JPS63210513A - Improved fluid heating device - Google Patents

Improved fluid heating device

Info

Publication number
JPS63210513A
JPS63210513A JP4496787A JP4496787A JPS63210513A JP S63210513 A JPS63210513 A JP S63210513A JP 4496787 A JP4496787 A JP 4496787A JP 4496787 A JP4496787 A JP 4496787A JP S63210513 A JPS63210513 A JP S63210513A
Authority
JP
Japan
Prior art keywords
heat exchanger
combustion
tube group
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4496787A
Other languages
Japanese (ja)
Inventor
Yoshimasa Arai
新井 義正
Noriyuki Oda
紀之 織田
Satoshi Ebato
江波戸 智
Kozo Sakurai
桜井 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Gas Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4496787A priority Critical patent/JPS63210513A/en
Publication of JPS63210513A publication Critical patent/JPS63210513A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To transfer combustion heat effectively, miniaturize the whole of a device and prevent a combustion means from deformation, breakage or backfire, by a method wherein the total sum of the projection areas of radiators, which are projected by projection lines, orthogonal to the downstream surface of the combustion means, through clearances of respective heat transfer tubes, which are constituting a first heat transfer tube group, is limited to a specified rate. CONSTITUTION:Premixed gas, consisting of fuel gas from a fuel gas nozzle 26 and air from a fan 25, is supplied to a combustion chamber 24 through the flame ports of a burner plate 27 and becomes high temperature combustion gas. The combustion gas passes through the clearances of the heat transfer tubes 13a of a first heat transfer tube group 13, flows through a radiator 14 while keeping the high temperature, and heats the radiating body 14 also so as to become white-hot. In this case, the radiator 14 is kept in the high temperature and heats the first heat transfer tube group 13 principally by radiation. The radiation heat is projected through the clearances of the first heat transfer tube group 13 toward the burner plate 27. Since the intervals (d) of arranged heat transfer tubes 13a are designed so as to be smaller than the outer diameter (a) of the tube to obtain the projection area ratio of 40% or less, a considerable amount of radiation heat is interfered by the heat transfer tube group 13, whereby the burner plate 27 may be prevented from breakage due to radiation heat even when the plate 27 is used for a long period of time.

Description

【発明の詳細な説明】 「技術分野J 本発明は、湯沸器、風呂釜、温水ボイラなどに使用され
る流体加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field J The present invention relates to a fluid heating device used in water heaters, bathtubs, hot water boilers, and the like.

「従来技術およびその問題点」 従来、湯沸器、風呂釜、温水ボイラなどの流体加熱装置
においでは、バーナの下流の燃焼室にで燃料を燃焼させ
た後、燃焼ガスを伝熱管群間に導き、主に対流熱伝達を
利用して、伝熱管群の内部を流れる水などの流体を加熱
するようになっていた。
"Prior art and its problems" Conventionally, in fluid heating devices such as water heaters, bathtubs, and hot water boilers, fuel is combusted in a combustion chamber downstream of a burner, and then the combustion gas is transferred between a group of heat transfer tubes. It was designed to heat a fluid such as water flowing inside a group of heat transfer tubes, mainly using convective heat transfer.

近年、これらの流体加熱装置においては、極力コンパク
トにするため、燃焼室をできる限り小型化すると共に、
熱交換部の単位容積当りの伝熱量を増加させる傾向にあ
る。
In recent years, in order to make these fluid heating devices as compact as possible, the combustion chamber has been made as small as possible, and
This tends to increase the amount of heat transferred per unit volume of the heat exchange section.

ところで、燃焼室を単純に小型化すると、燃焼室内で燃
焼反応が完結しないまま熱交換部にまで火炎が伸び、そ
の結果、燃焼反応途中の燃料が伝熱管の壁に接触して火
炎か冷却されることにより燃焼反応が停止して、不完全
燃焼を起こすことがあった。このことは燃料の損失とな
るばかりか、−酸化炭素、スス、アルデヒドなどが発生
し、人体にも悪影響を及ぼす結果となる。
By the way, if the combustion chamber is simply downsized, the flame will extend to the heat exchanger without completing the combustion reaction within the combustion chamber, and as a result, the fuel in the middle of the combustion reaction will come into contact with the walls of the heat transfer tubes and the flame will be cooled down. This could cause the combustion reaction to stop, resulting in incomplete combustion. This not only results in a loss of fuel, but also generates carbon oxide, soot, aldehyde, etc., which has an adverse effect on the human body.

また、燃焼!を小型化しで熱交換部と一体化すると、伝
熱管表面に未燃燃料成分などが付着堆積した場合、伝熱
管か過熱されて損傷したつ、2!i境室内の燃焼ガスの
混合か悪くなって温度分布が大きくなりやく、局部的に
伝熱負荷が増大して同じく伝熱管を損傷させることがあ
った。
Also, combustion! If the heat exchanger is miniaturized and integrated with the heat exchanger, if unburned fuel components are deposited on the surface of the heat exchanger tube, the heat exchanger tube may be overheated and damaged. Mixing of the combustion gas in the i-boundary chamber deteriorates, and the temperature distribution tends to become large, and the heat transfer load increases locally, which may also damage the heat exchanger tubes.

このため燃焼室の小型化には限界があり、例えば現在市
販されているガス湯沸器においては、燃焼室と熱交換部
との大きさを比較すると約2=1であり、バーナ先端と
下流の伝熱管との距離は20〜30cmもあり、燃焼室
負荷としでは5x +o’ kcal/m3/hr程度
以下に抑えられていた。これ以上燃焼室を小ざくして熱
交換部を火炎に近づけることは、伝熱管の損傷を早めた
り、COの発生を増加させるなどの理由で困難となって
いた。
For this reason, there is a limit to the miniaturization of the combustion chamber. For example, in currently commercially available gas water heaters, when comparing the size of the combustion chamber and the heat exchange section, it is approximately 2 = 1, and the size of the combustion chamber and the downstream The distance from the heat exchanger tubes was 20 to 30 cm, and the combustion chamber load was suppressed to about 5x + o' kcal/m3/hr or less. It has become difficult to make the combustion chamber any smaller and bring the heat exchanger closer to the flame because this may accelerate damage to the heat exchanger tubes or increase the generation of CO.

