JPS58193039A - Heater - Google Patents

Heater

Info

Publication number
JPS58193039A
JPS58193039A JP7503382A JP7503382A JPS58193039A JP S58193039 A JPS58193039 A JP S58193039A JP 7503382 A JP7503382 A JP 7503382A JP 7503382 A JP7503382 A JP 7503382A JP S58193039 A JPS58193039 A JP S58193039A
Authority
JP
Japan
Prior art keywords
heat exchanger
fins
heat
burner
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7503382A
Other languages
Japanese (ja)
Inventor
Makoto Okabayashi
岡林 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP7503382A priority Critical patent/JPS58193039A/en
Publication of JPS58193039A publication Critical patent/JPS58193039A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

PURPOSE:To miniaturize the heater as a whole by arranging a heat exchanger adjacent to the flame forming surface of a burner. CONSTITUTION:The total primary air burner 2 is constituted substantially to a plate shape by a heat-resistant material such as ceramics, and a plurality of burner ports 10 facing to a gas chamber 7 are formed. A mixed gas of fuel gas and air for combustion supplied to the gas chamber 7 passes through the burner ports 10, and short flames are formed to the flame forming surface 11 on the side reverse to the gas chamber 7. The heat exchanger 1 is set up adjacent to the flame forming surface 11 of the total primary air type burner 2. The heat exchanger 1 is formed by fastening a plurality of fins 13 to the outer circumferential surface of a heat transfer pipe 12 extending in parallel with the flame forming surface 11 at intervals in the axial direction. Sections among each fin 13 in the heat exchanger 1 are filled with a granular substance 17 in an extent that the flow of combustion exhaust gas is allowed while being supported by a support gauze 16. The granular substance 17 is formed by a heat-resistant material, such as alumina, silica and other ceramics, etc.

Description

【発明の詳細な説明】 本発明は、加熱装置に関し、特にノ(−すからの孜焼排
ガスを、被加熱流体が流通する伝熱管の外周面にフィン
を固着して構成された熱交換器に碑いて前記被加熱流体
を加熱するようにした加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating device, and more particularly, to a heat exchanger configured by fixing fins to the outer peripheral surface of a heat transfer tube through which a fluid to be heated flows. The present invention relates to a heating device for heating the fluid to be heated.

このような加熱装置は、従来からたとえばガス揚I!l
t+器などで実現されている。ところが従来では、完全
燃焼のための燃焼空間を確保するために、・く−ナと熱
交換器との距離を比較的大に選んでおり、したがって加
熱装置全体が大形化していた。このような欠点を解消す
るためには、短炎を得ることができる全−次空気式パー
ナを用いてバーナと熱交換器との距離を短縮することが
単純には考えられる。ところが、熱交換器の壁面は低温
であるの゛で、前記距離を短縮すると、燃料ガスの燃焼
が全−次空気式バーナの火炎形成面付近で完結せず、熱
交換器によって冷却されると不完全燃焼による一酸化炭
素の発生が起る。これを防ぐためにHiU記短距離大き
くとらざるを得す、結果として燃焼室を大にしなければ
ならない。また火炎長を短くするために、全−次空気式
パーナの全燃比を小にすると、燃焼温度が大となる。そ
のため全−次空気式バーナ自体が過熟して焼損したり、
No  の発生量が大となってしまう。さらに逆火現象
が生じ易くなり危険でもある。
Such heating devices have conventionally been used, for example, gas heating devices. l
This is realized using t+ equipment. However, in the past, in order to secure a combustion space for complete combustion, the distance between the burner and the heat exchanger was chosen to be relatively large, resulting in an increase in the size of the entire heating device. In order to eliminate such drawbacks, it is simply conceivable to shorten the distance between the burner and the heat exchanger by using an all-air burner that can obtain a short flame. However, since the wall surface of the heat exchanger is at a low temperature, if the distance is shortened, the combustion of the fuel gas will not be completed near the flame formation surface of the all-air burner, and will be cooled by the heat exchanger. Carbon monoxide is generated due to incomplete combustion. To prevent this, the HiU short distance must be made large, and as a result, the combustion chamber must be made large. Furthermore, if the total fuel ratio of the all-primary air type parner is made small in order to shorten the flame length, the combustion temperature becomes large. As a result, the total air burner itself may become overripe and burn out, or
The amount of No. generated becomes large. Furthermore, backfire phenomenon tends to occur, which is dangerous.

