 13a.

+3bは外径aが12〜20mm、肉厚が0.6〜2.
0 mm程度とされ、また上段の伝熱管13a相互の間
隔d、ないしは下段の伝熱管+3b相互の間隔dは外径
aの0.5〜1.5倍程度とされている。また、伝熱管
+3bは伝熱管13a、13aの間adの中央部の上流
に位置して、いわゆる千鳥配置とされている。なお、こ
のd/a比ヲ1.0以下にすると、投影面積比は実質的
に0%となる。
+3b has an outer diameter a of 12 to 20 mm and a wall thickness of 0.6 to 2.
The distance d between the upper heat exchanger tubes 13a or the distance d between the lower heat exchanger tubes +3b is approximately 0.5 to 1.5 times the outer diameter a. Further, the heat exchanger tubes +3b are located upstream of the central portion ad between the heat exchanger tubes 13a, 13a, and are arranged in a so-called staggered arrangement. Note that when this d/a ratio is set to 1.0 or less, the projected area ratio becomes substantially 0%.

バーナプレートの下流面27aがら伝熱管+3bの下縁
までの距離すは5〜50mmとされている。
The distance from the downstream surface 27a of the burner plate to the lower edge of the heat exchanger tube +3b is 5 to 50 mm.

第一の伝熱管群13の近接上方には、セラミックスハニ
カム板からなる通気性の輻射体14が配置されでおり、
輻射体14の近接上方には、第二の伝熱管群15か配置
されている。この実施例では、第二の伝熱管群15とし
で、多数の平行な平板2日と、この平板28を直交して
貫通する複数の平行な横行伝熱管とからなるプレートフ
ィンチューブを用いているが、例えば各伝熱管ことにそ
の外面に複数のフィンを形成したものであってもよい。
An air-permeable radiator 14 made of a ceramic honeycomb plate is arranged adjacent to and above the first heat exchanger tube group 13.
A second heat exchanger tube group 15 is arranged close to and above the radiator 14 . In this embodiment, the second heat exchanger tube group 15 is a plate fin tube consisting of a large number of parallel flat plates 28 and a plurality of parallel transverse heat exchanger tubes passing through the flat plates 28 orthogonally. However, for example, each heat exchanger tube may have a plurality of fins formed on its outer surface.

なお、両伝熱管群13.15の伝熱管は、一般には水平
に配置されるか、被加熱流体の沸騰時に気泡が抜けやす
いように、被加熱流体の入口側に比べ出口側か上方とな
るように傾斜させでもよい。
Note that the heat exchanger tubes in both heat exchanger tube groups 13 and 15 are generally arranged horizontally, or on the outlet side or above the inlet side of the heated fluid so that bubbles can easily escape when the heated fluid boils. It may be tilted as shown.

第一の伝熱管群13および第二の伝熱管群15内には被
加熱流体か流される。被加熱流体としでは、液体、特に
水が好適である。この被加熱流体は、第一の伝熱管群1
3と第二の伝熱管群15にそれぞれ独立に流しでもよい
が、好ましくは両者間をシリーズに流される。この場合
、温度効率を大きくする上では、まず第二の伝熱管群1
5に流し、ここを出た被加熱流体を、次いで第一の伝熱
管群13に流すことにより、燃焼ガスの流れに対して向
流に流すことか好ましい。一方、管内での局部廓謄を防
止するためには、これと逆に接続して、燃焼ガスの流れ
に対して並流とすることが好ましい。
A fluid to be heated is flowed into the first heat exchanger tube group 13 and the second heat exchanger tube group 15. A liquid, especially water, is suitable as the fluid to be heated. This fluid to be heated is supplied to the first heat exchanger tube group 1
3 and the second heat exchanger tube group 15 independently, but preferably it is flowed in series between them. In this case, in order to increase the temperature efficiency, first the second heat exchanger tube group 1
5, and the fluid to be heated that exits there is then allowed to flow through the first heat exchanger tube group 13, thereby causing the fluid to flow countercurrently to the flow of the combustion gas. On the other hand, in order to prevent local disturbance within the pipe, it is preferable to connect in the opposite direction so that the flow is parallel to the flow of combustion gas.