そこで、本発明者らは、先に特願昭6’O−22398
0において、第5図および第6図に示すような流体加熱
装言ヲ提案した。この流体加熱装置10では、ケーシン
グ11内の下部にバーナなどの燃焼手段12を配冒し、
この燃焼手段12の上部に、下から順に第一の伝熱管群
13、通気性の輻射体14、および第二の伝熱管群15
を配置しでいる。第一の伝熱管群13は複数本の伝熱管
が所定間隔で一段に配置されてあり、この第一の伝熱管
群13と第二の伝熱管群15には水などの被加熱流体が
流されるようになっている。
Therefore, the present inventors previously applied for patent application No. 6'O-22398.
0, proposed a fluid heating device as shown in FIGS. 5 and 6. In this fluid heating device 10, a combustion means 12 such as a burner is arranged in the lower part of the casing 11,
Above this combustion means 12, in order from the bottom, a first heat exchanger tube group 13, a breathable radiator 14, and a second heat exchanger tube group 15.
has been placed. The first heat exchanger tube group 13 has a plurality of heat exchanger tubes arranged in a row at predetermined intervals, and a fluid to be heated such as water flows through the first heat exchanger tube group 13 and the second heat exchanger tube group 15. It is now possible to

そして、燃焼手段12のノズルから噴出された燃料ガス
は火炎を形成して燃焼する。この燃焼ガスは第一の伝熱
管群13を加熱するとともに、第一の伝熱管群13の各
伝熱管の間隙を通過して輻射体14をも加熱する。この
加熱された輻射体14は輻射熱を主に第一の伝熱管群1
3に照射し、第一の伝熱管群13は1.@焼ガスによる
対流熱伝達と輻射体14からの輻射熱伝達の双方により
加熱される。また、第二の伝熱管群15も、燃焼ガスに
よる対流熱伝達と輻射体14からの輻射熱によって加熱
される。かくして第一の伝熱管群13および第二の伝熱
管群15内を流れる被加熱流体が加熱される。
Then, the fuel gas ejected from the nozzle of the combustion means 12 forms a flame and burns. This combustion gas not only heats the first heat exchanger tube group 13 but also passes through the gaps between the heat exchanger tubes of the first heat exchanger tube group 13 and heats the radiator 14 . This heated radiator 14 mainly transfers radiant heat to the first heat exchanger tube group 1.
3, and the first heat exchanger tube group 13 was irradiated with 1. It is heated by both convective heat transfer by the sintering gas and radiant heat transfer from the radiator 14. Further, the second heat transfer tube group 15 is also heated by convection heat transfer by the combustion gas and radiant heat from the radiator 14 . In this way, the fluid to be heated flowing through the first heat exchanger tube group 13 and the second heat exchanger tube group 15 is heated.

上記の流体加熱装置10によると、輻射体14からの輻
射熱が、第一の伝熱管群13ばかつか第二の伝熱管群1
5にも照射されて燃焼熱を有効に利用することができ、
第一の伝熱管群13を燃焼手段12に近接させであるの
で、燃焼空間を大幅に縮小でき、装置全体をコンパクト
化できる。ざらに、不完全燃焼主成物が発生しても、高
温に保たれている輻射体14を通過する際に酸化される
ので、不完全燃焼生成物の排出を抑制することができる
According to the fluid heating device 10 described above, the radiant heat from the radiator 14 is transmitted to both the first heat exchanger tube group 13 and the second heat exchanger tube group 1.
5 can also be irradiated and the combustion heat can be used effectively,
Since the first heat exchanger tube group 13 is located close to the combustion means 12, the combustion space can be significantly reduced, and the entire apparatus can be made more compact. In general, even if the main products of incomplete combustion are generated, they are oxidized when passing through the radiator 14 kept at a high temperature, so that the discharge of incomplete combustion products can be suppressed.

しかしながら、上記の流体加熱装M10では、燃焼手段
12と輻射体14との門に介在する第一の伝熱管群13
の各伝熱管の間隔が管外径よりも広くなっていると、輻
射体14からの輻射熱が第一の伝熱管群13の各伝熱管
の間を通過して燃焼手段12に多量に到達するため、こ
の輻射熱によって燃焼手段12までか加熱されてしまう
ことが判明した。
However, in the fluid heating device M10 described above, the first heat transfer tube group 13 interposed between the combustion means 12 and the radiator 14 is
When the interval between the heat transfer tubes is wider than the tube outer diameter, a large amount of radiant heat from the radiator 14 passes between the heat transfer tubes of the first heat transfer tube group 13 and reaches the combustion means 12. Therefore, it was found that even the combustion means 12 was heated by this radiant heat.

このため、燃焼手段12は輻射熱の直射を受ける部分に
熱損傷を起こしたり、直射を受ける部分とそうでない部
分とで大きな温度差を生じ、燃焼手段がセラミックス装
面バーナの場合には、その表面と裏面とでも大きな温度
差を主じ、これらはひいては燃焼手段12の変形、破損
、さらには燃焼手段12が予混合型バーナであると逆火
という危険な事態を招くことにもなる。
For this reason, the combustion means 12 may cause thermal damage to the parts that receive direct radiant heat, or a large temperature difference will occur between the parts that receive direct radiation and the parts that do not. There is also a large temperature difference between the front surface and the back surface, which can lead to deformation and damage to the combustion means 12, and furthermore, if the combustion means 12 is a premix burner, a dangerous situation of backfire may occur.

「発明の目的j 本発明の目的は、上記の問題点を解消し、燃焼熱を効果
的に伝熱させ、装置全体の小型化を図るとともに、輻射
熱による燃焼手段の高温過熱とこれに伴なう燃焼手段内
の大きな温度差の発生を抑制し、燃焼手段の変形、破損
や逆火を防止することのできる流体加熱装@を提供する
ことにある。
``Object of the invention j The object of the present invention is to solve the above-mentioned problems, to effectively transfer combustion heat, to downsize the entire device, and to reduce the high temperature overheating of the combustion means by radiant heat and the accompanying An object of the present invention is to provide a fluid heating device that can suppress the occurrence of large temperature differences within combustion means and prevent deformation, damage, and backfire of the combustion means.

「発明の構成」 本発明による流体加熱装置は、燃焼手段と、燃焼手段の
近接下流に配置された第一の伝熱管群と、第一の伝熱管
群の近接下流に通気可能に設けられた輻射体と、輻射体
の近接下流に配置された第二の伝熱管群とを備え、第一
の伝熱管群を構成する各伝熱管の間隙を通して燃焼手段
の下流面に垂直な投影線によって投影される輻射体の投
影面積の総和が燃焼手段の下流面の面積の40%以下と
されていることを特徴とする。
"Structure of the Invention" The fluid heating device according to the present invention includes a combustion means, a first heat exchanger tube group disposed adjacent to and downstream of the combustion means, and a ventilable structure provided adjacent to and downstream of the first heat exchanger tube group. comprising a radiator and a second group of heat exchanger tubes arranged adjacently downstream of the radiator, projected by a projection line perpendicular to the downstream surface of the combustion means through the gap of each heat exchanger tube constituting the first group of heat exchanger tubes. The total projected area of the radiators is 40% or less of the area of the downstream surface of the combustion means.

