JPH0810046B2 - Improved fluid heating device - Google Patents

Improved fluid heating device

Info

Publication number
JPH0810046B2
JPH0810046B2 JP4496887A JP4496887A JPH0810046B2 JP H0810046 B2 JPH0810046 B2 JP H0810046B2 JP 4496887 A JP4496887 A JP 4496887A JP 4496887 A JP4496887 A JP 4496887A JP H0810046 B2 JPH0810046 B2 JP H0810046B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tube group
combustion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4496887A
Other languages
Japanese (ja)
Other versions
JPS63210514A (en
Inventor
智 江波戸
崇聡 首藤
進 森田
義正 新井
耕三 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokyo Gas Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4496887A priority Critical patent/JPH0810046B2/en
Publication of JPS63210514A publication Critical patent/JPS63210514A/en
Publication of JPH0810046B2 publication Critical patent/JPH0810046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 「技術分野」 本発明は、湯沸器、風呂釜、温水ボイラなどに使用さ
れる流体加熱装置に関する。
TECHNICAL FIELD The present invention relates to a fluid heating device used in a water heater, a bathtub, a hot water boiler, or the like.

「従来技術およびその問題点」 従来、湯沸器、風呂釜、温水ボイラなどの流体加熱装
置においては、バーナの下流の燃焼室にて燃料を燃焼さ
せた後、燃焼ガスを伝熱管群間に導き、主に対流熱伝達
を利用して、伝熱管群の内部を流れる水などの流体を加
熱するようになっていた。
"Prior art and its problems" Conventionally, in a fluid heating device such as a water heater, a bath kettle, and a hot water boiler, after burning fuel in a combustion chamber downstream of a burner, combustion gas is transferred between the heat transfer tube groups. It was designed to heat the fluid such as water flowing inside the heat transfer tube group mainly by using convective heat transfer.

近年、これらの流体加熱装置においては、極力コンパ
クトにするため、燃焼室をできる限り小型化すると共
に、熱交換部の単位容積当りの伝熱量を増加させる傾向
にある。
In recent years, in order to make these fluid heating devices as compact as possible, there is a tendency to make the combustion chamber as small as possible and to increase the amount of heat transfer per unit volume of the heat exchange section.

そこで、本発明者らは、先に特願昭60-223980におい
て、第7図および第8図に示すような流体加熱装置を提
案した。この流体加熱装置10では、ケーシング11内の下
部にバーナなどの燃焼手段12を配置し、この燃焼手段12
の上部に、下から順に第一の伝熱管群13、通気性の輻射
体14、および第二の伝熱管群15を配置している。第一の
伝熱管群13は複数本の伝熱管が所定間隔で一段に配置さ
れており、この第一の伝熱管群13と第二の伝熱管群15に
は水などの被加熱流体が流されるようになっている。
Therefore, the present inventors previously proposed a fluid heating device as shown in FIGS. 7 and 8 in Japanese Patent Application No. 60-223980. In this fluid heating device 10, a combustion means 12 such as a burner is arranged in the lower part of the casing 11, and the combustion means 12
A first heat transfer tube group 13, a breathable radiator 14, and a second heat transfer tube group 15 are arranged in this order from the bottom on the above. In the first heat transfer tube group 13, a plurality of heat transfer tubes are arranged in a row at a predetermined interval, and a heated fluid such as water flows through the first heat transfer tube group 13 and the second heat transfer tube group 15. It is supposed to be.

そして、燃焼手段12のノズルから噴出された燃料ガス
は火炎を形成して燃焼する。この燃焼ガスは第一の伝熱
管群13を加熱するとともに、第一の伝熱管群13の各伝熱
管の間隙を通過して輻射体14をも加熱する。この加熱さ
れた輻射体14は輻射熱を主に第一の伝熱管群13に照射
し、第一の伝熱管群13は、燃焼ガスによる対流熱伝達と
輻射体14からの輻射熱伝達の双方により加熱される。ま
た、第二の伝熱管群15も、燃焼ガスによる対流熱伝達と
輻射体14からの輻射熱によって加熱される。かくして第
一の伝熱管群13および第二の伝熱管群15内を流れる被加
熱流体が加熱される。
Then, the fuel gas ejected from the nozzle of the combustion means 12 forms a flame and burns. The combustion gas heats the first heat transfer tube group 13 and also passes through the gaps between the heat transfer tubes of the first heat transfer tube group 13 to heat the radiator 14 as well. The heated radiant body 14 mainly radiates radiant heat to the first heat transfer tube group 13, and the first heat transfer tube group 13 is heated by both convective heat transfer by combustion gas and radiant heat transfer from the radiant body 14. To be done. The second heat transfer tube group 15 is also heated by the convective heat transfer by the combustion gas and the radiant heat from the radiator 14. Thus, the heated fluid flowing in the first heat transfer tube group 13 and the second heat transfer tube group 15 is heated.

上記の流体加熱装置10によると、輻射体14からの輻射
熱が、第一の伝熱管群13ばかりか第二の伝熱管群15にも
照射されて燃焼熱を有効に利用することができ、第一の
伝熱管群13を燃焼手段12に近接させてあるので、燃焼空
間を大幅に縮小でき、装置全体をコンパクト化できる。
さらに、不完全燃焼生成物が発生しても、高温に保たれ
ている輻射体14を通過する際に酸化されるので、不完全
燃焼生成物の排出を抑制することができる。
According to the fluid heating device 10 described above, the radiant heat from the radiator 14 is applied not only to the first heat transfer tube group 13 but also to the second heat transfer tube group 15 and the combustion heat can be effectively used. Since one heat transfer tube group 13 is placed close to the combustion means 12, the combustion space can be greatly reduced and the entire apparatus can be made compact.
Further, even if the incomplete combustion product is generated, it is oxidized when passing through the radiator 14 which is kept at a high temperature, so that the discharge of the incomplete combustion product can be suppressed.

しかしながら、上記の流体加熱装置10では、燃焼手段
12と輻射体14との間に介在する第一の伝熱管群13の各伝
熱管の間隔が管外径よりも広くなっていると、輻射体14
からの輻射熱が第一の伝熱管群13の各伝熱管の間を通過
して燃焼手段12に多量に到達するため、この輻射熱によ
って燃焼手段12までが加熱されてしまうことが判明し
た。
However, in the above fluid heating device 10, the combustion means
When the distance between the heat transfer tubes of the first heat transfer tube group 13 interposed between the heat transfer tubes 12 and the radiator 14 is wider than the outer diameter of the tube, the radiator 14
It was found that a large amount of radiant heat from the heat transfer tubes passed between the heat transfer tubes of the first heat transfer tube group 13 and reached the combustion means 12, so that the combustion means 12 was also heated by this radiant heat.

