JPH0427450B2 - - Google Patents

Info

Publication number
JPH0427450B2
JPH0427450B2 JP9056387A JP9056387A JPH0427450B2 JP H0427450 B2 JPH0427450 B2 JP H0427450B2 JP 9056387 A JP9056387 A JP 9056387A JP 9056387 A JP9056387 A JP 9056387A JP H0427450 B2 JPH0427450 B2 JP H0427450B2
Authority
JP
Japan
Prior art keywords
heat
heat receiving
receiving part
tube
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9056387A
Other languages
Japanese (ja)
Other versions
JPS63259332A (en
Inventor
Noryuki Oda
Katsumi Azuma
Keiji Muramatsu
Satoshi Ebato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9056387A priority Critical patent/JPS63259332A/en
Publication of JPS63259332A publication Critical patent/JPS63259332A/en
Publication of JPH0427450B2 publication Critical patent/JPH0427450B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、温風暖房器などに好適に使用できる
ヒートパイプ(以下HPと略す)を用いた熱交換
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a heat exchange device using a heat pipe (hereinafter abbreviated as HP), which can be suitably used in hot air heaters and the like.

「従来の技術」 温風暖房器の熱交換装置としては、第6図に示
すようにバーナプレート64の下流面で生成した
燃焼ガスHを、筒状の伝熱管61の内部に通し、
被加熱空気Lを伝熱管61外において伝熱管61
に直交させて流す方式が従来より多用されてい
る。
"Prior Art" As a heat exchange device for a hot air heater, as shown in FIG.
The heated air L is transferred to the heat exchanger tube 61 outside the heat exchanger tube 61.
Conventionally, a method in which the flow is perpendicular to the flow direction has been widely used.

温風暖房器では、流速および温度とも可能な限
り一様な温風を、幅40〜60cmの温風吹出し口より
室内に向けて吹出すことが要請され、温風送出用
フアン65を用い、かつ、伝熱管61を2〜3パ
スとなるように蛇行状に往復させて、温風の温度
分布を均一となるようにしている。
Hot air heaters are required to blow hot air with as uniform a flow rate and temperature as possible into the room from a hot air outlet with a width of 40 to 60 cm, using a hot air blowing fan 65. In addition, the heat exchanger tube 61 is made to reciprocate in a meandering manner in two to three passes to make the temperature distribution of the hot air uniform.

しかし、この方式では、所要の伝熱面積が大き
くなり、総括伝熱係数として20〜30kcal/m2
h/℃程度が限界で、その結果、この方式を用い
るかぎり装置の小型化が限界にきており、また、
フアン65のすぐ下流の温風吹出し口における幅
方向の温度分布が大きいなどの問題点があつた。
However, with this method, the required heat transfer area is large, and the overall heat transfer coefficient is 20 to 30 kcal/m 2 /
h/℃, and as a result, as long as this method is used, the miniaturization of the equipment is reaching its limit, and
There were problems such as a large temperature distribution in the width direction at the hot air outlet immediately downstream of the fan 65.

「発明の解決しようとする問題点」 本発明は、従来の温風暖房器用熱交換装置では
小型化に限界があり、かつ、温風吹出し口での温
度むらが存在した点に鑑み、これらを解決する新
規な熱交換装置を提供することを目的とする。
``Problems to be Solved by the Invention'' The present invention has been developed in view of the fact that conventional heat exchange devices for hot air heaters have limitations in miniaturization and that there is temperature unevenness at the hot air outlet. The purpose is to provide a new heat exchange device that solves the above problems.

「発明の構成」 本発明の熱交換装置は、加熱流体の流路には、
HPの受熱部と、前記受熱部に近接した下流に通
気可能に設けられる輻射体と、前記輻射体の下流
に設けられる前記HPの別の受熱部または別の
HPの受熱部とを配置し、被加熱流体の流路に
は、加熱流体の流路に受熱部を配置されるHPの
放熱部を配置することを特徴とする。
"Structure of the Invention" The heat exchange device of the present invention has a heating fluid flow path including:
A heat receiving part of the HP, a radiator provided downstream adjacent to the heat receiving part so as to be ventilable, and another heat receiving part of the HP provided downstream of the radiant, or another heat receiving part of the HP provided downstream of the radiant.
The heat receiving part of the HP is arranged in the flow path of the heated fluid, and the heat radiating part of the HP is arranged in the flow path of the heated fluid.