本発明にて、燃料としては、都市ガス、プロパンガス、
天然ガスなどの気体燃料、もしくは灯油などの液体燃料
を気化させたものが採用できる。
In the present invention, the fuel includes city gas, propane gas,
Gaseous fuels such as natural gas or vaporized liquid fuels such as kerosene can be used.

燃焼手段としては、燃焼用空気と燃料とを別々に燃焼室
へ供給する拡散燃焼型バーナ、あるいは燃焼用空気と燃
料とを予め所要割合で混合させた復に燃焼室へ供給する
予混合燃焼型バーナなどが使用される。予混合燃焼型バ
ーナとしては面状バーナか好適である。
Combustion means include a diffusion combustion burner that supplies combustion air and fuel separately to the combustion chamber, or a premix combustion burner that mixes combustion air and fuel in a predetermined ratio and then supplies the mixture to the combustion chamber. Burners etc. are used. A planar burner is suitable as the premix combustion type burner.

複数の伝熱管からなる第一の伝熱管群は、燃焼ガス流れ
方向に関して一段または複数段1こ配置され、全体とし
て燃焼手段の下流に、かつ、燃焼手段に近接して設けら
れる。
The first heat exchanger tube group consisting of a plurality of heat exchanger tubes is arranged in one or more stages in the combustion gas flow direction, and is provided as a whole downstream of and close to the combustion means.

第一の伝熱管群を構成する伝熱管(複数段ある場合には
最上流の伝熱管)の上流縁は、例えば燃焼手段によって
形成される火炎中、あるいは火炎の先端に近接した位置
に配置される。具体的には燃焼手段の燃料ガス吐出口(
例えばバーナ先端)と上述した伝熱管の上流縁との距離
は5〜50mmとすることが好ましい。換言すると、火
炎の長さは燃焼手段の設計によって異なるが一般には5
〜50mm程度であるため、上述した伝熱管の上流縁は
、火炎の先端付近に配置されることになる。
The upstream edge of the heat exchanger tube (the most upstream heat exchanger tube when there are multiple stages) constituting the first heat exchanger tube group is placed, for example, in the flame formed by the combustion means or at a position close to the tip of the flame. Ru. Specifically, the fuel gas discharge port of the combustion means (
For example, the distance between the burner tip) and the upstream edge of the heat exchanger tube is preferably 5 to 50 mm. In other words, the length of the flame varies depending on the design of the combustion means, but is generally 5.
Since the distance is approximately 50 mm, the upstream edge of the heat exchanger tube described above will be placed near the tip of the flame.

第一の伝熱管群を燃焼手段に対し上記位置より離れた位
置に配置した場合には、熱損失あるいは燃焼室を囲むケ
ーシングの冷却管などにより燃焼ガスの温度か低下し、
本発明の効果を充分には得られなくなったり、ガス厚み
か増大して高温燃焼ガスからバーナへの輻射入熱が増大
し、バーナの損傷、逆火を招く可能性がある。
If the first heat transfer tube group is arranged at a position farther from the combustion means than the above position, the temperature of the combustion gas will decrease due to heat loss or cooling pipes in the casing surrounding the combustion chamber.
The effects of the present invention may not be sufficiently obtained, or the gas thickness may increase, increasing radiant heat input from the high-temperature combustion gas to the burner, leading to damage to the burner and backfire.

第一の伝熱管群の近接下流には輻射体が配置される。輻
射体は、燃焼ガスが有している熱エネルギを強力な輻射
エネルギに変換し、主に第一の伝熱管群に、ざらには第
二の伝熱管群に輻射熱を照射する。この輻射体からの輻
射伝熱と高温の燃焼ガスからの対流伝熱とで両伝熱管群
が加熱され、その内部を流れる流体が効率的に加熱され
る。
A radiator is arranged adjacent to and downstream of the first heat exchanger tube group. The radiator converts the thermal energy contained in the combustion gas into strong radiant energy, and irradiates the radiant heat mainly to the first heat exchanger tube group, and generally to the second heat exchanger tube group. Both heat transfer tube groups are heated by radiant heat transfer from the radiator and convective heat transfer from the high temperature combustion gas, and the fluid flowing inside the tube groups is efficiently heated.

輻射体は高温で効果的な輻射熱を発生させるよう、炭化
ケイ素、富化ケイ素、窒化アルミニウム、コージライト
、ムライト、リチウムアルミニウムシリケート、アルミ
ニウムチタネートなどのセラミックスが好適な材質とし
で挙げられ、特に高耐熱、高強度、高熱伝導性のセラミ
ックス、例えば炭化ケイ素、富化ケイ素、窒化アルミニ
ウムなどのセラミックスが好ましい。温度条件などによ
っでは耐熱鋼などの金属材料も採用しろる。
In order to generate effective radiant heat at high temperatures, suitable materials for the radiator include ceramics such as silicon carbide, enriched silicon, aluminum nitride, cordierite, mullite, lithium aluminum silicate, and aluminum titanate, with particularly high heat resistance. , high strength, high thermal conductivity ceramics such as silicon carbide, enriched silicon, aluminum nitride, etc. are preferred. Depending on temperature conditions, metal materials such as heat-resistant steel may also be used.

第一の伝熱管群域を通過した燃焼ガスが輻射体に接触し
、ざらに下流へと流れでいくことが可能なように、すな
わち燃焼ガスの通気が可能なように、この輻射体は設け
られる。
The radiator is designed so that the combustion gas that has passed through the first heat exchanger tube group comes into contact with the radiator and can flow roughly downstream, that is, to allow ventilation of the combustion gas. It will be done.

このような設置す方の好ましい一例は、棒状あるいは細
長板状の輻射体を多数本相互に平行に、かつ、相互間(
こ(まスリットを形成して配置するものである。このと
き、棒状あるいは細長板状の輻射体は、その長手方向が
燃焼ガス流れ方向と直交するのがよいか、斜交してもよ
い。この場合、輻射体自体は非通気性でも通気性でもよ
い。
A preferable example of such installation is to install a large number of rod-shaped or elongated plate-shaped radiators in parallel with each other and between them (
In this case, the rod-shaped or elongated plate-shaped radiator is preferably arranged such that its longitudinal direction is perpendicular to the flow direction of the combustion gas, or may be diagonal to the flow direction of the combustion gas. In this case, the radiator itself may be non-breathable or breathable.