このため、燃焼手段12は輻射熱の直射を受ける部分に
熱損傷を起こしたり、直射を受ける部分とそうでない部
分とで大きな温度差を生じ、燃焼手段がセラミックス製
面バーナの場合には、その表面と裏面とでも大きな温度
差を生じ、これらはひいては燃焼手段12の変形、破損、
さらには燃焼手段12が予混合型バーナであると逆火とい
う危険な事態を招くことにもなる。
For this reason, the combustion means 12 causes thermal damage to the portion directly exposed to the radiant heat, or causes a large temperature difference between the portion that is directly exposed to the radiant heat and the portion that is not directly exposed to the surface. And a large temperature difference between the back surface and the back surface, which in turn deforms or damages the combustion means 12,
Furthermore, if the combustion means 12 is a premixed burner, it will cause a dangerous situation of flashback.

「発明の目的」 本発明の目的は、上記の問題点を解消し、燃焼熱を効
果的に伝熱させ、装置全体の小型化を図るとともに、輻
射熱による燃焼手段の高温過熱とこれに伴なう燃焼手段
内の大きな温度差の発生を抑制し、燃焼手段の変形、破
損や逆火を防止することのできる流体加熱装置を提供す
ることにある。
"Object of the Invention" The object of the present invention is to solve the above-mentioned problems, to effectively transfer the heat of combustion, to reduce the size of the entire apparatus, and to prevent the high-temperature overheating of the combustion means by radiant heat and It is an object of the present invention to provide a fluid heating device capable of suppressing the occurrence of a large temperature difference in the combustion means and preventing the combustion means from being deformed, damaged or flashback.

「発明の構成」 本発明による流体加熱装置は、燃焼手段と、燃焼手段
の近接下流に複数段に配置された第一の伝熱管群と、第
一の伝熱管群の近接下流に通気可能に設けられた輻射体
と、輻射体の近接下流に配置された第二の伝熱管群とを
備え、第一の伝熱管群の最下流段を構成する伝熱管の間
隙の上流には第一の伝熱管群の非最下流段を構成する伝
熱管の少なくとも一部を位置せしめてなることを特徴と
する。
[Configuration of the Invention] The fluid heating device according to the present invention enables ventilation to the combustion means, the first heat transfer tube group arranged in a plurality of stages in the vicinity of the combustion means, and the vicinity of the first heat transfer tube group in the downstream side. A radiant body provided and a second heat transfer tube group arranged in the vicinity of the radiant body and a second heat transfer tube group, and the first heat transfer tube upstream of the gap of the heat transfer tube forming the most downstream stage of the first heat transfer tube group. It is characterized in that at least a part of the heat transfer tubes forming the non-downstream stage of the heat transfer tube group is positioned.

本発明にて、燃料としては、都市ガス、プロパンガ
ス、天然ガスなどの気体燃料、もしくは灯油などの液体
燃料を気化させたものが採用できる。燃焼手段として
は、燃焼用空気と燃料とを別々に燃焼室へ供給する拡散
燃焼型バーナ、あるいは燃焼用空気と燃料とを予め所要
割合で混合させた後に燃焼室へ供給する予混合燃焼型バ
ーナなどが使用される。予混合燃焼型バーナとしては面
状バーナが好適である。
In the present invention, as the fuel, gas fuel such as city gas, propane gas, natural gas, or liquid fuel such as kerosene can be used. As the combustion means, a diffusion combustion type burner that supplies combustion air and fuel separately to the combustion chamber, or a premixed combustion type burner that mixes the combustion air and fuel in a required ratio in advance and then supplies the combustion chamber to the combustion chamber. Etc. are used. A planar burner is suitable as the premixed combustion type burner.

複数の伝熱管からなる第一の伝熱管群は、燃焼ガス流
れ方向に関して複数段に配置され、全体として燃焼手段
の下流に、かつ、燃焼手段に近接して設けられる。
The first heat transfer tube group including a plurality of heat transfer tubes is arranged in a plurality of stages in the combustion gas flow direction, and is provided downstream of the combustion means as a whole and close to the combustion means.

第一の伝熱管群の最上流段の伝熱管の上流縁は例えば
燃焼手段によって形成される火炎中、あるいは火炎の先
端に近接した位置に配置される。具体的には燃焼手段の
燃料ガス吐出口(例えばバーナ先端)と上述した伝熱管
上流縁との距離は5〜50mmとすることが好ましい。換言
すると、火炎の長さは燃焼手段の設計によって異なるが
一般には5〜50mm程度であるため、上述の伝熱管上流縁
は火炎の先端付近に配置されることになる。
The upstream edge of the most upstream heat transfer tube of the first heat transfer tube group is arranged, for example, in the flame formed by the combustion means or at a position close to the tip of the flame. Specifically, the distance between the fuel gas discharge port (for example, the tip of the burner) of the combustion means and the above-mentioned upstream edge of the heat transfer tube is preferably 5 to 50 mm. In other words, the length of the flame varies depending on the design of the combustion means, but is generally about 5 to 50 mm, so the above-mentioned upstream edge of the heat transfer tube is arranged near the tip of the flame.

第一の伝熱管群を燃焼手段に対し上記位置より離れた
位置に配置した場合には、熱損失あるいは燃焼室を囲む
ケーシングの冷却管などにより燃焼ガスの温度が低下
し、本発明の効果を充分には得られなくなったり、ガス
厚みが増大して高温燃焼ガスからバーナへの輻射入熱が
増大し、バーナの損傷、逆火を招く可能性がある。
When the first heat transfer tube group is arranged at a position distant from the above position with respect to the combustion means, the temperature of the combustion gas decreases due to heat loss or the cooling pipe of the casing surrounding the combustion chamber, and the effect of the present invention is obtained. There is a possibility that the burner may not be sufficiently obtained or that the radiant heat from the high temperature combustion gas to the burner may increase due to an increase in gas thickness, resulting in damage to the burner and flashback.

第一の伝熱管群の近接下流には輻射体が配置される。
輻射体は、燃焼ガスが有している熱エネルギを強力な輻
射エネルギに変換し、主に第一の伝熱管群に、さらには
第二の伝熱管群に輻射熱を照射する。この輻射体からの
輻射伝熱と高温の燃焼ガスからの対流伝熱とで両伝熱管
群が加熱され、その内部を流れる流体が効率的に加熱さ
れる。
A radiator is arranged in the vicinity of the first heat transfer tube group and downstream thereof.
The radiant body converts the heat energy of the combustion gas into strong radiant energy, and mainly radiates radiant heat to the first heat transfer tube group and further to the second heat transfer tube group. Both the heat transfer tube groups are heated by the radiant heat transfer from the radiator and the convective heat transfer from the high temperature combustion gas, and the fluid flowing therein is efficiently heated.