本発明ではHPを用いたので、HPの放熱部の
長手方向の温度むらがなく、したがつて温風吹出
し口での幅方向の温度分布がなくなる。
Since HP is used in the present invention, there is no temperature unevenness in the longitudinal direction of the heat radiation part of the HP, and therefore there is no temperature distribution in the width direction at the hot air outlet.

また、HP受熱部のうち、加熱流体の流路の上
流側、すなわち高温側に設けられる受熱部に近接
した下流には、通気可能に設けられた輻射体を配
置する。
Further, in the HP heat receiving section, a radiator that is provided so as to be ventilated is disposed downstream close to the heat receiving section provided on the upstream side of the heating fluid flow path, that is, on the high temperature side.

そのため、この受熱部はその周囲を流れた高温
の、例えば1500〜1700℃の加熱流体から、800〜
1500℃といつたきわめて大きな温度差をもつて対
流伝熱により加熱されるのみならず、加熱流体と
輻射体との間の対流伝熱により輻射体が加熱され
て白熱し、この白熱した輻射体から強い輻射線が
上流側の受熱部に、上述した大きな温度差に基づ
いて効果的に照射される。
Therefore, this heat-receiving part receives heat from the high-temperature heating fluid flowing around it, e.g.
Not only is the radiant heated by convective heat transfer with an extremely large temperature difference of 1500°C, but the radiant is heated and becomes incandescent by the convective heat transfer between the heating fluid and the radiant, and this incandescent radiant Strong radiation is effectively irradiated onto the upstream heat receiving section based on the large temperature difference mentioned above.

かくして、上流側の受熱部は対流伝熱と輻射伝
熱との双方により加熱され、高温火炎などを含む
加熱流体と上記HP受熱部との間の熱伝達率は、
100〜200kcal/m2/h/℃にも達する。
Thus, the upstream heat receiving section is heated by both convective heat transfer and radiation heat transfer, and the heat transfer coefficient between the heating fluid containing high temperature flame and the above HP heat receiving section is:
It reaches 100-200 kcal/m 2 /h/℃.

輻射体を通過した加熱流体はまだ700〜1000℃
の高温であり、ついで別のHP受熱部、特には外
面にフインを有する別のHP受熱部に導かれて充
分に熱吸収される。ここで別のHP受熱部は、別
のHPの受熱部であつてもよいし、さきに上流側
に受熱部を配置された同じHPの別のHP受熱部
であつてもよい。このように高い熱伝達率によつ
て小型化が達成される。
The heated fluid that passed through the radiator is still at 700-1000℃
It is then guided to another HP heat receiving section, particularly another HP heat receiving section having fins on its outer surface, where the heat is sufficiently absorbed. Here, the other HP heat receiving section may be a heat receiving section of another HP, or may be another HP heat receiving section of the same HP whose heat receiving section was previously arranged on the upstream side. Due to this high heat transfer coefficient, miniaturization is achieved.

したがつて、例えば高温の燃焼ガスからHPを
介して熱交換して温風を発生させるにあたり、受
熱部側について格別の配慮がなされてないと、例
えば3000kcal/hの放熱量を確保するには径34mm
のHPを6本程度必要とし、価格的、スペース的
にメリツトが少なかつたのに対し、本発明によれ
ば、径34mmのHPが1〜2本でも済み、価格的に
もスペース的にも大きなメリツトが生じる。
Therefore, when generating hot air by exchanging heat from high-temperature combustion gas through HP, special consideration must be given to the heat receiving part in order to secure heat radiation of, for example, 3000 kcal/h. Diameter 34mm
However, according to the present invention, only one or two HPs with a diameter of 34 mm are required, which is advantageous in terms of cost and space. There will be great benefits.