本発明は、上述の技術的課題を解決し、燃焼室を小にし
て全体を小形化しうる加熱装置を提供することを目的と
する。
An object of the present invention is to solve the above-mentioned technical problems and to provide a heating device whose combustion chamber is made smaller so that the overall size of the heating device can be reduced.

以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の纏絡化した縦I#rOI]
図である。被加熱流体たとえば水Vi実線矢符3で示す
ように熱交換器lに供給され、この熱交換器1で全−次
空気式パーナ2からの燃焼排ガスと熱交換して加熱され
る。加熱後の湿水は夫線矢符4で示すように導出され、
給湯や温水暖房などに用いられる。
FIG. 1 is a tangled vertical I#rOI of an embodiment of the present invention]
It is a diagram. A fluid to be heated, such as water Vi, is supplied to a heat exchanger 1 as shown by a solid line arrow 3, and is heated in this heat exchanger 1 by exchanging heat with the combustion exhaust gas from the all-air parlor 2. The wet water after heating is drawn out as shown by arrow 4,
Used for hot water supply, hot water heating, etc.

この加熱装置i15のゲージング6は、たとえば底部が
開放された山状に構成される。このゲージング6内には
周縁部がケーシング60内面に密着して全−次空気式パ
ーナ2が(2)定面に設けられ、この全−次空気式バー
ナ2とゲージング6の内向とによってガス室7が規定さ
れる。ゲージング6にVよガス室7に連通してガス供給
管8が接続され、このガス供給管8からは[4矢符9で
示すように、廣1、糾ガスと@焼用空気との混合力°ス
がガス室7に供給される。
The gauging 6 of this heating device i15 is configured, for example, in the shape of a mountain with an open bottom. Inside this gauging 6, a total air burner 2 (2) is provided on a fixed surface with its peripheral edge in close contact with the inner surface of the casing 60, and the gas chamber is formed by this total air burner 2 and the inward direction of the gauging 6. 7 is specified. A gas supply pipe 8 is connected to the gauging 6 to communicate with the gas chamber 7, and from this gas supply pipe 8, as shown by the arrow 9, a mixture of the soybean gas and the baking air is supplied. Power gas is supplied to the gas chamber 7.

42図を参照して、全−次空気式バーナ21′i、耐熱
材料たとえばセラミックによって実質的に平板゛状に構
成されて成り、ガス室7に−む複数の炎孔10が形成さ
れる。ガス室7に供給された燃料ガスと燃焼用空気との
混合ガスは、炎孔10を流過して、ガス室7と反対側の
火炎1ビ成圓11に短い火炎を形成する。
Referring to FIG. 42, a total air burner 21'i is made of a heat-resistant material, such as ceramic, and is substantially plate-shaped, and has a plurality of flame holes 10 formed in the gas chamber 7. The mixed gas of fuel gas and combustion air supplied to the gas chamber 7 flows through the flame hole 10 and forms a short flame in a flame cone 11 on the opposite side from the gas chamber 7.

熱交換器IVi、全−次窄気式パーナ2の火炎形成面1
1に近接して設けられる。この熱交換器lは、火炎形成
面11に平行に延びる伝熱営12の外周面に、軸線力(
ロ)K間隔をあけて復疾のフィン13を固着して成る。
Heat exchanger IVi, flame forming surface 1 of total confinement type Pana 2
1. This heat exchanger l has an axial force (
(b) It is made by fixing the return fins 13 at intervals of K.

伝ギー管12の一肩部には被加熱流体を供給するための
被加熱流体供給管14が接続され、他端部には那煕後の
被加熱流体を4出するための被加熱流体導出管15が接
続される。
A heated fluid supply pipe 14 for supplying heated fluid is connected to one shoulder of the transmission pipe 12, and a heated fluid outlet for discharging the heated fluid after heating is connected to the other end. Pipe 15 is connected.