輻射体は高温で効果的な輻射熱を発生させるよう、炭
化ケイ素、窒化ケイ素、窒化アルミニウム、コージライ
ト、ムライト、リチウムアルミニウムシリケート、アル
ミニウムチタネートなどのセラミックスが好適な材質と
して挙げられ、特に高耐熱、高強度、高熱伝導性のセラ
ミックス、例えば炭化ケイ素、窒化ケイ素、窒化アルミ
ニウムなどのセラミックスが好ましい。温度条件などに
よっては耐熱鋼などの金属材料も採用しうる。
The radiator is ceramics such as silicon carbide, silicon nitride, aluminum nitride, cordierite, mullite, lithium aluminum silicate, and aluminum titanate, which are suitable materials for generating effective radiant heat at high temperatures. Ceramics having high strength and high thermal conductivity, for example, ceramics such as silicon carbide, silicon nitride and aluminum nitride are preferable. A metal material such as heat resistant steel may also be used depending on the temperature conditions.

第一の伝熱管群域を通過した燃焼ガスが輻射体に接触
し、さらに下流へと流れていくことが可能なように、す
なわち燃焼ガスの通気が可能なように、この輻射体は設
けられる。
This radiant body is provided so that the combustion gas passing through the first heat transfer tube group region comes into contact with the radiant body and can flow further downstream, that is, the combustion gas can be aerated. .

このような設け方の好ましい一例は、棒状あるいは細
長板状の輻射体を多数本相互に平行に、かつ、相互間に
はスリットを形成して配置するものである。このとき、
棒状あるいは細長板状の輻射体は、その長手方向が燃焼
ガス流れ方向と直交するのがよいが、斜交してもよい。
この場合、輻射体自体は非通気性でも通気性でもよい。
A preferred example of such an arrangement is to arrange a large number of rod-shaped or elongated plate-shaped radiators parallel to each other and with slits formed between them. At this time,
The longitudinal direction of the rod-shaped or elongated plate-shaped radiator is preferably orthogonal to the combustion gas flow direction, but may be oblique.
In this case, the radiator itself may be non-breathable or breathable.

より好ましい輻射体の設け方は、例えば平板状などの
通気性輻射体を採用することである。通気性輻射体は、
板状体の両面間をガスが流通しうるような流路が全体と
しては均一に分布しているもので、典型的にはハニカム
体、三次元網状体、連通気泡体、網状物積層体などが挙
げられる。このような通気性輻射体を、例えば燃焼ガス
流路の実質的全域を横断するように配置するもので、こ
れにより燃焼ガスが上流側から通気性輻射体の内部を通
りぬけて下流側に通気する。
A more preferable method of providing the radiator is to use a breathable radiator having a flat plate shape, for example. Breathable radiator
The flow paths through which gas can flow between the two surfaces of the plate-like body are uniformly distributed as a whole, and typically, a honeycomb body, a three-dimensional mesh body, a communicating cell body, a mesh body laminate, etc. Is mentioned. Such a breathable radiator is arranged, for example, so as to traverse substantially the entire area of the combustion gas flow path, whereby the combustion gas passes through the inside of the breathable radiator and is vented to the downstream side. To do.

かかる通気性輻射体のうちで特に好適なのはセラミッ
クス製のハニカム板である。このハニカム板は、板面の
表裏に貫通する多数の平行セルを有するもので、セル形
状は、正方形、長方形、六角形など適宜選択できる。ま
た、ハニカム板は、波板同士、あるいは波板と平板を多
数積層して形成されたようなものでもよい。
Of these breathable radiators, ceramic honeycomb plates are particularly suitable. This honeycomb plate has a large number of parallel cells that penetrate the front and back of the plate surface, and the cell shape can be appropriately selected from square, rectangular, hexagonal and the like. Further, the honeycomb plate may be formed by corrugated plates or by laminating a large number of corrugated plates and flat plates.

第二の伝熱管群は、輻射体の近接下流に配置される。
第二の伝熱管群域へ流入する燃焼ガスは、第一の伝熱管
群および輻射体の配置域を通過する際の熱交換により、
その温度が低下している。そこで、第二の伝熱管群は外
面にフィンを有するものとして、対流伝熱を向上させる
のが好ましい。また、燃焼ガスが平均して接触するよう
にするため、第二の伝熱管群は、伝熱管を千鳥状に配列
することもできる。
The second heat transfer tube group is arranged near and downstream of the radiator.
The combustion gas flowing into the second heat transfer tube group area is subjected to heat exchange when passing through the arrangement area of the first heat transfer tube group and the radiator,
The temperature has dropped. Therefore, it is preferable that the second heat transfer tube group has fins on the outer surface to improve convective heat transfer. Further, in order to make the combustion gases come into contact with each other evenly, the heat transfer tubes in the second heat transfer tube group may be arranged in a staggered manner.

なお、第一および第二の伝熱管群の伝熱管の材質は、
銅、アルミニウム、アルミニウム合金、ステンレスなど
の金属、あるいは炭化ケイ素、窒化ケイ素などの熱伝導
性、耐食性に優れたセラミックスであることが好まし
く、特に、高熱伝導率、低線膨張係数、高強度を有し、
成形性にも優れた反応焼結炭化珪素、あるいは高熱伝導
性材料である銅が最も好ましい。
The material of the heat transfer tubes of the first and second heat transfer tube groups is
Metals such as copper, aluminum, aluminum alloys and stainless steel, or ceramics such as silicon carbide and silicon nitride that have excellent thermal conductivity and corrosion resistance are preferable, and particularly have high thermal conductivity, low linear expansion coefficient, and high strength. Then
Most preferred is reaction-sintered silicon carbide which is also excellent in formability, or copper which is a high thermal conductivity material.

ところで、第一の伝熱管群を輻射体と燃焼手段との間
に一段に配置し、かつ、輻射体から燃焼手段への輻射熱
の直射を低下させようとすると、第一の伝熱管群を構成
する各伝熱管の間隙を小さくしなければならないが、こ
の間隙を燃焼ガスが通過する際の圧損が大きくなった
り、伝熱管の管端同志を接続するU字管に制約を受け
る。そこで本発明では、第一の伝熱管群を複数段に配置
し、かつ、このうちの最下流段を構成する伝熱管の間隙
の上流には非最下流段を構成する伝熱管の少なくとも一
部を位置せしめている。
By the way, if the first heat transfer tube group is arranged in one stage between the radiant body and the combustion means and the direct radiation of the radiant heat from the radiant body to the combustion means is attempted to be reduced, the first heat transfer tube group is formed. However, the pressure loss when the combustion gas passes through this gap becomes large, and the U-shaped tube connecting the tube ends of the heat transfer tube is restricted. Therefore, in the present invention, the first heat transfer tube group is arranged in a plurality of stages, and at least a part of the heat transfer tubes forming the non-most downstream stage is provided upstream of the gap of the heat transfer tubes forming the most downstream stage. Is located.