本発明の好ましい態様では、輻射体に近接した
上流に設けられる受熱部を、ベアチユーブまたは
フイン高さが3mm以下のローフインチユーブ、特
には、ベアチユーブとし、輻射体の下流に設けら
れる受熱部を、前記ベアチユーブまたはローフイ
ンチユーブよりもフイン高さが高いフインチユー
ブとする。上流側の受熱部を、フイン高さの高い
チユーブとすると、高温によりフインが熱損傷を
受けやすい。下流側の受熱部を、上記よりフイン
高さの低いチユーブとすると、伝熱面積が不充分
で充分な熱吸収がしにくくなる。
In a preferred embodiment of the present invention, the heat receiving section provided upstream close to the radiator is a bear tube or a loaf inch tube with a fin height of 3 mm or less, particularly a bear tube, and the heat receiving section provided downstream of the radiator is a bear tube. The finch tube has a higher fin height than the bear tube or the loaf tube. If the upstream heat receiving section is a tube with a high fin height, the fins are likely to be thermally damaged by high temperatures. If the heat receiving section on the downstream side is a tube with a lower fin height than the above, the heat transfer area will be insufficient and it will be difficult to absorb sufficient heat.

一方、HPの放熱部にはフインをつけて放熱を
促進し、HP内部の作動流体の温度を所定の温度
範囲内に維持するのが望ましい。
On the other hand, it is desirable to attach fins to the heat dissipation part of the HP to promote heat dissipation and to maintain the temperature of the working fluid inside the HP within a predetermined temperature range.

輻射体は、高温で効果的な輻射熱を発生させう
るように、耐熱性材料、例えば炭化ケイ素、窒化
ケイ素、窒化アルミニウムなどのセラミツクス材
料製とするのが好ましい。形状としては、ハニカ
ム、クロス、三次元網状体など、それ自身で通気
性を有するものが好ましいが、それ自身では通気
性を有しない小球、細巾板、細棒などを適宜な間
隔をおいて配置するなどして、輻射体層を加熱流
体が通気可能としてもよい。
The radiator is preferably made of a heat-resistant material, such as a ceramic material such as silicon carbide, silicon nitride, aluminum nitride, etc., so that it can generate effective radiant heat at high temperatures. As for the shape, it is preferable to use a shape that has its own air permeability, such as a honeycomb, cloth, or three-dimensional net, but it is recommended to use small balls, thin strips, thin rods, etc. that do not have air permeability on their own, and to space them at appropriate intervals. The heating fluid may be permeable through the radiator layer, such as by arranging the radiator layer in a radiator layer.

HPについては、温風暖房器に使用する場合、
管材質としてはステンレス、銅、アルミニウムな
ど、作動媒体としては水、フロン、ダウサム、ナ
フタリンなどが好ましい。
Regarding HP, when using it in a hot air heater,
The tube material is preferably stainless steel, copper, aluminum, etc., and the working medium is preferably water, fluorocarbon, dowsome, naphthalene, etc.

本発明において、加熱流体には、燃料として都
市ガス、プロパンガス、天然ガスなどの気体燃料
や灯油などの液体燃料を燃焼させて生成した高温
の燃焼ガス、特には1500〜1700℃といつた高温の
燃焼ガスが好適である。燃焼手段としては拡散燃
焼型バーナあるいは予混合型バーナが使用でき、
その際、上流側HPの受熱部上流縁と燃焼手段の
燃料ガス吐出口(例えばバーナ先端あるいはバー
ナプレート下流面)との距離は、拡散燃焼型バー
ナでは50〜150mm、予混合型バーナでは100mm以下
として、本発明装置のいつそうの小型化に資する
のがよい。なお、この距離をこのように短くして
も、白熱した輻射体の酸化機能により、COなど
の不完全燃焼成分の発生は抑制される。
In the present invention, the heating fluid is a high-temperature combustion gas generated by burning gaseous fuel such as city gas, propane gas, natural gas, or liquid fuel such as kerosene, particularly a high-temperature gas of 1500 to 1700°C. of combustion gas is preferred. As the combustion means, a diffusion combustion burner or a premix burner can be used.
In this case, the distance between the upstream edge of the heat receiving part of the upstream HP and the fuel gas discharge port of the combustion means (for example, the tip of the burner or the downstream surface of the burner plate) is 50 to 150 mm for a diffusion combustion type burner, and 100 mm or less for a premix type burner. Therefore, it is preferable that this contributes to the miniaturization of the device of the present invention. Note that even if this distance is shortened in this way, the oxidizing function of the incandescent radiator will suppress the generation of incomplete combustion components such as CO.