熱交換器lに近接した下方には、ゲージング6の内面に
よって周縁部を支持されて支持金@16が設けられる。
A support @ 16 is provided below near the heat exchanger 1, with its peripheral edge supported by the inner surface of the gauging 6.

熱交換器Iにおいて各フィン13間には、前記支持金網
16によって支持されて、粒状物質17が燃焼排ガスの
流通を、fF谷する程度に充填される。この粒状物質1
7は、アルミナ、シリカおよびそのt亀のセラミックな
どの耐熱材料によって形成される。
In the heat exchanger I, between each fin 13, supported by the support wire mesh 16, particulate matter 17 is filled to the extent that the flow of the combustion exhaust gas is fF. This particulate matter 1
7 is formed from a heat resistant material such as alumina, silica and its like ceramics.

このような加熱装(115で被加iIF!−流体を加熱
するにあたっては、ガス室7に燃料ガスと燃焼用空気と
の混合ガスをたとえば空g北1.4捏度で供給して、〒
−次空気式パーナ2を有人する。それによって火炎形成
Ii[illには短い火炎が形成され、燃焼排ガスが熱
交換器1の粒状物質17間を流通して排出される。この
僚各粒状物質17は燃焼排ガスとの接触によって加熱さ
れて赤熱し、その輻射ボ\によってフィン13への熱伝
達が促進される。
In order to heat the fluid to be added with such a heating device (115), a mixed gas of fuel gas and combustion air is supplied to the gas chamber 7 at a temperature of, for example, 1.4°C.
- The next pneumatic PANA 2 will be manned. As a result, a short flame is formed in the flame formation Ii[ill, and the flue gases are discharged through the granules 17 of the heat exchanger 1. The particulate matter 17 is heated by contact with the combustion exhaust gas and becomes red-hot, and its radiant radiation promotes heat transfer to the fins 13.

また粒状物質17闇を流通することにより、燃焼υ1ガ
スの流れは必然的に乱流状怨となり、そのため、フィン
13および伝熱管12への伝熱係数が嶋められる、した
がって、燃焼排ガスから熱交換器1内の被加熱流体への
伝熱が促進され、熱交換器lの伝熱面積を減小すること
が可能となる。
Furthermore, by flowing through the particulate matter 17, the flow of the combustion υ1 gas inevitably becomes turbulent, which lowers the heat transfer coefficient to the fins 13 and heat transfer tubes 12. Heat transfer to the heated fluid in the exchanger 1 is promoted, and the heat transfer area of the heat exchanger 1 can be reduced.

また粒状物質17が赤煕状悪となることにより、燃焼排
ガス中の未燃物質の燃焼が触媒的効果によって促進され
る。したがってケーシング6の底mから排出される燃焼
排ガス中に一般化Rxが含まれることか防止される。し
たがって熱交換器1を火炎形成向11に近接させても、
未燃ガスが兄生ずることはなく、装はをコンパクトに構
成することができる。さらに、燃料ガスは小さなm焼至
18内で燃焼するので、高負荷燃焼することが”T龜で
あり、むやみに空燃比を減少して高温度で燃焼する必要
がないので、NOの発生量も低く抑えられる。
Further, since the particulate matter 17 becomes reddish-like, the combustion of unburned substances in the combustion exhaust gas is promoted by the catalytic effect. Therefore, generalized Rx is prevented from being included in the combustion exhaust gas discharged from the bottom m of the casing 6. Therefore, even if the heat exchanger 1 is placed close to the flame formation direction 11,
No unburned gas is generated, and the enclosure can be constructed compactly. Furthermore, since the fuel gas is combusted in a small combustion chamber, high-load combustion is possible, and there is no need to unnecessarily reduce the air-fuel ratio and combust at high temperatures, so the amount of NO generated is can also be kept low.

なお、粒状物質17が焼損したとしても、@焼性能には
ほとんど影響しない。
Note that even if the particulate matter 17 is burnt out, it hardly affects the burning performance.