より好ましい輻射体の設は方は、例えば平板状などの通
気性輻射体を採用することである。通気・注輻射体は、
板状体の両面層をガスが流過しうるような流路が全体と
しては均一に分布しているもので、典型的にはハニカム
体、三次元網状体、連通気泡体、網状物積層体などが挙
げられる。このような通気性輻射体を、例えば燃焼ガス
流路の実質的全域ヲ横断するように配置するもので、こ
れにより燃焼ガスが上流側から通気性輻射体の内部を通
りぬ(すで下流側に通気する。
A more preferable way to install the radiator is to use a breathable radiator, such as a flat plate. The ventilation/radiant body is
A plate-shaped body in which flow channels are uniformly distributed throughout so that gas can flow through the layers on both sides, and typically a honeycomb body, three-dimensional network, open-cell foam, or network laminate. Examples include. Such a breathable radiator is arranged, for example, so as to cross substantially the entire area of the combustion gas flow path, so that the combustion gas passes through the interior of the breathable radiator from the upstream side (already from the downstream side). ventilate.

かかる通気性輻射体のうちで特に好適なのはセラミック
ス製のハニカム板である。このハニカム板は、板面の表
裏に貫通する多数の平行セルを何するもので、セル形状
は、正方形、長方形、六角形など適宜選択できる。また
、ハニカム板は、波板同士、あるいは波板と平板を多数
積層して形成されたようなものでもよい。
Among such breathable radiators, ceramic honeycomb plates are particularly preferred. This honeycomb plate has a large number of parallel cells penetrating the front and back sides of the plate surface, and the cell shape can be appropriately selected from square, rectangular, hexagonal, etc. Further, the honeycomb plate may be formed by laminating a large number of corrugated plates or a large number of corrugated plates and flat plates.

第二の伝熱管群は、輻射体の近接下流に配Mされる。第
二の伝熱管群域へ流入する燃焼ガスは、第一の伝熱管群
および輻射体の配薗域を通過する際の熱交換により、そ
の温度が低下している。そこで、第二の伝熱管群は外面
にフィンを有するものとしで、対流伝熱を向上させるの
が好ましい。
The second heat exchanger tube group is arranged adjacent to and downstream of the radiator. The temperature of the combustion gas flowing into the second heat exchanger tube group area is lowered by heat exchange when passing through the first heat exchanger tube group and the radiator arrangement area. Therefore, it is preferable that the second heat transfer tube group has fins on its outer surface to improve convective heat transfer.

また、燃焼ガスが平均して接触するようにするため、第
二の伝熱管群は、伝熱管を千鳥状に配列することもでき
る。
Furthermore, in order to ensure that the combustion gases come into contact with each other evenly, the second heat exchanger tube group can also have heat exchanger tubes arranged in a staggered manner.

なあ、第一および第二の伝熱管群の伝熱管の材質は、銅
、アルミニウム、アルミニウム合金、ステンレスなどの
金属、あるいは炭化ケイ素、窒化ケイ素などの熱伝導性
、耐食性に優れたセラミックスであることが好ましく、
特に、高熱伝導率、低線膨張係数、高強度を有し、成形
性にも優れた反応焼結炭化珪素、あるいは高熱伝導性材
料である銅が最も好ましい。
The material of the heat exchanger tubes in the first and second heat exchanger tube groups must be metals such as copper, aluminum, aluminum alloy, and stainless steel, or ceramics with excellent thermal conductivity and corrosion resistance such as silicon carbide and silicon nitride. is preferable,
In particular, reaction sintered silicon carbide, which has high thermal conductivity, low coefficient of linear expansion, high strength, and excellent formability, or copper, which is a highly thermally conductive material, is most preferred.

第一の伝熱管群を構成する各伝熱管の間隙を通して燃焼
手段の下流面に垂直な投影線によって投影される輻射体
の投影面積の総和が、燃焼手段の下流面の面積に占める
割合(以下、投影面積比という)は40%以下、特には
35%以下とされる。
The sum of the projected areas of the radiators projected by the projection line perpendicular to the downstream surface of the combustion means through the gaps of the heat exchanger tubes constituting the first heat exchanger tube group is the ratio (hereinafter referred to as , projected area ratio) is set to be 40% or less, particularly 35% or less.

各伝熱管をこのように配冨すると、各伝熱管によって、
輻射体からの輻射熱を遮る量が多くなるので、燃焼手段
に直接到達する輻射熱量が減少する。よって、輻射熱に
よる燃焼手段の高温過熱およびこれに伴なう燃焼手段内
の大きな温度差の発生が抑制され、燃焼手段の熱変形、
破損や逆火が防止される。また輻射体から伝熱管に直接
に照射される輻射熱も増大して伝熱効率が向上する。な
あ、内部に被加熱流体が流れているため、伝熱管は熱損
傷を受けない。
If each heat exchanger tube is distributed in this way, each heat exchanger tube will
Since the amount of radiant heat that is blocked from the radiator increases, the amount of radiant heat that directly reaches the combustion means is reduced. Therefore, high-temperature overheating of the combustion means due to radiant heat and the occurrence of large temperature differences within the combustion means due to this are suppressed, and thermal deformation of the combustion means,
Breakage and backfire are prevented. In addition, the radiant heat directly irradiated from the radiator to the heat transfer tube increases, improving heat transfer efficiency. By the way, the heat exchanger tubes do not suffer thermal damage because the fluid to be heated flows inside them.

投影面積比は小さい程良いが、第一の伝熱管群の配列が
一段で各伝熱管が円筒状のときは、各伝熱管の間隙に燃
焼ガスを支障なく通過させるために、20%程度以上と
することが好ましい。
The smaller the projected area ratio, the better; however, when the first heat exchanger tube group is arranged in one stage and each heat exchanger tube is cylindrical, it should be about 20% or more in order to allow the combustion gas to pass through the gaps between the heat exchanger tubes without any problem. It is preferable that

また、例えば断面が凹部を有する伝熱管を一段に複数本
配列することにより、伝熱管の間隙を充分に確保して燃
焼ガス通過圧損にほとんど影VIを与えることなく、投
影面積比を0%にまですることができる。このように投
影面積比を0%とした場合には、燃焼ガスが伝熱管の間
隙を低圧損で通過可能であり、かつ、輻射体からの輻射
熱のほとんどが第一の伝熱管群によって逼られ、燃焼手
段には到達しない。
In addition, for example, by arranging a plurality of heat transfer tubes with concave sections in one row, sufficient gaps between the heat transfer tubes can be secured, and the projected area ratio can be reduced to 0% without having almost any effect on the combustion gas passage pressure drop VI. You can do up to. In this way, when the projected area ratio is 0%, the combustion gas can pass through the gap between the heat transfer tubes with low pressure loss, and most of the radiant heat from the radiator is absorbed by the first group of heat transfer tubes. , does not reach the combustion means.