本発明で上流側受熱部を有するHPは好ましく
は1〜2本配置され、下流側受熱部を有する別の
HPも好ましくは1〜2本配置される。なお、上
流側受熱部はかなりの高温にさらされるが、放熱
部を流れる空気などの被加熱流体により冷却され
るので、熱損傷が防止される。
In the present invention, preferably one or two HPs having an upstream heat receiving section are arranged, and another HP having a downstream heat receiving section is arranged.
Preferably one or two HPs are also arranged. Note that although the upstream heat receiving section is exposed to a considerably high temperature, it is cooled by the heated fluid such as air flowing through the heat radiating section, so that thermal damage is prevented.

「実施例」 第1図および第2図に示す本発明の実施例の熱
交換装置では、ケーシング9が加熱流体である燃
焼ガスHの流路と被加熱流体である空気Lの流路
を区画している。燃焼用空気と燃料ガスとを所定
割合で混合した予混合気Pは、燃焼手段である面
状のバーナプレート4に導かれる。このバーナプ
レート4は多数の貫通する炎孔を有し、炎孔を通
過した予混合気Pはバーナプレート4の下流側で
面状に火炎を形成し、燃焼ガスHとなる。
"Embodiment" In the heat exchange device according to the embodiment of the present invention shown in FIGS. 1 and 2, the casing 9 separates a flow path for combustion gas H, which is a heating fluid, and a flow path for air L, which is a fluid to be heated. are doing. A premixture P, which is a mixture of combustion air and fuel gas at a predetermined ratio, is guided to a planar burner plate 4, which is a combustion means. This burner plate 4 has a large number of flame holes passing through it, and the premixture P that has passed through the flame holes forms a planar flame on the downstream side of the burner plate 4, and becomes combustion gas H.

燃焼ガスHの流れ方向で見てバーナプレート4
に近接した下流には2本の第1HP1の受熱部1
aが配置され、受熱部1aに近接した下流にセラ
ミツクスハニカムからなる輻射体3を配する。ま
た、輻射体3に近接した下流には2本の第2HP
2の受熱部2aを配する。本実施例では第1HP
1の受熱部1aをフインのないベアチユーブ、第
2HP2の受熱部2aをフイン7を有するフイン
チユーブとしている。これらの受熱部1a、輻射
体3、受熱部2aはいずれも燃焼ガスHの流れに
直交するように配置されている。
Burner plate 4 viewed in the direction of flow of combustion gas H
There are two heat receiving parts 1 of the 1st HP 1 downstream near the
a is arranged, and a radiator 3 made of ceramic honeycomb is arranged downstream close to the heat receiving part 1a. In addition, there are two 2nd HP downstream near the radiator 3.
2 heat receiving parts 2a are arranged. In this example, the 1st HP
The heat receiving part 1a of No. 1 is a bare tube without fins,
The heat receiving part 2a of the 2HP2 is a finch tube having fins 7. The heat receiving section 1a, the radiator 3, and the heat receiving section 2a are all arranged perpendicular to the flow of the combustion gas H.

なお、バーナプレート4下流面から下流であつ
て、かなり高温の加熱流体Hが流れる部分には、
断熱ライニング10が施されている。
In addition, in the part downstream from the downstream surface of the burner plate 4 and through which the fairly high temperature heating fluid H flows,
A heat insulating lining 10 is provided.

第1HP1および第2HP2はそれぞれ空気Lの
流路まで延在して、空気Lの流れに直交するよう
に配置され、それぞれ放熱部1b、放熱部2bと
して機能する。放熱部1bおよび放熱部2bはそ
れぞれフイン7を有して所要の放熱面積を備え
る。また本実施例では空気Lの流れに沿つて放熱
部2b、放熱部1b、フアン5がこの順に設けら
れているが、空気Lの流れに沿つて、例えば放熱
部1b、放熱部2b、フイン5の順に設けること
もできる。
The first HP1 and the second HP2 each extend to the flow path of the air L, are arranged perpendicular to the flow of the air L, and function as a heat radiating part 1b and a heat radiating part 2b, respectively. The heat radiation part 1b and the heat radiation part 2b each have fins 7 and have a required heat radiation area. Further, in this embodiment, the heat radiating part 2b, the heat radiating part 1b, and the fan 5 are provided in this order along the flow of the air L. For example, the heat radiating part 1b, the heat radiating part 2b, the fan 5 They can also be provided in this order.