第3図は本発明の他の実施例のW8略化したMwr曲図
であり、第1図および第2図の実施例に対応する部分に
は同一の齢照符を付す。この実施例では、燃焼排ガスの
流過方向に沿って間隔をあけて仮数たとえば3列の伝熱
管20.21.22を配置して成る熱交換器23が設け
られ、しかも伝熱管20は全−次空気式パーナ2の火炎
形成向11に近接して配置される。この伝熱管20の外
周囲には、軸線方向に比較的大なる間隔(たとえば5〜
7mm)をあけて肉厚が大であってしかも突出量が小で
ある複数のフィン24が固着され、各フィン24間には
粒状物質17が充填される。伝熱管20よりも下流側の
伝熱管21.22の外周囲には、軸線方向に比較的小な
る間隔(たとえば2〜3mm)をあけて肉厚が小なる複
数のフィン25゜26がそれぞれ固着される。また各フ
ィン25゜26の半径方向外方への突出量は大に選ばれ
る。
FIG. 3 is a simplified W8 Mwr curve diagram of another embodiment of the present invention, and parts corresponding to the embodiments of FIGS. 1 and 2 are given the same reference numbers. In this embodiment, a heat exchanger 23 is provided in which heat exchanger tubes 20, 21, and 22 are arranged in mantissa, for example, three rows, at intervals along the flow direction of the combustion exhaust gas, and the heat exchanger tubes 20 are all It is arranged close to the flame formation direction 11 of the secondary pneumatic parner 2. The outer periphery of the heat exchanger tube 20 is provided with a relatively large interval (for example, 5 to 5 mm) in the axial direction.
A plurality of fins 24 having a large wall thickness and a small protrusion are fixed at intervals of 7 mm), and particulate matter 17 is filled between each fin 24. A plurality of fins 25° 26 with a small wall thickness are fixed to the outer periphery of the heat exchanger tubes 21 and 22 on the downstream side of the heat exchanger tube 20 at relatively small intervals (for example, 2 to 3 mm) in the axial direction. be done. Further, the amount of radial outward protrusion of each fin 25.degree. 26 is selected to be large.

この実施例によれば、火炎形成向11に近接したフィン
24のフィン面積が小でありかつ肉厚が大であるので、
フィン24の焼損が防止される。
According to this embodiment, the fin area of the fins 24 close to the flame formation direction 11 is small and the wall thickness is large;
Burnout of the fins 24 is prevented.

また伝熱管20における伝熱面積の不足は、伝熱’1J
21.22のフィン面積が大であることによって補われ
る。なお、フィン25.26の肉厚が小であったとして
も、伝熱管21.22の部分では燃焼排ガスの1M度が
低下しているので、焼損のおそれはない。
In addition, the lack of heat transfer area in the heat transfer tube 20 is caused by heat transfer '1J.
This is compensated for by the large fin area of 21.22. Note that even if the thickness of the fins 25 and 26 is small, there is no risk of burnout because the combustion exhaust gas is reduced by 1M degrees in the heat exchanger tubes 21 and 22.

上述の実施例では全−次を気式バーナ2の下方にだに交
換器1.23を配置したが、本発明の他の実施例として
、全−次空気式パーナ2の上方にだ〜交換器1.23を
配置してもよい。ただし、熱交換器l、23を全−次空
気式バーナ2の下方に配置すると、熱交換器1.23で
冷却されることンこより縦組した燃焼排ガス中の水分が
全−次′JI!気バーナ2上に一下することがないので
好都合である。
In the embodiment described above, the air exchanger 1.23 is placed below the air burner 2, but in another embodiment of the present invention, the air exchanger 1.23 is placed above the air burner 2. 1.23 may be placed. However, when the heat exchanger 1.23 is placed below the total air burner 2, the moisture in the vertically assembled combustion exhaust gas is cooled by the heat exchanger 1.23. This is convenient because the air does not drop onto the burner 2.

上述のごとく本発明によれば、蛍−次窄気式パーナの火
炎形成向に近接して熱又換器を配置することができるの
で、全体として小形化することができる。
As described above, according to the present invention, the heat exchanger can be disposed close to the direction of flame formation of the firefly confinement type parner, so the overall size can be reduced.