なお、周囲の燃焼ガス温度が高く、しかも輻射体よりの
輻射伝熱もあって熱伝達率も高くなるため、第一の伝熱
管群の各伝熱管の外面にはフィンを付けないものが好ま
しいが、例えばフィン高さが2mm程度以下のフィンを
付けたものも採用可能である。
In addition, since the temperature of the surrounding combustion gas is high and there is also radiant heat transfer from the radiator, the heat transfer coefficient is also high, so it is preferable that no fins be attached to the outer surface of each heat transfer tube in the first heat transfer tube group. However, it is also possible to use a fin with a fin height of about 2 mm or less, for example.

なお、本発明で伝熱管群とは、例えば燃焼ガス流れ方向
に沿った適宜断面において複数本の伝熱管断面が認めら
れることを意味する。したがって各伝熱管はそれぞれ別
異の伝熱管であってもよいし、一本の伝熱管が蛇行、渦
巻またはラセン状に配首されていて、その複数箇所の断
面が認められるものであってもよい。
Note that in the present invention, a group of heat exchanger tubes means that a plurality of cross sections of heat exchanger tubes are recognized in an appropriate cross section along the combustion gas flow direction, for example. Therefore, each heat exchanger tube may be a different heat exchanger tube, or a single heat exchanger tube may be arranged in a meandering, spiral, or spiral shape, and cross sections at multiple points can be recognized. good.

なお、燃焼手段としては一般には平面状のバーナプレー
トを有するものが想定されるが、適宜わん曲した曲面状
のものでもよい、また面状のバーナプレートに代えて、
例えば小円筒状の燃料出口が密に突設されているものな
どでもよく、この場合にはこの燃料出口群が形成する燃
焼面が本発明でいう燃焼手段下流面とされる。ざらに例
えば小円筒状の燃料出口が疎に突設されているものなど
にあっては、その小円間断面が本発明でいう燃焼手段下
流面とされる。
The combustion means is generally assumed to have a planar burner plate, but it may also have a curved surface as appropriate, and instead of a planar burner plate,
For example, it may be one in which small cylindrical fuel outlets are closely protruded, and in this case, the combustion surface formed by this group of fuel outlets is the downstream surface of the combustion means in the present invention. In cases where, for example, small cylindrical fuel outlets are loosely protruded, the cross section between the small circles is the downstream surface of the combustion means in the present invention.

「発明の実施例」 以下に、本発明による流体加熱装置の実施例を図面に基
いで説明する。
"Embodiments of the Invention" Examples of the fluid heating device according to the present invention will be described below with reference to the drawings.

第1図に示す本発明の一実施例の流体加熱装置20は、
上方が図示せぬ排気口に接続されたケーシング21で全
体が囲まれており、ケーシング21は、下方より順にフ
ァンケーシング22、混合室23および燃焼室24が連
通して構成されている。ファンケーシング22にはファ
ン25が組み込まれ、ファン25の吐出部に燃料ガスノ
ズル26が配設されでいる。ファン25からの空気流と
燃料ガスノズル26からの燃料ガスがファンケーシング
22ヲ経て混合室23に供給されて燃料ガスと空気との
混合気が作られる。
A fluid heating device 20 according to an embodiment of the present invention shown in FIG.
The entire body is surrounded by a casing 21 whose upper part is connected to an exhaust port (not shown), and the casing 21 is configured with a fan casing 22, a mixing chamber 23, and a combustion chamber 24 communicating with each other in this order from the bottom. A fan 25 is incorporated into the fan casing 22, and a fuel gas nozzle 26 is disposed at a discharge portion of the fan 25. Air flow from the fan 25 and fuel gas from the fuel gas nozzle 26 are supplied to the mixing chamber 23 through the fan casing 22 to create a mixture of fuel gas and air.

混合室23と燃焼室24の境目には、燃焼手段としての
コージライト質セラミックスからなる面状のバーナプレ
ート27か配冒すれている。このバーナプレート27は
多数の炎口を何し、この炎口を通過した混合気はバーナ
プレート27の下流面27aに面状の火炎を形成する。
At the boundary between the mixing chamber 23 and the combustion chamber 24, a planar burner plate 27 made of cordierite ceramic is arranged as a combustion means. The burner plate 27 has a large number of flame ports, and the air-fuel mixture that has passed through the flame ports forms a planar flame on the downstream surface 27a of the burner plate 27.

すなわち、この実施例では予混合面バーナ方式が採用さ
れている。
That is, in this embodiment, a premixed surface burner method is adopted.

ケーシング21内のバーナプレート27に近接した上方
には、複数の伝熱管13aか相互(こ平行に等問隔で横
行配置されて第一の伝熱管群I3を構成しでいる。この
実施例の場合、第一の伝熱管群13は一段とされ、各伝
熱管+38は、外’II a lF!:12〜20mm
、肉厚0.6〜2.0mm、伝熱管の配列間隔dを6〜
10mmとしている。したがって、輻射体の各伝熱管の
間隙を通してバーナプレートの下流面27a上に投しら
れる垂直投影の面積の総和は、バーナプレートの下流面
27aの面積に対し、 7d/(7d+7a)= d/(d+a)  =  1
0/(1(D20)= 0J3(d = IOn+n+
、  a = 20mmのとき)すなわ′1540%以
下となっでいる。また、バーナプレートの下流面27a
から伝熱管13aの下縁までの距Mbは5〜50mmと
されている。
Above the burner plate 27 in the casing 21, a plurality of heat exchanger tubes 13a are arranged transversely parallel to each other at equal intervals to form a first heat exchanger tube group I3. In this case, the first heat exchanger tube group 13 is one stage, and each heat exchanger tube +38 has an outer diameter of 12 to 20 mm.
, wall thickness 0.6~2.0mm, arrangement interval d of heat exchanger tubes 6~
It is set to 10 mm. Therefore, the total area of the vertical projection projected onto the downstream surface 27a of the burner plate through the gap of each heat transfer tube of the radiator is 7d/(7d+7a)=d/( d+a) = 1
0/(1(D20)=0J3(d=IOn+n+
, when a = 20 mm), that is, 1540% or less. Also, the downstream surface 27a of the burner plate
The distance Mb from the lower edge of the heat exchanger tube 13a is 5 to 50 mm.

箇−の伝熱管群13の近接上方には、セラミックスハニ
カム板からなる通気性の輻射体14が配置されでおり、
輻射体14の近接上方には、第二の伝熱管群15が配置
されている。この実施例では、第二の伝熱管群15とし
で、多数の平行な平板2日と、この平板28を直交して
貫通する複数の平行な横行伝熱管とからなるプレートフ
ィンチューブを用いているか、例えば各伝熱管ごとにそ
の外面に複数のフィンを形成したものであってもよい。
An air-permeable radiator 14 made of a ceramic honeycomb plate is arranged adjacent to and above each of the heat exchanger tube groups 13.
A second heat exchanger tube group 15 is arranged close to and above the radiator 14 . In this embodiment, the second heat exchanger tube group 15 is a plate fin tube consisting of a large number of parallel flat plates 28 and a plurality of parallel transverse heat exchanger tubes passing through the flat plates 28 orthogonally. For example, each heat transfer tube may have a plurality of fins formed on its outer surface.