しかして、輻射体から燃焼手段への直射輻射熱の削減
という観点からは、後述する千鳥配置のようにして直射
輻射熱を実質的にゼロとすることも可能であるが、これ
は必須ではない。第一の伝熱管群を構成する各伝熱管の
間隙を通して燃焼手段の下流面に垂直な投影線によって
投影される輻射体の投影面積の総和が燃焼手段の下流面
の面積に占める割合(以下、投影面積比という)を40%
以下、特には35%以下とするのが好ましい。
From the viewpoint of reducing the direct radiant heat from the radiant body to the combustion means, it is possible to make the direct radiant heat substantially zero by the staggered arrangement described later, but this is not essential. The ratio of the sum of the projected areas of the radiators projected by the projection lines perpendicular to the downstream surface of the combustion means through the gaps of the heat transfer tubes forming the first heat transfer tube group to the area of the downstream surface of the combustion means (hereinafter, 40% of projection area ratio)
It is preferably below 35%.

このような伝熱管配置の好ましい典型例は、平行等間
隔の伝熱管群を、上流側と下流側とで同方向、かつ、位
相をずらして配置するもので、なかでも、下流側の伝熱
管の間隙の中央部の上流に上流側の伝熱管が位置する、
いわゆる千鳥配置が特に好ましい。
A preferable typical example of such a heat transfer tube arrangement is one in which parallel and evenly spaced heat transfer tube groups are arranged in the same direction on the upstream side and the downstream side and with a phase shift, and above all, the heat transfer tube on the downstream side is arranged. The upstream heat transfer tube is located upstream of the central part of the gap of
The so-called staggered arrangement is particularly preferred.

別の好ましい配置例は、平行等間隔の伝熱管群を上流
側と下流側とで異方向に走るように配置するものであ
る。
Another preferred arrangement example is to arrange heat transfer tube groups at equal intervals in parallel so as to run in different directions on the upstream side and the downstream side.

さらに、例えば渦巻状の伝熱管の2つを上流側と下流
側とで位置をずらして配置するのもよい。
Further, for example, two spiral heat transfer tubes may be arranged so that their positions are shifted on the upstream side and the downstream side.

各伝熱管をこのように配置すると、各伝熱管によっ
て、輻射体からの輻射熱を遮る量が多くなるので、燃焼
手段に直接到達する輻射熱量が減少する。よって、輻射
熱による燃焼手段の高温過熱およびこれに伴なう燃焼手
段内の大きな温度差の発生が抑制され、燃焼手段の熱変
形、破損や逆火が防止される。また輻射体から伝熱管に
直接に照射される輻射熱も増大して伝熱効率が向上す
る。また、伝熱管相互の間隙はさほど小さくする必要が
ない、燃焼ガス通過圧損や、管端接続時の制約も受けな
い。なお、内部に被加熱流体が流れているため、伝熱管
は熱損傷を受けない。
When each heat transfer tube is arranged in this way, the amount of radiant heat from the radiant body is blocked by each heat transfer tube, so that the amount of radiant heat that reaches the combustion means directly decreases. Therefore, high temperature overheating of the combustion means due to radiant heat and generation of a large temperature difference in the combustion means due to this are suppressed, and thermal deformation, damage, and flashback of the combustion means are prevented. Further, the radiant heat directly radiated from the radiator to the heat transfer tube is also increased, and the heat transfer efficiency is improved. Further, it is not necessary to make the gap between the heat transfer tubes so small, neither is there a pressure loss through combustion gas, nor is there any restriction when connecting the tube ends. Since the fluid to be heated flows inside, the heat transfer tube is not damaged by heat.

特に前述したような千鳥配置とし、かつ、上流段、下
流段のそれぞれにおいて管間隔を管外径以下とした場合
などには投影面積比が0%、すなわち、燃焼手段の下流
面に垂直に直射する輻射線をなくすることができる。こ
のように投影面積比を0%とした場合には、燃焼ガスが
伝熱管の間隙を低圧損で通過可能であり、かつ、輻射体
からの輻射熱のほとんどが第一の伝熱管群によって遮ら
れて燃焼手段には到達しない。
In particular, when the staggered arrangement as described above is used, and the pipe spacing in each of the upstream stage and the downstream stage is equal to or smaller than the pipe outer diameter, the projected area ratio is 0%, that is, the direct irradiation is perpendicular to the downstream surface of the combustion means. It is possible to eliminate the emitted radiation. When the projected area ratio is 0% as described above, the combustion gas can pass through the gap between the heat transfer tubes with a low pressure loss, and most of the radiant heat from the radiator is blocked by the first heat transfer tube group. It does not reach the combustion means.

なお、周囲の燃焼ガス温度が高く、しかも輻射体より
も輻射伝熱もあって熱伝達率も高くなるため、第一の伝
熱管群の各伝熱管の外面にはフィンを付けないものが好
ましいが、例えばフィン高さが2mm程度以下のフィンを
付けたものも採用可能である。
Since the temperature of the combustion gas in the surroundings is high and the heat transfer coefficient is higher due to the radiant heat transfer than the radiator, it is preferable that no fins are attached to the outer surface of each heat transfer tube of the first heat transfer tube group. However, for example, a fin with a fin height of about 2 mm or less can be used.

なお、本発明で伝熱管群とは、例えば燃焼ガス流れ方
向に沿った適宜断面において複数本の伝熱管断面が認め
られることを意味する。したがって各伝熱管はそれぞれ
別異の伝熱管であってもよいし、一本の伝熱管が蛇行、
渦巻またはラセン状に配置されていて、その複数箇所の
断面が認められるものであってもよい。
In the present invention, the term "heat transfer tube group" means that a plurality of heat transfer tube cross sections are recognized, for example, in an appropriate cross section along the combustion gas flow direction. Therefore, each heat transfer tube may be a different heat transfer tube, or one heat transfer tube meanders,
It may be arranged in a spiral shape or a spiral shape, and the cross-sections at a plurality of points may be recognized.