4、図面の責牢な6兄(7) 第1図は本発明の一実施例の簡略化した縦断■図、第2
図は全−次空気式バーナ2の斜視図、弔3図は本発明の
他の実施例の闇路化した縦〜rnto図である。
4. The 6th brother responsible for drawings (7) Figure 1 is a simplified vertical cross-sectional view of an embodiment of the present invention, Figure 2
The figure is a perspective view of the total air burner 2, and the third figure is a vertical to rnto view of another embodiment of the present invention.

1.23・・熱交換器、2・・全−次空気式パーナ、5
・・・加熱装置、6・グーシン°グ、7・・・ガス室、
10・・・炎孔、11・・・火炎形成向、12,20,
21 。
1.23... Heat exchanger, 2... Total air type parna, 5
... Heating device, 6. Gushing, 7. Gas chamber,
10...flame hole, 11...flame formation direction, 12,20,
21.

22・・伝−管、13.24,25.26−・フィン、
17・・粒状物質 代理人   弁理士 四教圭−即 第1I!!! 1 第2図 第3図
22...transmission tube, 13.24, 25.26-...fin,
17... Particulate matter agent Patent attorney Kei Shikyo - Immediately 1st I! ! ! 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)バーナからの燃焼排ガスを、被加熱流体が流通す
る伝熱管の外周面にフィンを固着して構成されたs!交
換器に瑯いて#rJ記被加熱流体を加熱するようにした
加1vIl装置において、 ケーシング内には燃料ガスおよび燃焼用′iI!気が供
給されるガス室が形成され、そのガス室Kmむ複数の炎
孔を有し耐熱材料から成る実質的に平板状の全−次空気
式バーナが設けられ、その全−次空気式パーナの火炎形
成面に近接して前記熱交換器の伝熱管が配置され、その
伝熱・gのフィン間には耐熱材料から成る粒状物質が燃
焼排ガスの流通を許容して充填されることを特徴とする
加熱装置。
(1) The s! is constructed by fixing fins to the outer peripheral surface of a heat transfer tube through which the fluid to be heated flows through which the combustion exhaust gas from the burner flows. In the heating device which heats the fluid to be heated in the exchanger, the casing contains fuel gas and combustion fluid. A gas chamber to which air is supplied is formed, and a substantially flat all-air burner made of a heat-resistant material and having a plurality of flame holes extending Km into the gas chamber is provided; A heat transfer tube of the heat exchanger is arranged close to the flame forming surface of the heat exchanger, and particulate matter made of a heat-resistant material is filled between the heat transfer fins to allow the flow of combustion exhaust gas. heating device.
(2)前記熱交換器は全−次空気式パーナからの燃焼排
ガスの流通方向に沿って間隔′lkあけて複数列配置さ
れ、全−次空気式バーナに最も近接した位置における伝
熱管のフィンは相互間の間隔を比較的大にして設けられ
るとともに各フィン間に曲記粒状物質が充填され、前記
流過方向下流側の伝熱管には相互間の間隔を比較的小に
してフィンが設けられることを特徴とする特fF請求の
範囲第1項記載の加熱装置。
(2) The heat exchanger is arranged in multiple rows at intervals of 'lk along the flow direction of the combustion exhaust gas from the all-air burner, and the fins of the heat exchanger tubes are located at the position closest to the all-air burner. The fins are provided with relatively large intervals between each other, and curved particulate matter is filled between each fin, and the heat transfer tube on the downstream side in the flow direction is provided with fins with relatively small intervals between each fin. The heating device according to claim 1, characterized in that:
(3)前記全−次空気式パーナに最も近接した位置にお
ける伝熱管のフィンは肉厚を大にしてかつ突出型を小に
して設けられ、前記流過方向下流側の伝熱管のフィンは
肉厚を小にしてかつ突出型を大にして設けられることを
特徴とする特ff請求の範囲第2項記載の加熱装置。
(3) The fins of the heat exchanger tube at the position closest to the total air type parner are provided with a large wall thickness and a small protrusion, and the fins of the heat exchanger tube on the downstream side in the flow direction are provided with a thick wall. The heating device according to claim 2, characterized in that it is provided with a small thickness and a large protruding mold.
JP7503382A 1982-05-04 1982-05-04 Heater Pending JPS58193039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7503382A JPS58193039A (en) 1982-05-04 1982-05-04 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7503382A JPS58193039A (en) 1982-05-04 1982-05-04 Heater