なあ、両伝熱管群13.15の伝熱管は、一般には水平
に配置されるが、被加熱流体の沸騰時に気泡が抜けやす
いように、被加熱流体の入口側に比べ出口側が上方とな
るように傾斜させてもよい。
Incidentally, the heat exchanger tubes in both heat exchanger tube groups 13 and 15 are generally arranged horizontally, but in order to make it easier for air bubbles to escape when the heated fluid boils, they are arranged so that the outlet side is higher than the inlet side of the heated fluid. It may be tilted to

第一の伝熱管群13および第二の伝熱管群15内には被
加熱流体が流される。被加熱流体としでは、液体、特に
水が好適である。この被加熱流体は、第一の伝熱管群1
3と第二の伝熱管群15にそれぞれ独立に流しでもよい
が、好ましくは両者間をシ1ノーズに流される。この場
合、温度効率を大きくする上では、まず第二の伝熱管群
15に流し、ここを出た被加熱流体を、次いで第一の伝
熱管群13に流すことにより、燃焼ガスの流れに対して
向流に流すことが好ましい。一方、管内での局部′A檜
を防止するためには、これと逆に接続して、燃焼ガスの
流れに対して並流とすることが好ましい。
A fluid to be heated is flowed into the first heat exchanger tube group 13 and the second heat exchanger tube group 15. A liquid, especially water, is suitable as the fluid to be heated. This fluid to be heated is supplied to the first heat exchanger tube group 1
3 and the second heat exchanger tube group 15 independently, but preferably the heat exchanger is flowed between the two in the 1 nose. In this case, in order to increase the temperature efficiency, the fluid to be heated is first flowed through the second heat exchanger tube group 15, and the heated fluid exiting there is then flowed through the first heat exchanger tube group 13, thereby controlling the flow of combustion gas. It is preferable to flow countercurrently. On the other hand, in order to prevent local cypress 'A' in the pipe, it is preferable to connect in the opposite direction so that the flow is parallel to the flow of combustion gas.

また、各伝熱管群内では通常はいずれもシリーズに接続
されるか、適宜、シリーズ接続とパラレル接続とを組み
合わせでもよい。
Moreover, within each heat exchanger tube group, all are usually connected in series, or series connection and parallel connection may be combined as appropriate.

以下に、本発明製画の作用を説明する。The operation of the drawing according to the present invention will be explained below.

燃料ガスノズル26からの燃料ガスと、ファン25のか
らの空気が混合室23に送られ、予混合気が形成される
。予混合気はバーナプレート27の炎口を通過して燃焼
室24へ供給されて火炎を形成し、1500〜1650
℃といった高温の燃焼ガスとなる。
Fuel gas from the fuel gas nozzle 26 and air from the fan 25 are sent to the mixing chamber 23 to form a premixture. The premixture passes through the flame port of the burner plate 27 and is supplied to the combustion chamber 24 to form a flame.
It becomes a high temperature combustion gas such as ℃.

この燃焼ガスは第一の伝熱管群13に導かれ、対流熱伝
達によって燃焼ガスが有している熱エネルギの一部を第
一の伝熱管群13の伝熱管13a内を流れる流体へ伝達
する。ざらに燃焼ガスは、第一の伝熱管群I3の伝熱管
13aの間隙を通過し、高温のまま輻射体14内を流れ
、この輻射体14をも加熱して白熱化させる。このとき
の輻射体14は、1000〜1200℃の高温に保持さ
れ、主に第一の伝熱管群13を輻射加熱する。
This combustion gas is guided to the first heat exchanger tube group 13, and a part of the thermal energy contained in the combustion gas is transferred to the fluid flowing inside the heat exchanger tubes 13a of the first heat exchanger tube group 13 by convection heat transfer. . Roughly speaking, the combustion gas passes through the gap between the heat exchanger tubes 13a of the first heat exchanger tube group I3, flows inside the radiator 14 while remaining at a high temperature, and also heats the radiator 14, causing it to become incandescent. At this time, the radiator 14 is maintained at a high temperature of 1000 to 1200°C, and mainly radiates and heats the first heat exchanger tube group 13.

このとき、輻射熱は第一の伝熱管群13の伝熱管13a
の間隙を通ってバーナプレート27方向にも照射される
が、伝熱管13aの配列間隔dがその管外径aよつも小
さく設定されていて、投影面積比が40%以下となって
いるため、輻射熱のがなりの量が伝熱管群13によって
遮られる。そのため、バーナプレート27は、上流側が
たかだか150℃程度に保たれ、下流面27aでの面内
湯度差は350℃程度以下となり、長期間使用した場合
でも輻射熱によって破損されることがなくなる。
At this time, the radiant heat is transferred to the heat exchanger tubes 13a of the first heat exchanger tube group 13.
The light is also irradiated in the direction of the burner plate 27 through the gap, but since the arrangement interval d of the heat transfer tubes 13a is set smaller than the tube outer diameter a, and the projected area ratio is 40% or less, The amount of radiation heat is blocked by the heat transfer tube group 13. Therefore, the upstream side of the burner plate 27 is maintained at about 150° C. at most, and the in-plane hot water temperature difference at the downstream surface 27a is about 350° C. or less, so that it will not be damaged by radiant heat even when used for a long period of time.

そして、燃焼ガスは、第一の伝熱管群13と輻射体14
の配M域を通過する開に、その温度が800〜1000
°σに低下し、第二の伝熱管群15に導かれ、内部を流
れる流体に再び熱エネルギを伝達する。ざらに、輻射体
14からの輻射熱が第二の伝熱管群15にも照射される
。かくしで、第二の伝熱管群15内部の流体は、例えば
40°C〜80°Cの湯となって、製画外へ導出される
Then, the combustion gas is transferred to the first heat exchanger tube group 13 and the radiator 14.
The temperature of the opening passing through the M range of 800 to 1000
°σ and is led to the second heat transfer tube group 15, where the heat energy is transferred again to the fluid flowing inside. In general, the radiant heat from the radiator 14 is also applied to the second heat exchanger tube group 15 . The fluid inside the second heat exchanger tube group 15 becomes, for example, hot water at a temperature of 40° C. to 80° C. and is led out of the drawing.