なお、燃焼手段としては一般には平面状のバーナプレ
ートを有するものが想定されるが、適宜わん曲した曲面
状のものでもよい。また面状のバーナプレートに代え
て、例えば小円筒状の燃料出口が密に突設されているも
のなどでもよく、この場合にはこの燃料出口群が形成す
る燃焼面が本発明でいう燃焼手段下流面とされる。さら
に例えば小円筒状の燃料出口が疎に突設されているもの
などにあっては、その小円筒断面が本発明でいう燃焼手
段下流面とされる。
It should be noted that as the combustion means, generally, a burner having a flat burner plate is assumed, but a curved curved surface may be used. Further, instead of the planar burner plate, for example, a small cylindrical fuel outlet may be densely provided so as to project. In this case, the combustion surface formed by this fuel outlet group is the combustion means referred to in the present invention. It is the downstream side. Further, for example, in a case where a small cylindrical fuel outlet is sparsely provided, the small cylindrical cross section is the downstream surface of the combustion means in the present invention.

「発明の実施例」 以下に、本発明による流体加熱装置の実施例を図面に
基いて説明する。
[Examples of the Invention] Examples of the fluid heating device according to the present invention will be described below with reference to the drawings.

第1図および第2図に示す本発明の一実施例の流体加
熱装置20は、上方が図示せぬ排気口に接続されたケーシ
ング21で全体が囲まれており、ケーシング21はその下方
で混合室23および燃焼室24が接続して構成されている。
図示せぬ下方より空気と燃料ガスが混合室23に供給され
て所定空気比の混合気が作られる。
The fluid heating device 20 of one embodiment of the present invention shown in FIGS. 1 and 2 is wholly surrounded by a casing 21 whose upper part is connected to an exhaust port (not shown), and the casing 21 is mixed below the casing 21. The chamber 23 and the combustion chamber 24 are connected and configured.
Air and fuel gas are supplied to the mixing chamber 23 from below (not shown) to create a mixture with a predetermined air ratio.

混合室23と燃焼室24の境目には、燃焼手段としてのコ
ージライト質セラミックスからなる面状のバーナプレー
ト27が配置されている。このバーナプレート27は多数の
炎口を有し、この炎口を通過した混合気はバーナプレー
ト27の下流面27aに面状の火炎を形成する。すなわち、
この実施例では予混合面バーナ方式が採用されている。
At the boundary between the mixing chamber 23 and the combustion chamber 24, a planar burner plate 27 made of cordierite ceramics is arranged as a combustion means. The burner plate 27 has a large number of flame openings, and the air-fuel mixture that has passed through the flame openings forms a planar flame on the downstream surface 27a of the burner plate 27. That is,
In this embodiment, a premixing surface burner system is adopted.

ケーシング21内のバーナプレート27に近接した上方に
は、それぞれ複数の伝熱管13a,13bが2段に、かつ、相
互に平行に等間隔で横行配置されて第一の伝熱管群13を
構成している。各伝熱管13a,13bは外径aが12〜20mm、
肉厚が0.6〜2.0mm程度とされ、また上段の伝熱管13a相
互の間隔d、ないしは下段の伝熱管13b相互の間隔dは
外径aの0.5〜1.5倍程度とされている。また、伝熱管13
bは伝熱管13a,13bの間隔dの中央部の上流に位置して、
いわゆる千鳥配置とされている。なお、このd/a比を1.0
以下にすると、投影面積比は実質的に0%となる。
Above the burner plate 27 in the casing 21, a plurality of heat transfer tubes 13a and 13b are arranged in two stages in parallel with each other in parallel and at equal intervals to form a first heat transfer tube group 13. ing. The outer diameter a of each heat transfer tube 13a, 13b is 12 to 20 mm,
The wall thickness is about 0.6 to 2.0 mm, and the distance d between the upper heat transfer tubes 13a or the distance d between the lower heat transfer tubes 13b is about 0.5 to 1.5 times the outer diameter a. In addition, the heat transfer tube 13
b is located upstream of the center of the space d between the heat transfer tubes 13a and 13b,
It is a so-called staggered arrangement. This d / a ratio is 1.0
In the following cases, the projected area ratio will be substantially 0%.

バーナプレートの下流面27aから伝熱管13bの下縁まで
の距離bは5〜50mmとされている。
The distance b from the downstream surface 27a of the burner plate to the lower edge of the heat transfer tube 13b is 5 to 50 mm.

第一の伝熱管群13の近接上方には、セラミックスハニ
カム板からなる通気性の輻射体14が配置されており、輻
射体14の近接上方には、第二の伝熱管群15が配置されて
いる。この実施例では、第二の伝熱管群15として、多数
の平行な平板28と、この平板28を直交して貫通する複数
の平行な横行伝熱管とからなるプレートフィンチューブ
を用いているが、例えば各伝熱管ごとにその外面に複数
のフィンを形成したものであってもよい。
Above the first heat transfer tube group 13 is provided a breathable radiator 14 made of a ceramic honeycomb plate, and above the radiator 14 is provided a second heat transfer tube group 15. There is. In this embodiment, as the second heat transfer tube group 15, a plate fin tube including a large number of parallel flat plates 28 and a plurality of parallel transverse heat transfer tubes penetrating the flat plates 28 at right angles is used. For example, a plurality of fins may be formed on the outer surface of each heat transfer tube.

なお、両伝熱管群13、15の伝熱管は、一般には水平に
配置されるが、被加熱流体の沸騰時に気泡が抜けやすい
ように、被加熱流体の入口側に比べ出口側が上方となる
ように傾斜させてもよい。
The heat transfer tubes of both heat transfer tube groups 13 and 15 are generally arranged horizontally, but the outlet side is higher than the inlet side of the heated fluid so that bubbles easily escape during boiling of the heated fluid. It may be inclined to.

第一の伝熱管群13および第二の伝熱管群15内には被加
熱流体が流される。被加熱流体としては、液体、特に水
が好適である。この被加熱流体は、第一の伝熱管群13と
第二の伝熱管群15にそれぞれ独立に流してもよいが、好
ましくは両者間をシリーズに流される。この場合、温度
効率を大きくする上では、まず第二の伝熱管群15に流
し、ここを出た被加熱流体を、次いで第一の伝熱管群13
に流すことにより、燃焼ガスの流れに対して向流に流す
ことが好ましい。一方、管内での局部沸騰を防止するた
めには、これと逆に接続して、燃焼ガスの流れに対して
並流とすることが好ましい。
A fluid to be heated is caused to flow in the first heat transfer tube group 13 and the second heat transfer tube group 15. A liquid, especially water, is suitable as the fluid to be heated. The heated fluid may flow independently into the first heat transfer tube group 13 and the second heat transfer tube group 15, but is preferably flowed in series between the two. In this case, in order to increase the temperature efficiency, the first heat transfer tube group 13 is made to flow through the second heat transfer tube group 15 first, and the heated fluid that has flowed out of the second heat transfer tube group 15 is then discharged.
It is preferable to flow the gas in a countercurrent to the flow of the combustion gas. On the other hand, in order to prevent local boiling in the tube, it is preferable that the connection is made in the opposite direction to make the flow parallel to the flow of the combustion gas.