Publications (1)

Publication Number Publication Date
JPS58193039A true JPS58193039A (en) 1983-11-10

Family

ID=13564466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7503382A Pending JPS58193039A (en) 1982-05-04 1982-05-04 Heater

Country Status (1)

Country Link
JP (1) JPS58193039A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147262A (en) * 1985-12-19 1987-07-01 Osaka Gas Co Ltd Tap-controlled water heater
JPS62120155U (en) * 1986-01-24 1987-07-30
JPS63243654A (en) * 1987-03-30 1988-10-11 Asahi Glass Co Ltd Fluid heating device equipped with radiator
JPS63251751A (en) * 1987-04-07 1988-10-19 Asahi Glass Co Ltd Device for heating fluid
JPH0158039U (en) * 1987-10-06 1989-04-11
EP3002527A1 (en) * 2014-09-27 2016-04-06 Vaillant GmbH Heat exchanger and gas water heating appliance using the same
JP2017530322A (en) * 2014-06-30 2017-10-12 チュビタック (ターキー ビリムセル ヴィ テクノロジク アラスティルマ クルム)Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Hybrid homogeneous catalytic combustion system
WO2018216467A1 (en) * 2017-05-22 2018-11-29 株式会社ノーリツ Water heating apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147262A (en) * 1985-12-19 1987-07-01 Osaka Gas Co Ltd Tap-controlled water heater
JPH079314B2 (en) * 1985-12-19 1995-02-01 大阪瓦斯株式会社 Instant water heater
JPS62120155U (en) * 1986-01-24 1987-07-30
JPH0328259Y2 (en) * 1986-01-24 1991-06-18
JPS63243654A (en) * 1987-03-30 1988-10-11 Asahi Glass Co Ltd Fluid heating device equipped with radiator
JPS63251751A (en) * 1987-04-07 1988-10-19 Asahi Glass Co Ltd Device for heating fluid
JPH0457936B2 (en) * 1987-04-07 1992-09-16 Asahi Garasu Kk
JPH0158039U (en) * 1987-10-06 1989-04-11
JP2017530322A (en) * 2014-06-30 2017-10-12 チュビタック (ターキー ビリムセル ヴィ テクノロジク アラスティルマ クルム)Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Hybrid homogeneous catalytic combustion system
EP3002527A1 (en) * 2014-09-27 2016-04-06 Vaillant GmbH Heat exchanger and gas water heating appliance using the same
WO2018216467A1 (en) * 2017-05-22 2018-11-29 株式会社ノーリツ Water heating apparatus
US11226133B2 (en) 2017-05-22 2022-01-18 Noritz Corporation Water heating apparatus

Similar Documents

Publication Publication Date Title
US4510890A (en) Infrared water heater
US5458484A (en) Pre-mix flame type burner
JPH08312461A (en) Combustion apparatus for stirling engine
JPS58193039A (en) Heater
US7011516B2 (en) Infrared radiator embodied as a surface radiator
JPS61256113A (en) Surface combustion burner and heat exchanger utilizing this burner
JPH0159520B2 (en)
JP4085219B2 (en) Combustion device
JPH0739880B2 (en) Fluid heating device
JPS62233639A (en) Fluid heating apparatus
RU2228502C2 (en) Technological heater
JPS61256112A (en) Surface combustion burner and heat exchanger utilizing this burner
JP3053700B2 (en) Concentration combustion device
JPH0590119U (en) Internal combustion device of tube burner
JPS591918A (en) Heating device for promoting radiation
RU2168121C1 (en) Process heater
JPS61246512A (en) Burner
JPH0227305Y2 (en)
GB1199092A (en) Radiant Heating Tubes for Industrial Furnaces
JP3883735B2 (en) Liquid heating equipment
JPS5820841Y2 (en) Nenshiyousouchi
JPS61256111A (en) Surface combustion burner and heat exchanger utilizing this burner
JPS63210513A (en) Improved fluid heating device
JPS63251750A (en) Fluid heater
JP2000193210A (en) Burner and fluid heating device using the same