また、各伝熱管群内ては通常はいずれもシリーズに接続
されるが、適宜、シリーズ接続とパラレル接続とを組み
合わせてもよい。
Further, although each heat exchanger tube group is usually connected in series, series connection and parallel connection may be combined as appropriate.

以下に、本発明製画の作用を説明する。The operation of the drawing according to the present invention will be explained below.

混合室23で形成された空気と燃料ガスの混合気(ま、
バーナプレート27の炎口を通過して燃焼室24へ供給
され、バーナプレート27の下流面27aの近傍に面状
の火炎を形成し、1500〜1650℃といった高温の
燃焼ガスとなる。
A mixture of air and fuel gas formed in the mixing chamber 23 (well,
It passes through the flame port of the burner plate 27 and is supplied to the combustion chamber 24, forming a planar flame near the downstream surface 27a of the burner plate 27, and becomes a high-temperature combustion gas of 1500 to 1650°C.

この燃焼ガスは第一の伝熱管群13に導かれ、対流熱伝
達によって燃焼ガスか何している熱エネルギの一部を第
一の伝熱管群13の伝熱管13a内を流れる流体へ伝達
する。ざらに燃焼ガスは、第一の伝熱管群13の伝熱管
13aの間隙を通過し、高温のまま輻射体14内を流れ
、この輻射体14をも加熱して白熱化させる。このとき
の輻射体14は、1000〜1200℃の高温に保持さ
れ、主に第一の伝熱管群13を輻射加熱する。
This combustion gas is guided to the first heat exchanger tube group 13, and a part of the thermal energy of the combustion gas is transferred to the fluid flowing inside the heat exchanger tubes 13a of the first heat exchanger tube group 13 by convection heat transfer. . Roughly, the combustion gas passes through the gap between the heat transfer tubes 13a of the first heat transfer tube group 13, flows inside the radiator 14 while remaining at a high temperature, and also heats the radiator 14, causing it to become incandescent. At this time, the radiator 14 is maintained at a high temperature of 1000 to 1200°C, and mainly radiates and heats the first heat exchanger tube group 13.

このとき、輻射熱は伝熱管13aの間隙を通ってバーナ
プレート27方向にも照射されるが、この間隙の上流に
位置する伝熱管+3bによって遮られ、この伝熱管+3
bを加熱するのみならず、バーナプレート27に照射さ
れる輻射熱は大幅に削減され、投影面積比が0%のとき
は、バーナプレート27への直射輻射熱は実質的にゼロ
となる。そのため、バーナプレート27は火炎からのわ
ずがな気体輻射熱を受けるのみで、混合気通過時の冷却
効果と相まつで、バーナプレート27の上流側はたかだ
か150℃程度に保たれ、下流面27aはこれよりやや
高温になるものの、下流面27aの固内湯度差は350
℃程度以下となり、長期間使用した場合でも輻射熱(こ
よるバーナプレート27の溶損、熱変形、熱応力割れ、
逆火などを防止できることとなる。
At this time, the radiant heat is also irradiated toward the burner plate 27 through the gap between the heat exchanger tubes 13a, but it is blocked by the heat exchanger tube +3b located upstream of this gap.
In addition to heating the burner plate 27, the radiant heat irradiated to the burner plate 27 is significantly reduced, and when the projected area ratio is 0%, the direct radiant heat irradiated to the burner plate 27 becomes substantially zero. Therefore, the burner plate 27 receives only a small amount of gas radiant heat from the flame, and combined with the cooling effect when the air-fuel mixture passes through, the upstream side of the burner plate 27 is kept at about 150°C, and the downstream side 27a is kept at about 150°C. Although the temperature is slightly higher than this, the temperature difference between the solid and hot water at the downstream surface 27a is 350.
℃ or less, and even if used for a long time, radiant heat (damage to the burner plate 27, thermal deformation, thermal stress cracking, etc.)
This will prevent backfires and the like.