また、各伝熱管群内では通常はいずれもシリーズに接
続されるが、適宜、シリーズ接続とパラレル接続とを組
み合わせてもよい。
Further, in each heat transfer tube group, all are usually connected in series, but series connection and parallel connection may be appropriately combined.

以下に、本発明装置の作用を説明する。 The operation of the device of the present invention will be described below.

混合室23で形成された空気と燃料ガスの混合気は、バ
ーナプレート27の炎口を通過して燃焼室24へ供給され、
バーナプレート27の下流面27aの近傍に面状の火炎を形
成し、1500〜1650℃といった高温の燃焼ガスとなる。
The air-fuel mixture formed in the mixing chamber 23 passes through the flame opening of the burner plate 27 and is supplied to the combustion chamber 24.
A planar flame is formed in the vicinity of the downstream surface 27a of the burner plate 27 and becomes a combustion gas having a high temperature of 1500 to 1650 ° C.

この燃焼ガスは第一の伝熱管群13に導かれ、対流熱伝
達によって燃焼ガスが有している熱エネルギの一部を第
一の伝熱管群13の伝熱管13a内を流れる流体へ伝達す
る。さらに燃焼ガスは、第一の伝熱管群13の伝熱管13a
の間隙を通過し、高温のまま輻射体14内を流れ、この輻
射体14をも加熱して白熱化させる。このときの輻射体14
は、1000〜1200℃の高温に保持され、主に第一の伝熱管
群13を輻射加熱する。
This combustion gas is guided to the first heat transfer tube group 13 and transfers a part of the heat energy of the combustion gas by convective heat transfer to the fluid flowing in the heat transfer tube 13a of the first heat transfer tube group 13. . Further, the combustion gas is the heat transfer tubes 13a of the first heat transfer tube group 13.
Through the gap, and flows in the radiator 14 at a high temperature, and the radiator 14 is also heated to be incandescent. Radiant body 14 at this time
Is maintained at a high temperature of 1000 to 1200 ° C. and mainly radiatively heats the first heat transfer tube group 13.

このとき、輻射熱は伝熱管13aの間隙を通ってバーナ
プレート27方向にも照射されるが、この間隙の上流に位
置する伝熱管13bによって遮られ、この伝熱管13bを加熱
するのみならず、バーナプレート27に照射される輻射熱
は大幅に削減され、投影面積比が0%のときは、バーナ
プレート27への直射輻射熱は実質的にゼロとなる。その
ため、バーナプレート27は火炎からのわずかな気体輻射
熱を受けるのみで、混合気通過時の冷却効果と相まっ
て、バーナプレート27の上流側はたかだか150℃程度に
保たれ、下流面27aはこれよりやや高温になるものの、
下流面27aの面内温度差は350℃程度以下となり、長期間
使用した場合でも輻射熱によるバーナプレート27の熔
損、熱変形、熱応力割れ、逆火などを防止できることと
なる。また、伝熱管断面外形を特殊な形状とすることな
く、伝熱管13a同志、13b同志の間隔を燃焼ガス通過圧損
が充分低くできるようにとれる利点もある。
At this time, the radiant heat passes through the gap of the heat transfer tube 13a and is also radiated toward the burner plate 27, but is blocked by the heat transfer tube 13b located upstream of this gap and not only heats the heat transfer tube 13b, but also the burner. The radiant heat applied to the plate 27 is significantly reduced, and when the projected area ratio is 0%, the direct radiant heat to the burner plate 27 becomes substantially zero. Therefore, the burner plate 27 only receives a slight amount of radiant heat of gas from the flame, and the upstream side of the burner plate 27 is maintained at about 150 ° C. at the most, together with the cooling effect at the time of passage of the air-fuel mixture, and the downstream surface 27a is slightly smaller than this. Although it gets hot,
The in-plane temperature difference of the downstream surface 27a is about 350 ° C. or less, and it is possible to prevent melting, thermal deformation, thermal stress cracking, flashback, etc. of the burner plate 27 due to radiant heat even when used for a long period of time. Further, there is also an advantage that the pressure loss of passing the combustion gas can be made sufficiently low without making the cross-sectional outer shape of the heat transfer tube a special shape so that the distance between the heat transfer tubes 13a and 13b can be sufficiently reduced.

そして、燃焼ガスは、第一の伝熱管群13と輻射体14の
配置域を通過する間に、その温度が800〜1000℃に低下
し、第二の伝熱管群15に導かれ、内部を流れる流体に再
び熱エネルギを伝達する。さらに、輻射体14からの輻射
熱が第二の伝熱管群15にも照射される。かくして、第二
の伝熱管群15内部の流体は、例えば40℃〜80℃の湯とな
って、装置外へ導出される。
Then, the combustion gas, while passing through the arrangement area of the first heat transfer tube group 13 and the radiator 14, its temperature is lowered to 800 ~ 1000 ℃, is guided to the second heat transfer tube group 15, the inside Transfers thermal energy back to the flowing fluid. Further, the radiant heat from the radiator 14 is also applied to the second heat transfer tube group 15. Thus, the fluid inside the second heat transfer tube group 15 becomes hot water at 40 ° C. to 80 ° C., for example, and is drawn out of the apparatus.

上記実施例の流体加熱装置20と、対照例の流体加熱装
置とを用いて輻射熱遮断性能などを評価する実験を行な
った。実験条件および実験結果は以下の通り。
An experiment was conducted to evaluate the radiant heat blocking performance and the like using the fluid heating device 20 of the above-described example and the fluid heating device of the comparative example. The experimental conditions and results are as follows.

(実験条件) 燃料:天然ガス、空気比1.2 被加熱流体:入口温度20℃の水を、まず第一の伝熱
管群13に流し、ここを出た後、第二の伝熱管群15に流
す。
(Experimental conditions) Fuel: Natural gas, air ratio 1.2 Heated fluid: Water with an inlet temperature of 20 ° C is first passed through the first heat transfer tube group 13, and then exits and then passed through the second heat transfer tube group 15. .