第1HP1の作動媒体はダウサムなどの有機系
熱媒油またはナフタリンとし、第2HP2の作動
媒体は水とするのが温風暖房器用として好ましい
が、条件によつては第2HP2の作動媒体も有機
系熱媒油やナフタリンとすることもできる。第
2HP2の作動媒体にナフタリンを用いる場合に
は作動媒体の凝固を防ぐために、放熱部2bのフ
イン高さは高過ぎないようにする。
It is preferable for a hot-air heater that the working medium of the first HP1 is an organic heat transfer oil such as Dowsum or naphthalene, and the working medium of the second HP2 is water, but depending on the conditions, the working medium of the second HP2 may also be an organic heat transfer medium. It can also be heat transfer oil or naphthalene. No.
When naphthalene is used as the working medium of 2HP2, the height of the fins of the heat dissipation section 2b should not be too high in order to prevent the working medium from coagulating.

第3図に示す別の実施例では、HP6の受熱部
を高温側受熱部6cと低温側受熱部6dに区分
し、受熱部6cをベアチユーブ、受熱部6dをフ
インチユーブとしている。バーナプレート4の下
流に受熱部6cを置き、その近接下流で輻射線が
受熱部6cを照射する位置にセラミツクスハニカ
ムからなる輻射体3を配置し、さらにケーシング
9により転向させられた燃焼ガスが受熱部6dを
加熱するように配置されている。6bは放熱部で
ある。
In another embodiment shown in FIG. 3, the heat receiving section of the HP 6 is divided into a high temperature side heat receiving section 6c and a low temperature side heat receiving section 6d, with the heat receiving section 6c being a bear tube and the heat receiving section 6d being a finch tube. A heat receiving part 6c is placed downstream of the burner plate 4, and a radiator 3 made of ceramic honeycomb is placed close to and downstream of the heat receiving part 6c at a position where radiation irradiates the heat receiving part 6c, and the combustion gas diverted by the casing 9 receives heat. It is arranged so as to heat the portion 6d. 6b is a heat radiation part.

この実施例によれば、第1図に示した実施例よ
りもHPの本数が少なくでき、例えば全部でただ
1本のHPとすることもできて、さらにコンパク
トな熱交換装置が得られる。
According to this embodiment, the number of HPs can be reduced compared to the embodiment shown in FIG. 1, for example, only one HP in total, resulting in a more compact heat exchange device.

なお、第3図の実施例で受熱部6dを通過した
加熱流体をもう一度転向させてHP6のさらに別
の受熱部に熱を与えるように構成することも可能
である。
In the embodiment shown in FIG. 3, it is also possible to divert the heating fluid that has passed through the heat receiving section 6d once again to provide heat to yet another heat receiving section of the HP 6.

なお、これらの実施例において、HPは水平に
設置しても充分な効果が得られるが、HPを受熱
部が下がるように10度以下、好ましくは6度程度
傾けると、熱サイフオンの原理が応用でき、HP
の輸送熱量がさらに増大し、よりコンパクトな装
置が形成される。
In these examples, a sufficient effect can be obtained even if the HP is installed horizontally, but if the HP is tilted by 10 degrees or less, preferably about 6 degrees, so that the heat receiving part is lowered, the thermosiphon principle can be applied. Yes, HP
The amount of heat transported is further increased and a more compact device is formed.

第4図の例は、高さが2mmのフイン8を有する
ローフインチユーブからなる受熱部1aを複数段
に千鳥配置して、輻射体3からバーナプレート4
への輻射線をなるべくさえぎるようにし、それに
あわせて受熱部2aも複数段に千鳥配置した他は
第1図の例とほぼ同様である。
In the example shown in FIG. 4, heat receiving parts 1a made of loaf inch tubes having fins 8 with a height of 2 mm are arranged in a staggered manner in multiple stages, and from the radiator 3 to the burner plate 4.
The structure is substantially the same as the example shown in FIG. 1, except that the heat receiving portions 2a are arranged in a staggered manner in multiple stages to block as much radiation as possible.