また、伝熱管断面外形を特殊な形状とすることなく、伝
熱管13a同志、+3b同社の間隔を燃焼ガス通過圧損
が充分低くできるようにとれる利点もある。
Further, there is an advantage that the interval between the heat exchanger tubes 13a and +3b can be set so that the combustion gas passage pressure loss can be made sufficiently low without making the cross-sectional shape of the heat exchanger tubes a special shape.

そして、燃焼ガスは、第一の伝熱管群13と輻射体14
の配置域を通過する間に、その温度が800〜1000
°Cに低下し、第二の伝熱管群15に導かれ、内部を流
れる流体に再び熱エネルギを伝達する。ざらに、輻射体
14がらの輻射熱が第二の伝熱管群15にも照射される
。かくしで、第二の伝熱管群15内部の流体は、例えば
40℃〜80℃の湯となって、装置外へ導出される。
Then, the combustion gas is transferred to the first heat exchanger tube group 13 and the radiator 14.
While passing through the placement area, the temperature increases from 800 to 1000
°C and is led to the second heat transfer tube group 15, where the heat energy is transferred again to the fluid flowing inside. In general, the radiant heat from the radiator 14 is also irradiated to the second heat exchanger tube group 15. Thus, the fluid inside the second heat exchanger tube group 15 becomes, for example, hot water at a temperature of 40° C. to 80° C. and is led out of the apparatus.

上記実施例の流体加熱装置20と、対照例の流体加熱装
〕とを用いて輻射熱遮断性能などを評価する実験を行な
った。実験条件および実験結果は以下の通り。
An experiment was conducted to evaluate the radiant heat blocking performance, etc. using the fluid heating device 20 of the above example and the fluid heating device of the comparative example. The experimental conditions and experimental results are as follows.

(実験条件) ■燃料・天然ガス、空気比1,2 ■被加熱流体二人口温度20℃の水を、まず第一の伝熱
管群13に流し、ここを出た債、第二の伝熱管群15に
流す。
(Experimental conditions) ■Fuel/natural gas, air ratio 1,2 ■Fluid to be heated Water with a population temperature of 20°C is first flowed through the first heat exchanger tube group 13, and then the heat exchanger tubes exiting from this, the second heat exchanger tube Transfer to group 15.

■輻射体14:板厚5mm、セル数200個/in2、
セル断面正方形の常圧焼結炭化ケイ素製ハニカム板を第
一の伝熱管群13の上部に配置。
■Radiator 14: plate thickness 5mm, number of cells 200/in2,
A pressureless sintered silicon carbide honeycomb plate with a square cell cross section is placed above the first heat exchanger tube group 13.

■第二の伝熱管群15:伝熱管の内径17.4mm、外
径19.0mmの銅チューブとフィン厚さ0.35mm
、フィンピッチ2.7mmの銅フィンとを組合わせたプ
レートフィンチューブ。
■Second heat transfer tube group 15: Copper tubes with inner diameter of heat transfer tubes of 17.4 mm and outer diameter of 19.0 mm, and fin thickness of 0.35 mm.
, plate fin tube combined with copper fins with a fin pitch of 2.7 mm.

■バーナプレート27:板厚10mmのコージライト質
セラミックス製 ■バーナプレート27の下流面27aがら第一の伝熱管
群13の下縁までの距ubは30mm、バーナプレート
27の下流面27aがら第二の伝熱管群15のフィン下
縁までの距Mcは57mm。
■Burner plate 27: made of cordierite ceramics with a plate thickness of 10 mm ■The distance ub from the downstream surface 27a of the burner plate 27 to the lower edge of the first heat exchanger tube group 13 is 30 mm, and from the downstream surface 27a of the burner plate 27 to the second The distance Mc to the lower edge of the fin of the heat exchanger tube group 15 is 57 mm.