輻射体14:板厚5mm、セル数200個/in2、セル断面正
方形の常圧焼結炭化ケイ素製ハニカム板を第一の伝熱管
群13の上部に配置。
Radiator 14: A thickness of 5 mm, a number of cells of 200 / in 2 , and a honeycomb plate made of pressureless sintered silicon carbide having a square cell cross section are arranged above the first heat transfer tube group 13.

第二の伝熱管群15:伝熱管の内径17.4mm、外径19.0m
mの銅チューブとフィン厚さ0.35mm、フィンピッチ2.7mm
の銅フィンとを組合わせたプレートフィンチューブ。
Second heat transfer tube group 15: Heat transfer tube inner diameter 17.4 mm, outer diameter 19.0 m
m copper tube and fin thickness 0.35mm, fin pitch 2.7mm
Plate fin tube combined with the copper fin of.

バーナプレート27:板厚10mmのコージライト質セラ
ミックス製 バーナプレート27の下流面27aから第一の伝熱管群1
3の下縁までの距離bは30mm、バーナプレート27の下流
面27aから第二の伝熱管群15のフィン下縁までの距離c
は57mm。
Burner plate 27: 10 mm thick cordierite ceramic burner plate 27 from the downstream surface 27a to the first heat transfer tube group 1
The distance b to the lower edge of 3 is 30 mm, and the distance c from the downstream surface 27a of the burner plate 27 to the lower edge of the fin of the second heat transfer tube group 15
Is 57 mm.

これら〜は実施例、対照例とも同一とし、燃料、
水の供給速度も同一とした。
These are the same as those in the examples and the control examples, and the fuel,
The water supply rate was also the same.

第一の伝熱管群13:内径17.4mm、外径19.0mmの銅チ
ューブ8本を、一段に4本ずつ上下2段に配置。各段に
おいて間隔dはいずれも19mm。実施例では2段千鳥配置
とし、対照例では2段正方配置(すなわち下段の伝熱管
の真上に上段の伝熱管を配置)。
First heat transfer tube group 13: Eight copper tubes with an inner diameter of 17.4 mm and an outer diameter of 19.0 mm are arranged in two rows, four in each row. The distance d in each step is 19 mm. In the embodiment, the two-stage zigzag arrangement is used, and in the control example, the two-stage square arrangement (that is, the upper heat transfer tube is arranged directly above the lower heat transfer tube).

(実験結果) 投影面積比 対照例50%、実施例0% バーナプレート27の平均温度対照例150〜160℃、実施例
70〜80℃ 第一の伝熱管群13の総吸収熱量対照例13800kcal/hr、実
施例14700kcal/hr さらに、対照例の装置ではバーナプレートの炎口に欠
落が発生していた。
(Experimental results) Projected area ratio Control example 50%, Example 0% Average temperature of burner plate 27 Control example 150-160 ° C, Example
70-80 ° C. Total absorbed heat of the first heat transfer tube group 13 Control example 13800 kcal / hr, Example 14700 kcal / hr Furthermore, in the control apparatus, the burner plate was missing at the flame mouth.

第3図および第4図の実施例では、多数枚の窒化ケイ
素質焼結体製の細長板14aを、ルーバ状に配置して輻射
体14としている。第一の伝熱管群13は上段の伝熱管13c
と下段の伝熱管13dとで構成され、伝熱管13c同志、伝熱
管13d同志はそれぞれ平行等間隔に、かつ、伝熱管13cの
走行方向と伝熱管13dの走行方向とは直交するように配
置されている。この場合、伝熱管外径aと伝熱管間隔d
との比はd/a=3/4とされているので、上段または下段の
みでは投影面積比は約43%であるが、全体としての投影
面積比は約18%となる。
In the embodiment shown in FIGS. 3 and 4, a large number of elongated silicon nitride sintered plates 14a are arranged in a louver shape to form the radiator 14. The first heat transfer tube group 13 is the upper heat transfer tube 13c
And the heat transfer tube 13d in the lower stage.The heat transfer tubes 13c and 13d are arranged in parallel and at equal intervals, and the traveling direction of the heat transfer tube 13c and the traveling direction of the heat transfer tube 13d are arranged orthogonally to each other. ing. In this case, the heat transfer tube outer diameter a and the heat transfer tube interval d
Since the ratio of d / a is 3/4, the projected area ratio is about 43% only in the upper or lower stage, but the projected area ratio as a whole is about 18%.

第5図および第6図の実施例では、多数本の窒化ケイ
素質焼結体製の中実丸棒14bを、千鳥状に上下2段に配
置して輻射体14としている。第一の伝熱管群13は2本の
渦巻状伝熱管13e,13fを上下2段に配置して構成されて
おり、第6図からもわかるように、上下方向から見たと
き、伝熱管13eと13fとは横幅方向、奥行方向それぞれ半
ピッチずつ位相をずらして配置されているので、投影面
積比は位相をずらさない場合に比べて大幅に減少してい
る。なお、第6図において、各伝熱管13e,13fは図面の
見やすさのためにハッチングを施してある。
In the embodiment shown in FIGS. 5 and 6, a large number of solid round rods 14b made of a silicon nitride sintered body are arranged in two stairs in a zigzag pattern to form the radiator 14. The first heat transfer tube group 13 is configured by arranging two spiral heat transfer tubes 13e and 13f in upper and lower two stages. As can be seen from FIG. 6, when viewed from the up and down direction, the heat transfer tubes 13e Since 13f and 13f are arranged with a phase shift of half pitch in each of the width direction and the depth direction, the projected area ratio is significantly reduced as compared with the case where the phase is not shifted. In FIG. 6, the heat transfer tubes 13e and 13f are hatched for the sake of easy viewing of the drawing.

以上の実施例は第一の伝熱管群をいずれも上下2段に
構成しているが、3段以上であってもさしつかえない。
また、予混合型バーナに代えて拡散燃焼型バーナも採用
できる。さらに、伝熱管や輻射体をバーナプレートの上
方に順次配置するのに代えて、下方や側方に順次配置し
てもよい。
In each of the above embodiments, the first heat transfer tube group is composed of two upper and lower stages, but three or more stages may be used.
Further, a diffusion combustion type burner can be adopted instead of the premix type burner. Furthermore, instead of sequentially arranging the heat transfer tubes and the radiators above the burner plate, they may be sequentially arranged below and to the side.

「発明の効果」 以上説明したように、本発明によれば、第一の伝熱管
群を燃焼ガス流れ方向に関して複数段に配置して構成
し、かつ、そのうちの最下流段の伝熱管の間隙の上流に
は非最下流段の伝熱管の少なくとも一部を位置せしめた
ので、輻射体からの輻射熱の第一の伝熱管への効果的な
伝熱と、装置全体の小型化が図れる上に、輻射体からの
輻射熱を第一の伝熱管群によって遮り、燃焼手段に到達
する直射輻射熱が大幅に、あるいはほとんどなくなるの
で、燃焼手段は低温に保持される。よって、燃焼手段の
熔損、熱変形、破損などや逆火を防止できる。さらに本
発明をガス湯沸器などに適用すると、湯沸器使用直後の
後沸きといった、バーナプレートなどの燃焼手段の蓄熱
に起因するトラブルの発生もない。
[Advantages of the Invention] As described above, according to the present invention, the first heat transfer tube group is arranged in a plurality of stages in the combustion gas flow direction, and the gap between the heat transfer tubes in the most downstream stage among them is arranged. Since at least a part of the non-downstream stage heat transfer tube is located upstream of, the effective transfer of the radiant heat from the radiator to the first heat transfer tube and the miniaturization of the entire device can be achieved. Since the radiant heat from the radiant body is blocked by the first heat transfer tube group and the direct radiant heat reaching the combustion means is substantially or almost completely eliminated, the combustion means is kept at a low temperature. Therefore, it is possible to prevent melting, thermal deformation, damage, and backfire of the combustion means. Further, when the present invention is applied to a gas water heater or the like, there is no occurrence of trouble such as after-boiling immediately after the water heater is used, which is caused by heat storage in the combustion means such as a burner plate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の流体加熱装置の一実施例の断面図、第
2図は第1図のII−II線に沿う断面図、第3図および第
5図は第1図における輻射体および第一の伝熱管群部分
を異にする本発明の流体加熱装置のそれぞれ異なる実施
例の輻射体および第一の伝熱管群部分の断面図、第4図
は第3図のIV−IV線に沿う断面図、第6図は第5図のVI
−VI線に沿う断面図、第7図は先に提案した流体加熱装
置の断面図、第8図は第7図のVIII−VIII線に沿う断面
図である。 13は第一の伝熱管群、13a〜13fは伝熱管、 14は輻射体、15は第二の伝熱管群、 20は流体加熱装置、27はバーナプレート。
1 is a sectional view of an embodiment of the fluid heating apparatus of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIGS. 3 and 5 are the radiator and the radiator in FIG. Cross-sectional views of the radiator and the first heat transfer tube group part of different embodiments of the fluid heating apparatus of the present invention having different first heat transfer tube group parts, and FIG. 4 is a line IV-IV of FIG. A sectional view along the line, and Fig. 6 is VI of Fig. 5.
-VI is a cross-sectional view taken along line VI, FIG. 7 is a cross-sectional view of the previously proposed fluid heating device, and FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 13 is a first heat transfer tube group, 13a to 13f are heat transfer tubes, 14 is a radiator, 15 is a second heat transfer tube group, 20 is a fluid heating device, and 27 is a burner plate.

フロントページの続き (72)発明者 新井 義正 千葉県千葉市みつわ台4−29−16 (72)発明者 桜井 耕三 神奈川県横浜市栄区長倉町5−22(72) Inventor Yoshimasa Arai 4-29-16 Mitsuwadai, Chiba City, Chiba Prefecture (72) Kozo Sakurai 5-22 Nagakuracho, Sakae Ward, Yokohama City, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼手段と、燃焼手段の近接下流に複数段
に配置された第一の伝熱管群と、第一の伝熱管群の近接
下流に通気可能に設けられた輻射体と、輻射体の近接下
流に配置された第二の伝熱管群とを備え、第一の伝熱管
群の最下流段を構成する伝熱管の間隙の上流には第一の
伝熱管群の非最下流段を構成する伝熱管の少なくとも一
部を位置せしめてなることを特徴とする流体加熱装置。
Claim: What is claimed is: 1. Combustion means, a first heat transfer tube group arranged in a plurality of stages in the vicinity of the vicinity of the combustion means, a radiant body provided in the vicinity of the first heat transfer tube in the vicinity of the first heat transfer tube so that ventilation is possible, and radiation. A second heat transfer tube group arranged in the vicinity of the downstream of the body, and a non-downstream stage of the first heat transfer tube group is provided upstream of the gap of the heat transfer tubes forming the most downstream stage of the first heat transfer tube group. A fluid heating device characterized in that at least a part of a heat transfer tube constituting the above is positioned.
JP4496887A 1987-02-27 1987-02-27 Improved fluid heating device Expired - Lifetime JPH0810046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4496887A JPH0810046B2 (en) 1987-02-27 1987-02-27 Improved fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4496887A JPH0810046B2 (en) 1987-02-27 1987-02-27 Improved fluid heating device

Publications (2)

Publication Number Publication Date
JPS63210514A JPS63210514A (en) 1988-09-01
JPH0810046B2 true JPH0810046B2 (en) 1996-01-31

Family

ID=12706277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4496887A Expired - Lifetime JPH0810046B2 (en) 1987-02-27 1987-02-27 Improved fluid heating device

Country Status (1)

Country Link
JP (1) JPH0810046B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525129U (en) * 1991-08-30 1993-04-02 リンナイ株式会社 Water heater

Also Published As

Publication number Publication date
JPS63210514A (en) 1988-09-01

Similar Documents

Publication Publication Date Title
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
JPH0642812A (en) Heat exchanger for gas boiler
JPH0810046B2 (en) Improved fluid heating device
JP5234350B2 (en) Heat exchanger and water heater
RU2150637C1 (en) Gas burner for heating appliances, such as water heaters
US5913289A (en) Firetube heat exchanger with corrugated internal fins
RU97112464A (en) GAS BURNER FOR HEATING INSTRUMENTS, IN PARTICULAR, WATER HEATERS
JPS63210513A (en) Improved fluid heating device
JP7336271B2 (en) Combustion device
JPS58193039A (en) Heater
JPS63207912A (en) Fluid heating device with radiator
JPS63207913A (en) Fluid heating device with radiator
JP7161930B2 (en) heat transfer fins
JPH0739880B2 (en) Fluid heating device
JPS63251751A (en) Device for heating fluid
KR100723045B1 (en) high-temperature regenerator
JPS63207910A (en) Fluid heater with radiation cloth
JPH05761Y2 (en)
JPS63207911A (en) Fluid heating device
JPH0334602Y2 (en)
JP2000018729A (en) Heat exchanger with heat transfer fin
JPH0612196B2 (en) Heat exchange method and heat exchange device used directly in the method
JPH06229694A (en) Heat exchanger of hot-water supply apparatus
JPS63254348A (en) Fluid heating device
JPH0198857A (en) Fluid heating device having thermal transfer promotion medium