第5図の例は、セラミツクスハニカムからなる
複数枚の輻射体3を、高さが2mmのフイン8を有
するローフインチユーブからなる受熱部6cの軸
方向に向けて傾斜配置して、輻射体3からの輻射
線がより有効に受熱部6cに入射するようにした
他は第3図の実施例とほぼ同様である。
In the example shown in FIG. 5, a plurality of radiators 3 made of ceramic honeycomb are arranged inclined toward the axial direction of a heat receiving part 6c made of a loaf inch tube having fins 8 with a height of 2 mm. The embodiment is substantially the same as the embodiment shown in FIG. 3, except that the radiation from the heat receiving section 6c is made to enter the heat receiving part 6c more effectively.

このように受熱部1aないし受熱部6cは、フ
インを過熱したり作動媒体を過熱したりしない範
囲でフイン高さ3mm以下のローフインチユーブと
することも可能である。
In this way, the heat receiving portions 1a to 6c may be formed into loaf inch tubes with a fin height of 3 mm or less as long as the fins do not overheat or the working medium is overheated.

なお、第1図、第3図、第5図の実施例でHP
1,2,6はそれぞれ1本でも複数本でもよく、
複数本の場合には同一段に水平配列しても複数段
に千鳥配列してもよいことはいうまでもない。
In addition, in the examples shown in Figures 1, 3, and 5, HP
1, 2, and 6 can each be one or more,
Needless to say, in the case of a plurality of sheets, they may be arranged horizontally in the same row or in a staggered arrangement in multiple rows.

「作 用」 本発明では、高温の加熱流体の流路には、HP
の受熱部、その近接下流には通気可能とされた輻
射体、さらにその下流には第2の受熱部をそれぞ
れ配置し、主に上流側の受熱部に対し輻射伝熱が
作用し、高温流体からHPへの高い熱伝達率が実
現される。もちろん、高温流体と上記したそれぞ
れの受熱部との間で対流伝熱も行なわれる。
"Function" In the present invention, the high temperature heating fluid flow path has HP
A heat-receiving part, a ventilated radiator adjacent to the downstream side, and a second heat-receiving part downstream of the heat-receiving part are arranged.Radiation heat transfer mainly acts on the heat-receiving part on the upstream side, and the high-temperature fluid A high heat transfer coefficient from HP to HP is achieved. Of course, convective heat transfer is also performed between the high temperature fluid and each of the above-mentioned heat receiving parts.

また、このように配置することにより、輻射体
からバーナプレートなどの燃焼手段への熱輻射の
大部分が上流側の受熱部により遮蔽され、燃焼バ
ーナの過熱、逆火などが防止される。この目的か
ら上流側HPが複数本のHPからなる場合、千鳥
配置が好ましい。下流側の受熱部では加熱流体の
温度が下がつて、フインの損傷の恐れも少ないの
で、外面にフインをつけ伝熱をさらに促進するこ
とが可能である。
Further, by arranging the radiator in this manner, most of the heat radiation from the radiator to the combustion means such as the burner plate is blocked by the upstream heat receiving section, thereby preventing overheating of the combustion burner, backfire, etc. For this purpose, when the upstream HP consists of a plurality of HPs, a staggered arrangement is preferable. In the downstream heat receiving section, the temperature of the heated fluid decreases and there is less risk of damage to the fins, so it is possible to further promote heat transfer by attaching fins to the outer surface.

上述の如く、上流側および下流側の受熱部に流
入した熱は、HPの作用により、きわめて効果的
に放熱部に伝えられる。この熱によりHPの放熱
部の管の温度は上昇するが、HPの特性として、
HP長手方向の温度むらはほとんどない。そのた
め、温風暖房器として要求される均一な温風が得
られる。
As described above, the heat flowing into the upstream and downstream heat receiving sections is very effectively transferred to the heat radiating section by the action of HP. This heat increases the temperature of the tube in the heat dissipation section of the HP, but as a characteristic of the HP,
There is almost no temperature variation in the longitudinal direction of the HP. Therefore, uniform hot air required for a hot air heater can be obtained.