これら■〜■は実施例、対照例とも同一とし、燃料、水
の供給速度も同一とした。
Items (1) to (2) were the same for both the example and the control example, and the fuel and water supply rates were also the same.

■第一の伝熱管群13.内径17.4mm、外径19.
0mmの銅チューブ8本を、一段に4本ずつ上下2段に
配M、各段において間隔dはいずれもI 9mm、実施
例では2段千鳥配置とし、対照例では2段正方配置(す
なわち下段の伝熱管の真上に上段の伝熱管を配M)。
■First heat exchanger tube group 13. Inner diameter 17.4mm, outer diameter 19.
Eight copper tubes of 0 mm are arranged in two stages, four on each stage, top and bottom, and the interval d in each stage is I 9 mm. In the example, the two-stage staggered arrangement is used, and in the control example, the two-stage square arrangement (i.e., the lower row Place the upper heat transfer tube directly above the heat transfer tube (M).

(実験結果) 投影面積比      対照例50%、実施例0%バー
ナプレート27の平均温度 対照例150〜160℃、実施例70〜80℃第一の伝
熱管群13の線吸収熱量 対照例13800kcal/hr、寅施例14700k
cal/hrざらに、対照例の製雪ではバーナプレート
の炎口に欠落が発生していた。
(Experimental results) Projected area ratio Control example 50%, Example 0% Average temperature of burner plate 27 Control example 150 to 160°C, Example 70 to 80°C Linear absorption heat amount control example of first heat exchanger tube group 13 13800 kcal/ hr, tiger example 14700k
Cal/hr In contrast, in the snowmaking control example, the flame opening of the burner plate was missing.

第3図および第4図の実施例では、多数枚の窒化ケイ素
質焼結体製の細長板14aを、ルーバ状に配置して輻射
体14としでいる。第一の伝熱管群13は上段の伝熱管
13cと下段の伝熱管+3dとで構成され、伝熱管13
c同志、伝熱管+3d同志はそれぞれ平行等間隔に、か
つ、伝熱管13cの走行方向と伝熱管+3dの走行方向
とは直交するように配置されでいる。この場合、伝熱管
外径aと伝熱管間隔dとの比はd/a= 3/4とされ
ているので、上段または下段のみでは投影面積比は約4
3%であるが、全体としての投影面積比は約18%とな
る。
In the embodiments shown in FIGS. 3 and 4, a large number of elongated plates 14a made of a silicon nitride sintered body are arranged in a louver shape to serve as the radiator 14. The first heat exchanger tube group 13 is composed of an upper heat exchanger tube 13c and a lower heat exchanger tube +3d.
The heat exchanger tubes c and heat exchanger tubes +3d are arranged parallel to each other at equal intervals, and the running direction of the heat exchanger tubes 13c and the running direction of the heat exchanger tubes +3d are orthogonal to each other. In this case, the ratio of the heat exchanger tube outer diameter a to the heat exchanger tube interval d is d/a = 3/4, so the projected area ratio of only the upper or lower stage is approximately 4.
3%, but the overall projected area ratio is about 18%.

第5図および第6図の実施例では、多数本の富化ケイ素
質焼結体製の中実丸棒+4bを、千鳥状に上下2段に配
置して輻射体14としでいる。第一の伝熱管群13は2
本の渦巻状伝熱管13e、 13fを上下2段に配置し
て構成されており、第6図からもわかるように、上下方
向から見たとき、伝熱管13eと+3fとは横幅方向、
奥行方向それぞれ半ピツチずつ位相をずらして配置され
ているので、投影面積比は位相をずらさない場合に比べ
て大幅に減少しでいる。なお、第6図において、各伝熱
管13e。
In the embodiments shown in FIGS. 5 and 6, a large number of solid round bars +4b made of enriched silicon sintered material are arranged in two stages, upper and lower, in a staggered manner to form the radiator 14. The first heat exchanger tube group 13 has two
It is constructed by arranging spiral heat exchanger tubes 13e and 13f in two stages, upper and lower, and as can be seen from FIG.
Since the phases are shifted by half a pitch in each depth direction, the projected area ratio is significantly reduced compared to the case where the phases are not shifted. In addition, in FIG. 6, each heat exchanger tube 13e.

+3fは図面の見やすさのためにハツチングを施しであ
る。
+3f is hatched for ease of viewing the drawing.

以上の実施例は第一の伝熱管群をいずれも上下2段に構
成しでいるが、3段以上であってもぎしつかえない、ま
た、予混合型バーナに代えで拡散燃焼型バーナも採用で
きる。ざらに、伝熱管や輻射体をバーナプレートの上方
に順次配置するのに代えで、下方や側方に順次配置して
もよい。
In the above embodiments, the first heat exchanger tube group is configured in two stages, upper and lower, but even if there are three or more stages, it will not be too difficult, and a diffusion combustion type burner is also used instead of a premix type burner. can. In other words, instead of sequentially arranging the heat exchanger tubes and radiators above the burner plate, they may be sequentially arranged below or to the sides.

「発明の効果」 以上説明したように、本発明によれば、第一の伝熱管群
を燃焼ガス流れ方向に関して複数段に配画しで構成し、
かつ、そのうちの最下流段の伝熱管の間隙の上流には非
最下流段の伝熱管の少なくとも一部を位置せしめたので
、輻射体からの輻射熱の第一の伝熱管への効果的な伝熱
と、装置全体の小型化が図れる上に、輻射体からの輻射
熱を第一の伝熱管群によって遮り、燃焼手段に到達する
直射輻射熱が大幅に、あるいはほとんどなくなるので、
燃焼手段は低温に保持される。よって、燃焼手段の溶損
、熱変形、破損などや逆火を防止できる。さらに本発明
をガス湯沸器などに適用すると、湯沸器使用直後の後沸
きといった、バーナプレートなどの燃焼手段の蓄熱に起
因するトラブルの発生もない。
"Effects of the Invention" As explained above, according to the present invention, the first heat exchanger tube group is arranged in multiple stages in the combustion gas flow direction,
In addition, at least a part of the non-downstream heat transfer tubes is located upstream of the gap between the heat transfer tubes at the most downstream stage, so that the radiant heat from the radiator is effectively transferred to the first heat transfer tube. In addition to reducing heat and the overall size of the device, the first group of heat transfer tubes blocks the radiant heat from the radiator, and direct radiant heat reaching the combustion means is largely or almost completely eliminated.
The combustion means is kept at a low temperature. Therefore, it is possible to prevent melting, thermal deformation, damage, etc. of the combustion means and backfire. Furthermore, when the present invention is applied to a gas water heater or the like, troubles such as after-boiling immediately after the water heater is used, which are caused by heat accumulation in combustion means such as burner plates, do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流体加熱装置の一実施例の断面図、第
2図は第1図のII −H線に沿う断面図、第3図およ
び第5図は第1図における輻射体および第一の伝熱管群
部分を異にする本発明の流体加熱装置のそれぞれ異なる
実施例の輻射体および第一の伝熱管群部分の断面図、第
4図は第3図の■−rV線に沿う断面図、第6図は第5
図のVl−Vl線にjGう断面図、第7図は先に提案し
た流体加熱装置の断面図、第8図は第7図の四−■線に
沿う断面図である。 13は第一の伝熱管群、13a〜+3fは伝熱管、14
は輻射体、15は第二の伝熱管群、20は流体加熱装置
、27はバーナプレート。
FIG. 1 is a sectional view of an embodiment of the fluid heating device of the present invention, FIG. 2 is a sectional view taken along the line II-H in FIG. 1, and FIGS. 3 and 5 are the radiator and Cross-sectional views of the radiator and the first heat exchanger tube group portion of different embodiments of the fluid heating device of the present invention in which the first heat exchanger tube group portion is different, FIG. 4 is taken along the line ■-rV in FIG. A sectional view along the line, Figure 6 is the 5th
FIG. 7 is a sectional view of the previously proposed fluid heating device, and FIG. 8 is a sectional view taken along line 4--2 in FIG. 7. 13 is the first heat exchanger tube group, 13a to +3f are heat exchanger tubes, 14
15 is a radiator, 15 is a second heat exchanger tube group, 20 is a fluid heating device, and 27 is a burner plate.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼手段と、燃焼手段の近接下流に複数段に配置さ
れた第一の伝熱管群と、第一の伝熱管群の近接下流に通
気可能に設けられた輻射体と、輻射体の近接下流に配置
された第二の伝熱管群とを備え、第一の伝熱管群の最下
流段を構成する伝熱管の間隙の上流には第一の伝熱管群
の非最下流段を構成する伝熱管の少なくとも一部を位置
せしめてなることを特徴とする流体加熱装置。
1. Combustion means, a first heat exchanger tube group arranged in multiple stages adjacently downstream of the combustion means, a radiator provided so as to be ventilated adjacently downstream of the first heat exchanger tube group, and proximity of the radiator. and a second heat exchanger tube group arranged downstream, and a non-downstream stage of the first heat exchanger tube group is provided upstream of the gap between the heat exchanger tubes that constitute the most downstream stage of the first heat exchanger tube group. A fluid heating device characterized by having at least a portion of a heat transfer tube positioned therein.
JP4496887A 1987-02-27 1987-02-27 Improved fluid heating device Expired - Lifetime JPH0810046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4496887A JPH0810046B2 (en) 1987-02-27 1987-02-27 Improved fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4496887A JPH0810046B2 (en) 1987-02-27 1987-02-27 Improved fluid heating device