上記実施例の流体加熱装置20と、対照例の流体加熱装
置とを用いて輻射熱遮断性能などを評価する実験を行な
った。実験条件および実験結果は以下の通り。
An experiment was conducted to evaluate the radiant heat blocking performance and the like using the fluid heating device 20 of the above example and the fluid heating device of the control example. The experimental conditions and experimental results are as follows.

(実験条件) ■燃料:天然ガス、空気比1.2 ■被加熱流体:入ロ温度20°Cの水を、まず第一の伝
熱管群13に流し、ここを出た後、第二の伝熱管群I5
に流す。
(Experimental conditions) ■Fuel: natural gas, air ratio 1.2 ■Fluid to be heated: Water with an input temperature of 20°C is first flowed through the first heat transfer tube group 13, and after leaving here, the second Heat exchanger tube group I5
flow to.

■第一の伝熱管群13:内径17.4mm、外径19.
0mmの銅チューブを相互に平行、かつ、等間隔で一段
に配置、実施例の装置では配列間隔dが9.5mm、配
列本数が8本で、投影面積比を33%とした。対照例の
装置では、チューブ長を長くして伝熱面積を実施例の装
置と等しくしつつ(輻射体、バーナプレートなどもこれ
に合わせて縦横寸法を変更)配列間隔dがI 9n+m
、配列本数が6本で、投影面積比を50%とした。
■First heat exchanger tube group 13: inner diameter 17.4 mm, outer diameter 19.
Copper tubes having a diameter of 0 mm were arranged in a single layer parallel to each other and at regular intervals. In the device of the example, the arrangement interval d was 9.5 mm, the number of arrangement was 8, and the projected area ratio was 33%. In the device of the control example, the tube length was lengthened to make the heat transfer area equal to that of the device of the example (the vertical and horizontal dimensions of the radiator, burner plate, etc. were changed accordingly), and the arrangement spacing d was I 9n+m.
, the number of arrays was 6, and the projected area ratio was 50%.

■輻射体14:板厚5mm、セル数200個/in2、
セル断面正方形の常圧焼結炭化ケイ素製ハニカム板を第
一の伝熱管群13の上部に配置。
■Radiator 14: plate thickness 5mm, number of cells 200/in2,
A pressureless sintered silicon carbide honeycomb plate with a square cell cross section is placed above the first heat exchanger tube group 13.

■第二の伝熱管群15:伝熱管の内径17.4mm、外
径19.0mmの銅チューブとフィン厚さ0.35mm
、フィンピッチ2.7mmの銅フィンとを組合わせたプ
レートフィンチューブ。
■Second heat transfer tube group 15: Copper tubes with inner diameter of heat transfer tubes of 17.4 mm and outer diameter of 19.0 mm, and fin thickness of 0.35 mm.
, plate fin tube combined with copper fins with a fin pitch of 2.7 mm.

■バーナプレート27:板厚10mmのコージライト質
セラミックス製 ■バーナプレート27の下流面27aから蔦−の伝熱管
群13の下縁までの距離すは30mm、バーナプレート
27の下流面27aから第二の伝熱管群15のフィン下
縁までの距Mcは57mm。
■Burner plate 27: made of cordierite ceramics with a plate thickness of 10 mm ■The distance from the downstream surface 27a of the burner plate 27 to the lower edge of the ivy heat exchanger tube group 13 is 30 mm, and from the downstream surface 27a of the burner plate 27 to the second The distance Mc to the lower edge of the fin of the heat exchanger tube group 15 is 57 mm.

これらの条件は、■を除いて実施例の装置と対照例の装
置とで同一とし、燃料、被加熱流体の供給速度も同一と
した。
These conditions were the same for the apparatus of the example and the apparatus of the control example, except for (1), and the supply rates of fuel and heated fluid were also the same.

(実験結果) 投影面積比      対照例50%、実施例33%バ
ーナプレート下流面27aの面内温度差対照例490’
C1実施例210℃ 第一の伝熱管群13における総吸収熱量対照例1890
0kcal/h(実施例21000kcal/hrこの
結果からも明らかなように、投影面積比が対照例よりも
17%少なくなったことで、バーナプレート下流面27
aの面内温度差が約280℃低下した。また、第一の伝
熱管群13の吸収総熱量では、実施例が対照例に比べ約
11%増加した。ざらに、対照例の装置ではバーナプレ
ートの炎口に欠落が発生していた。
(Experimental results) Projected area ratio Control example 50%, Example 33% In-plane temperature difference of burner plate downstream surface 27a Control example 490'
C1 Example 210°C Total absorbed heat amount control example 1890 in first heat exchanger tube group 13
0 kcal/h (Example 21000 kcal/hr) As is clear from this result, the projected area ratio was 17% smaller than the control example, and the burner plate downstream surface 27
The in-plane temperature difference of a was reduced by about 280°C. Furthermore, the total amount of heat absorbed by the first heat exchanger tube group 13 increased by about 11% in the example compared to the control example. Generally speaking, in the control device, the burner plate had a crack.

第2図、第3図、第4図は本発明のそれぞれ異なる別の
実施例を示す。
FIGS. 2, 3, and 4 show different embodiments of the present invention.

第2図の実施例では、多数本の富化ケイ素質焼結体製の
中実丸棒14aを、千鳥状に上下2段に配置して輻射体
14としている。第3図の実施例では、多数枚の窒化ケ
イ素質焼結体製の細長板+4bを、ルーバ状に配置して
輻射体14としている。第2図、第3図の実施例とも、
伝熱管+3aの外径aと配列間隔dとの比はa:d= 
3:I とされている。
In the embodiment shown in FIG. 2, a large number of solid round rods 14a made of enriched silicon sintered material are arranged in two stages, upper and lower, in a staggered manner to form the radiator 14. In the embodiment shown in FIG. 3, a radiator 14 is formed by arranging a large number of elongated plates +4b made of silicon nitride sintered body in a louver shape. Both the embodiments shown in FIGS. 2 and 3,
The ratio of the outer diameter a of heat exchanger tube +3a to the arrangement interval d is a:d=
3: I.

第4図の実施例では、セラミックスハニカム板からなる
通気性の輻射体14と面状のバーナプレート27との間
に、断面の外形が略く字状の中空管+3bを複数本配置
して第一の伝熱管群13を形成しでいる。第4図からも
わかるように、中空管+3bのく字状そなす右向き凸部
13cが右隣りに配置された別の中空管+3bの左端+
3d、I3dを結ぶ平面上に位冒していて、燃焼ガスの
流路を充分に確保しつつ、隣りあう中空管+3b、 +
3bの間隙を通しての投影面積比は0%とされている。
In the embodiment shown in FIG. 4, a plurality of hollow tubes +3b having a substantially doglegged cross-sectional shape are arranged between an air-permeable radiator 14 made of a ceramic honeycomb plate and a planar burner plate 27. The first heat exchanger tube group 13 has been formed. As can be seen from FIG. 4, the rightward convex portion 13c of the hollow tube +3b having a dogleg shape is located at the left end of another hollow tube +3b on the right side.
It is placed on the plane connecting 3d and I3d, and while ensuring a sufficient flow path for combustion gas, the adjacent hollow tubes +3b, +
The projected area ratio through the gap 3b is 0%.

以上の実施例はいずれも予混合型バーナについて述べた
が、拡散燃焼型バーナについでも同様に有効である。
Although the above embodiments have all been described for premix burners, they are equally effective for diffusion combustion burners.

「発明の効果」 以上説明したように、本発明によれば、第一の伝熱管群
を構成する各伝熱管の間隙を通して燃焼手段の下流面に
垂直な投影線によって投影される輻射体の投影面積の総
和が燃焼手段の下流面の面積の40%以下とされている
ので、燃焼熱の効果的な伝熱と、装置全体の小型化を図
ることができる外、輻射体からの輻射熱を第一の伝熱管
群で効果的に遮ることができるので、燃焼手段が輻射熱
で高温に加熱されるのが抑制され、燃焼手段の変形、破
損などや逆火を防止することもできる。ざらに本発明を
ガス湯沸器などに適用すると、湯沸器使用直後の後沸き
といった、バーナプレートなどの燃焼手段の蓄熱に起因
するトラブルの発生もない。
"Effects of the Invention" As explained above, according to the present invention, the projection of the radiant is projected by the projection line perpendicular to the downstream surface of the combustion means through the gap of each heat exchanger tube constituting the first heat exchanger tube group. Since the total area is 40% or less of the area of the downstream surface of the combustion means, it is possible to effectively transfer combustion heat and downsize the entire device. Since it can be effectively blocked by one group of heat transfer tubes, heating of the combustion means to a high temperature due to radiant heat is suppressed, and it is also possible to prevent deformation and damage of the combustion means and backfire. In general, when the present invention is applied to a gas water heater or the like, troubles such as after-boiling immediately after the water heater is used, which are caused by heat accumulation in combustion means such as burner plates, do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による流体加熱装置の−寅施例の断面図
、第2図、第3図および第4図は本発明のそれぞれ異な
る別の実施例の要部断面図、第5図は先に提案した流体
加熱装置の断面図、第6図は第5図のVl−Vl線に沿
う断面図である。 図中、13は第一の伝熱管群、14は輻射体、15は第
二の伝熱管群、20は流体加熱装置、27はバーナプレ
ートである。
FIG. 1 is a sectional view of a third embodiment of a fluid heating device according to the present invention, FIGS. 2, 3, and 4 are sectional views of essential parts of different embodiments of the present invention, and FIG. FIG. 6 is a cross-sectional view of the previously proposed fluid heating device, which is a cross-sectional view taken along the line Vl--Vl in FIG. 5. In the figure, 13 is a first heat exchanger tube group, 14 is a radiator, 15 is a second heat exchanger tube group, 20 is a fluid heating device, and 27 is a burner plate.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼手段と、燃焼手段の近接下流に配置された第一
の伝熱管群と、第一の伝熱管群の近接下流に通気可能に
設けられた輻射体と、輻射体の近接下流に配置された第
二の伝熱管群とを備え、第一の伝熱管群を構成する各伝
熱管の間隙を通して燃焼手段の下流面に垂直な投影線に
よって投影される輻射体の投影面積の総和が燃焼手段の
下流面の面積の40%以下とされていることを特徴とす
る流体加熱装置。
1. A combustion means, a first heat exchanger tube group disposed proximately downstream of the combustion means, a radiator disposed proximately downstream of the first heat exchanger tube group in a ventilable manner, and disposed proximately downstream of the radiator. The sum of the projected areas of the radiators projected by the projection line perpendicular to the downstream surface of the combustion means through the gap of each heat exchanger tube constituting the first heat exchanger tube group is the combustion A fluid heating device characterized in that the area is 40% or less of the downstream surface area of the means.
JP4496787A 1987-02-27 1987-02-27 Improved fluid heating device Pending JPS63210513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4496787A JPS63210513A (en) 1987-02-27 1987-02-27 Improved fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4496787A JPS63210513A (en) 1987-02-27 1987-02-27 Improved fluid heating device

Publications (1)

Publication Number Publication Date
JPS63210513A true JPS63210513A (en) 1988-09-01

Family

ID=12706248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4496787A Pending JPS63210513A (en) 1987-02-27 1987-02-27 Improved fluid heating device

Country Status (1)

Country Link
JP (1) JPS63210513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299645A (en) * 2014-06-09 2016-02-03 上海蓝炽热能科技有限公司 Reverse gas radiation method
CN105674548A (en) * 2016-02-23 2016-06-15 山东成泰化工有限公司 Fuel furnace with heat collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299645A (en) * 2014-06-09 2016-02-03 上海蓝炽热能科技有限公司 Reverse gas radiation method
CN105674548A (en) * 2016-02-23 2016-06-15 山东成泰化工有限公司 Fuel furnace with heat collector

Similar Documents

Publication Publication Date Title
JPS63210513A (en) Improved fluid heating device
CN111102569A (en) Porous medium burning low-nitrogen gas boiler system and heat exchange system
JPH10510912A (en) Gas burners for heating devices, especially water heaters
JPS63210514A (en) Improved fluid heating device
JPS58193039A (en) Heater
US5913289A (en) Firetube heat exchanger with corrugated internal fins
JPS63207912A (en) Fluid heating device with radiator
JP7161930B2 (en) heat transfer fins
JPH0159520B2 (en)
JPS63207913A (en) Fluid heating device with radiator
JP5612394B2 (en) Liquid heating device
JPH0739880B2 (en) Fluid heating device
JP2876889B2 (en) Hot air heater
JPS63207911A (en) Fluid heating device
JPS63251751A (en) Device for heating fluid
JPS63207910A (en) Fluid heater with radiation cloth
CN211450920U (en) Porous medium burning low-nitrogen gas boiler system and heat exchange system
JPH05761Y2 (en)
CN216408927U (en) Horizontal internal combustion steam boiler with porous ceramic medium combustion
CN210425564U (en) Combustion heat exchange assembly and gas water heater with same
JPS63279052A (en) Improved fluid heating device
US20210180870A1 (en) Heat exchanger component with varying twist angle
CN210425565U (en) Combustion heat exchange assembly and gas combustion equipment with same
JPS63254349A (en) Improved fluid heating device
JPS63254348A (en) Fluid heating device