また、HPでは管内に含まれた作動媒体の相変
化(蒸発、凝縮)により、管内の伝熱を行なうた
め、HP内部での熱の伝達はきわめて効果的に行
なわる。したがつて、加熱流体から被加熱流体へ
の熱伝達は、実質的に加熱流体からHP受熱部外
壁への、およびHP放熱部からの被加熱流体への
熱伝達によつて制限される。
Furthermore, in the HP, heat is transferred within the tube through phase changes (evaporation, condensation) of the working medium contained within the tube, so heat transfer within the HP is extremely effective. Therefore, heat transfer from the heating fluid to the heated fluid is substantially limited by heat transfer from the heating fluid to the outer wall of the HP heat receiver and from the HP heat sink to the heated fluid.

放熱部については圧損が許されるかぎり密なフ
インを設けることが可能なため、熱伝達率が比較
的小さくてもHP管外表面積あたりの熱流束を大
きくとることができる。
As for the heat dissipation part, it is possible to provide dense fins as long as pressure drop is allowed, so even if the heat transfer coefficient is relatively small, it is possible to obtain a large heat flux per HP tube outer surface area.

問題は受熱部であるが、本発明によれば、上流
側、すなわち最も高温側でバーナプレートに近い
受熱部はベアチユーブまたはローフインチユーブ
からなつており、高温火炎に近接しているため、
高温の加熱流体と受熱部外壁との間に800〜1500
℃の温度差が与えられ、かつ、輻射体には900〜
1200℃の高温流体が流入して輻射体を白熱させ、
白熱した輻射体から強い輻射線が上流側受熱部に
照射されて、加熱流体と上記受熱部との間の熱伝
達率を100〜200kcal/m2/h/℃にも達せしめ、
かつ、輻射体を通過して700〜1000℃までの温度
の低下した加熱流体を外面にフインを有する下流
側受熱部に導き、主に対流伝熱によつて熱吸収さ
せるため、効果的な熱交換ができ、本発明の構成
によらない場合に比して、受熱部のHPの本数を
1/3〜1/6にすることが可能となる。
The problem is the heat receiving part, but according to the present invention, the heat receiving part on the upstream side, that is, on the highest temperature side and closest to the burner plate, consists of a bear tube or loaf inch tube and is close to the high temperature flame.
800 to 1500 between the high temperature heating fluid and the outer wall of the heat receiving part
A temperature difference of ℃ is given, and the radiator has a temperature difference of 900~
A high temperature fluid of 1200℃ flows in and makes the radiator incandescent,
Strong radiation is irradiated from the incandescent radiator to the upstream heat receiving part, and the heat transfer coefficient between the heating fluid and the heat receiving part reaches 100 to 200 kcal/m 2 /h/℃,
In addition, the heated fluid, whose temperature has decreased to 700 to 1000℃ after passing through the radiator, is guided to the downstream side heat receiving part with fins on the outer surface, where it absorbs heat mainly through convection heat transfer, so it can effectively generate heat. They can be replaced, and the number of HPs in the heat receiving section can be reduced to 1/3 to 1/6 compared to a case not using the configuration of the present invention.

「発明の効果」 以上説明した通り、本発明によれば、熱交換装
置の小型化が図れるため、温風暖房器の小型化、
薄型化が可能となるうえ、吹出し温風温度の均一
化が図れる。
"Effects of the Invention" As explained above, according to the present invention, the heat exchange device can be downsized, so the hot air heater can be downsized,
Not only can it be made thinner, but the temperature of the hot air blown out can be made more uniform.

なお、本発明の装置は温風暖房器のみならず、
食用油、浴槽などの加熱にも使用できる。
Note that the device of the present invention is not only a hot air heater, but also a hot air heater.
It can also be used to heat cooking oil, bathtubs, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例の断面図、第2
図は第1図における−線に沿つた断面図、第
3図、第4図、第5図はは本発明装置のそれぞれ
異なる別の実施例の断面図、第6図は従来の温風
暖房器用熱交換装置の断面図である。 1,2,6……ヒートパイプ、1a,2a,6
c,6d……受熱部、1b,2b,6b……放熱
部、3……輻射体、7,8……フイン。
Fig. 1 is a sectional view of one embodiment of the device of the present invention;
The figure is a sectional view taken along the - line in Fig. 1, Figs. 3, 4, and 5 are sectional views of different embodiments of the device of the present invention, and Fig. 6 is a sectional view of a conventional hot air heater. FIG. 2 is a cross-sectional view of the dexterous heat exchange device. 1, 2, 6...Heat pipe, 1a, 2a, 6
c, 6d... Heat receiving section, 1b, 2b, 6b... Heat radiating section, 3... Radiator, 7, 8... Fin.