Publications (2)

Publication Number Publication Date
JPS63210514A true JPS63210514A (en) 1988-09-01
JPH0810046B2 JPH0810046B2 (en) 1996-01-31

Family

ID=12706277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4496887A Expired - Lifetime JPH0810046B2 (en) 1987-02-27 1987-02-27 Improved fluid heating device

Country Status (1)

Country Link
JP (1) JPH0810046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525129U (en) * 1991-08-30 1993-04-02 リンナイ株式会社 Water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525129U (en) * 1991-08-30 1993-04-02 リンナイ株式会社 Water heater

Also Published As

Publication number Publication date
JPH0810046B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US3509867A (en) Radiant and convective heater
EP0404259B1 (en) Laminated heat exchanger structure for a domestic heating device
JP2021134971A (en) Heat exchanger and water heater having the same
JPS63210514A (en) Improved fluid heating device
US5913289A (en) Firetube heat exchanger with corrugated internal fins
JPS63210513A (en) Improved fluid heating device
RU97112464A (en) GAS BURNER FOR HEATING INSTRUMENTS, IN PARTICULAR, WATER HEATERS
KR980700540A (en) Heating device, particulary, gas burner for hot water heater
JPS58193039A (en) Heater
JP7161930B2 (en) heat transfer fins
JPS63207912A (en) Fluid heating device with radiator
KR100723045B1 (en) high-temperature regenerator
JPS6284258A (en) Fluid heating device
JPS63207913A (en) Fluid heating device with radiator
JP2000018729A (en) Heat exchanger with heat transfer fin
JPH0334602Y2 (en)
JPS63207910A (en) Fluid heater with radiation cloth
JPS63251751A (en) Device for heating fluid
JPS63286657A (en) Hot-water supplier
JPH05761Y2 (en)
JPS5844174B2 (en) bath kettle
JPS63279052A (en) Improved fluid heating device
JPS63207911A (en) Fluid heating device
JPS63243654A (en) Fluid heating device equipped with radiator
JPH06229694A (en) Heat exchanger of hot-water supply apparatus