Claims (1)

【特許請求の範囲】 1 加熱流体の流路には、ヒートパイプの受熱部
と、前記受熱部に近接した下流に通気可能に設け
られる輻射体と、前記輻射体の下流に設けられる
前記ヒートパイプの別の受熱部または別のヒート
パイプの受熱部とを配置し、被加熱流体の流路に
は、加熱流体の流路に受熱部を配置されるヒート
パイプの放熱部を配置することを特徴とする熱交
換装置。 2 前記輻射体に近接した上流に設けられる受熱
部を、ベアチユーブまたはフイン高さが3mm以下
のローフインチユーブとし、前記輻射体の下流に
設けられる受熱部を、前記ベアチユーブまたはロ
ーフインチユーブよりもフイン高さの高いフイン
チユーブとする特許請求の範囲第1項記載の熱交
換装置。
[Scope of Claims] 1. A heating fluid flow path includes a heat receiving part of a heat pipe, a radiator provided downstream of the heat receiving part so as to be ventilable, and the heat pipe provided downstream of the radiant. or a heat receiving part of another heat pipe, and a heat radiating part of the heat pipe whose heat receiving part is arranged in the flow path of the heated fluid is arranged in the flow path of the heated fluid. Heat exchange equipment. 2. The heat receiving part provided upstream close to the radiator is a bear tube or a loaf inch tube with a fin height of 3 mm or less, and the heat receiving part provided downstream of the radiator is arranged in a loaf inch tube with a fin height smaller than the bear tube or loaf inch tube. The heat exchange device according to claim 1, which is a finch tube having a high height.
JP9056387A 1987-04-13 1987-04-13 Heat exchanger using heat pipe Granted JPS63259332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9056387A JPS63259332A (en) 1987-04-13 1987-04-13 Heat exchanger using heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9056387A JPS63259332A (en) 1987-04-13 1987-04-13 Heat exchanger using heat pipe

Publications (2)

Publication Number Publication Date
JPS63259332A JPS63259332A (en) 1988-10-26
JPH0427450B2 true JPH0427450B2 (en) 1992-05-11

Family

ID=14001892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9056387A Granted JPS63259332A (en) 1987-04-13 1987-04-13 Heat exchanger using heat pipe

Country Status (1)

Country Link
JP (1) JPS63259332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278975A (en) * 2003-03-18 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Heater for air conditioning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278975A (en) * 2003-03-18 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Heater for air conditioning

Also Published As

Publication number Publication date
JPS63259332A (en) 1988-10-26

Similar Documents

Publication Publication Date Title
JP2986982B2 (en) Small gas fired air heater
JPH0427450B2 (en)
US5913289A (en) Firetube heat exchanger with corrugated internal fins
JPH01139937A (en) Heat exchanging device having heat pipe
JPH01139936A (en) Heat exchanging device having heat pipe
JPH01263491A (en) Heat exchanger using heat pipe
JPH05761Y2 (en)
JPS6284258A (en) Fluid heating device
JPS63210513A (en) Improved fluid heating device
JPS63251751A (en) Device for heating fluid
JPS5844174B2 (en) bath kettle
JPS63207910A (en) Fluid heater with radiation cloth
JPS63210514A (en) Improved fluid heating device
JPS63207913A (en) Fluid heating device with radiator
KR940008441B1 (en) Heat exchanger constructing porous
JPS63207912A (en) Fluid heating device with radiator
JPS63207911A (en) Fluid heating device
US6386193B1 (en) Combustion heater
JP3841956B2 (en) Catalytic combustion device
JPS63286657A (en) Hot-water supplier
JPS63251750A (en) Fluid heater
JPH01139942A (en) Heat exchanger for air conditioner
JP2580581Y2 (en) Heating system
JPS63254348A (en) Fluid heating device
JPS63243654A (en) Fluid heating device equipped with radiator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees