JPS6319627A - Thin film transistor array - Google Patents

Thin film transistor array

Info

Publication number
JPS6319627A
JPS6319627A JP61164914A JP16491486A JPS6319627A JP S6319627 A JPS6319627 A JP S6319627A JP 61164914 A JP61164914 A JP 61164914A JP 16491486 A JP16491486 A JP 16491486A JP S6319627 A JPS6319627 A JP S6319627A
Authority
JP
Japan
Prior art keywords
scanning line
line
gate
resistance
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61164914A
Other languages
Japanese (ja)
Inventor
Ichiro Yamashita
一郎 山下
Mamoru Takeda
守 竹田
Tatsuhiko Tamura
達彦 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61164914A priority Critical patent/JPS6319627A/en
Publication of JPS6319627A publication Critical patent/JPS6319627A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects

Abstract

PURPOSE:To prevent a line defect from being caused by making the resistance value between a scanning line and the gate electrode of a transition (TR) larger than the resistance values of the signal line and a signal line. CONSTITUTION:The resistance between the scanning line and the gate electrode of the TR is made larger than that of the scanning line and signal line. A gate 21a is made of a material different from the scanning line 4 and connected at a connection point A. Even if the gate and source of the TR short-circuit to each other, a voltage waveform which is applied originally between the signal line and scanning line does not vary regardless of the short-circuiting because the resistance of a short-circuit path is set larger than the resistance of signal lines Y1, Y2, and Y3, and scanning lines X1, X2, and X3 at the short- circuiting point. Therefore, a charging path to the electrode of a picture element 14 connecting with another normal TR on the scanning line or signal line is secured, a line defect which is an important defect on the scanning line or signal line is caused unlike before, and the defect is suppressed to the spot defect of the short-circuiting TR itself.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液晶ディスプレイ等に用いられる薄膜トランジ
スタアレイに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to thin film transistor arrays used in liquid crystal displays and the like.

従来の技術 従来、この目的に使われる薄膜トランジスタアレイとし
ては例えば特開昭59−47623号公報に示されるよ
うに第3図のような構成が一般的である。すなわち走査
線x1〜XM  へゲート電極を、信号線Y1〜YMへ
ソー名電極を接続した薄膜トランジスタ(以後TPTと
呼ぶ)11をそなえ、そのドレイン電極は絵素電極26
に接続されている。絵素電極と対向アース電極の間に液
晶13が挿入され独立した絵素を表示するだめの素子1
4を構成する。この素子14は等測的にコンデンサとし
て働くが場合によってはこれに並列に補助コンデンサが
追加される事もある。
2. Description of the Related Art Conventionally, a thin film transistor array used for this purpose generally has a structure as shown in FIG. 3, as shown in, for example, Japanese Unexamined Patent Publication No. 59-47623. That is, a thin film transistor (hereinafter referred to as TPT) 11 is provided whose gate electrodes are connected to the scanning lines x1 to XM and whose electrodes are connected to the signal lines Y1 to YM, and whose drain electrode is connected to the pixel electrode 26.
It is connected to the. A liquid crystal 13 is inserted between a picture element electrode and a counter ground electrode to display an independent picture element 1.
4. This element 14 acts isometrically as a capacitor, but in some cases an auxiliary capacitor may be added in parallel thereto.

第3図によシTFTの働きを説明する。走査線X、  
、 X2. X5・・・・・・には第4図に示すような
選択パルスP1.P2.P3・・・・・・がそれぞれ印
加される。
The function of the TFT will be explained with reference to FIG. scanning line X,
, X2. X5... is a selection pulse P1.X5 as shown in FIG. P2. P3... are applied respectively.

特定の走査線例えばXlが選択状態のとき(他のすべて
の走査線は非選択)これに接続される一連のTFTのソ
ース・ドレイン間が導通となシ、それらに接続された各
絵素に対応する信号線の電圧が印加される。xlが非選
択に切シ換わると上記TPTは非導通となるので上記絵
素に印加された電圧は次のフレームでxlが選択される
までの間前回の値を保持する。このようにTFTアレイ
を用いた液晶ディスプレイは必要な信号電圧を正確かつ
独立に各素子14に伝達することが出来るのでクロスト
ークがなくコントラスト比の大きい表示が可能とな)注
目を集めている。このような働きをするトランジスタ自
体イの断面構造としては第5図に示すものが一般的であ
り、これを平面的に見ると第6図のように作られるのが
通例である。
When a specific scanning line, e.g. The voltage of the corresponding signal line is applied. When xl is switched to non-selection, the TPT becomes non-conductive, so the voltage applied to the picture element maintains the previous value until xl is selected in the next frame. In this way, a liquid crystal display using a TFT array is attracting attention because it can accurately and independently transmit the necessary signal voltage to each element 14, and therefore enables display with no crosstalk and a high contrast ratio. The cross-sectional structure of the transistor itself that functions in this manner is generally shown in FIG. 5, and when viewed from above, it is usually made as shown in FIG. 6.

発明が解決しようとする問題点 ところが、このような構成で走査線、信号線の本数が増
えるとすべてのTETを良品として作り込む事が極めて
困難となる。とくにTPTは第5図にその断面構造の一
例を示すようにゲート21とソース22、ドレイン23
間が少くとも絶縁膜24を介して積層されているため7
、ピンホールやその他工程上のトラブルによってゲート
・ソース間、あるいはゲート・ドレイン間が短絡してし
まう恐れがある。とくに1つのTFTのゲート・ソース
間の短絡は、これにつながる走査線と信号線上のすべて
のTPT動作異常を招き、いわゆる線欠陥という重大不
良をもたらすという問題を有していた。
Problems to be Solved by the Invention However, as the number of scanning lines and signal lines increases in such a configuration, it becomes extremely difficult to manufacture all TETs as good products. In particular, TPT has a gate 21, a source 22, and a drain 23, as shown in FIG. 5, an example of its cross-sectional structure.
7 because the layers are stacked with at least an insulating film 24 in between.
, there is a risk of shorting between the gate and source or between the gate and drain due to pinholes or other process problems. In particular, a short circuit between the gate and source of one TFT causes abnormal operation of all TPTs on the scanning line and signal line connected to the short circuit, resulting in a serious defect called a line defect.

本発明は上記問題に鑑みてなされたもので、あるトラン
ジスタが不良であっても重大不良である線欠陥が発生し
ないような構成の薄膜トランジスタアレイを提供するも
のである0 問題点を解決するための手段 上記問題点を解決するために本発明の薄膜トランジスタ
アレイは、走査線とトランジスタのゲート電極の藺を走
査線および信号線よシも高抵抗にするという構成を備え
たものである。
The present invention has been made in view of the above problems, and provides a thin film transistor array having a structure in which line defects, which are serious defects, do not occur even if a certain transistor is defective. Means: In order to solve the above-mentioned problems, the thin film transistor array of the present invention has a structure in which the resistance of the scanning line and the gate electrode of the transistor is made high in both the scanning line and the signal line.

作用 本発明は上記した構成により、トランジスタのゲート・
ソース間の短絡が生じた場合でも、その短絡点にかかわ
る信号線と走査線の抵抗に比して短絡経路の抵抗が大き
く設定されているため、その信号線および走査線に本来
印加される電圧波形は短絡によっても変化を受けない。
Operation The present invention has the above-described structure, and the gate and gate of the transistor.
Even if a short circuit occurs between sources, the resistance of the short circuit path is set to be higher than the resistance of the signal line and scanning line related to the short circuit point, so the voltage originally applied to the signal line and scanning line The waveform remains unchanged by short circuits.

したがって、これらの走査線あるいは信号線上の他の正
常なトランジスタにつながる絵素電極への充電経路が確
保でき、従来のような走査線あるいは信号線上の重大不
良である線欠陥をもたらさず、短絡したトランジスタ自
体の点欠陥にとどめておくことができる。
Therefore, a charging path to the pixel electrodes connected to other normal transistors on these scanning lines or signal lines can be secured, and short circuits can be avoided without causing line defects, which are serious defects on the scanning lines or signal lines, as in the past. This can be limited to a point defect in the transistor itself.

実施例 以下本発明の実施例を示す薄膜トランジスタについて図
面を参照し寿から説明する。
EXAMPLE Hereinafter, a thin film transistor showing an example of the present invention will be explained from Kotobuki with reference to the drawings.

第1図は本発明の一実施例における薄膜トランジスタア
レイの等価回路図である。同図において、1は走査線X
1〜XMとゲートを接続する接続部の抵抗Rgs2はト
ランジスタの浮遊容量であるが、この場合ゲート容量C
g とみ冷す。他の番号については第3図に示した従来
例と同じである。
FIG. 1 is an equivalent circuit diagram of a thin film transistor array in one embodiment of the present invention. In the figure, 1 is the scanning line
The resistance Rgs2 at the connection part connecting 1 to XM and the gate is the stray capacitance of the transistor, but in this case, the gate capacitance C
g Cool down. Other numbers are the same as in the conventional example shown in FIG.

第2図(a)は本発明の第1の実施11FIJである薄
膜トランジスタの平面構造図である。ゲート21LLは
走査線4と異なる材料で構成され、接続黒人で接続され
ている。なお、走査線とゲート間の抵抗は本発明の趣旨
から太きいほどよいが、逆に大きすぎるとトランジスタ
のゲート容量と走査線、ゲート間の抵抗の積(時定数)
が犬きくなシ、走査線の選択パルスの時間幅の間にゲー
ト電圧が充分に立ち上がらないという事態が発生する恐
れがちる。
FIG. 2(a) is a plan view of a thin film transistor according to the first embodiment 11FIJ of the present invention. The gate 21LL is made of a material different from that of the scanning line 4, and is connected to the gate 21LL by a connecting wire. Note that from the perspective of the present invention, the resistance between the scanning line and the gate is as thick as possible, the better; however, if it is too large, the product (time constant) of the gate capacitance of the transistor and the resistance between the scanning line and the gate
However, there is a risk that a situation may occur in which the gate voltage does not rise sufficiently during the time width of the selection pulse of the scanning line.

これを避けるため、上記時定数が走査線の選択パルス幅
よりも小さくなるようにゲート部の抵抗を設定する。す
なわちゲートから見たトランジスタの容量をCgsフレ
ーム周期をT1走査線数をMとする。走査線の選択パル
ス幅はT/Mとなる。
In order to avoid this, the resistance of the gate portion is set so that the above-mentioned time constant is smaller than the selection pulse width of the scanning line. That is, the capacitance of the transistor as seen from the gate is Cgs, the frame period is T1, and the number of scanning lines is M. The selection pulse width of the scanning line is T/M.

ゲート部の抵抗をRgとすると、ゲート電圧が充分に立
ち上がるだめの条件として、 Cg−Rg < T/M が要求される。いま、比較的現実的な値として、M−5
00 、 T=16.7 m5ec  、 Cg =5
 pFを用イルと、Rg(6MQとなる。−力走査線の
抵抗を例えば10にΩとすると、この例ではゲート部の
抵抗として10にΩ<Rg<<6MΩとなるようにその
形状、材料等を選べばよい。
Assuming that the resistance of the gate portion is Rg, the following condition is required for the gate voltage to rise sufficiently: Cg-Rg<T/M. Now, as a relatively realistic value, M-5
00, T=16.7 m5ec, Cg=5
If pF is used, then Rg (6MQ is obtained.) If the resistance of the force scanning line is, for example, 10Ω, then in this example, the resistance of the gate section is determined by its shape and material so that 10Ω<Rg<<6MΩ. etc., you can choose.

第2図(b)は第2の実施例であり、トランジスタのゲ
ート21bと走査線4は同一の材料、プロセスで構成さ
れ、そのゲートと走査線を異なる高抵抗膜28で接続し
た例である。
FIG. 2(b) shows a second embodiment, in which the gate 21b of the transistor and the scanning line 4 are made of the same material and process, and the gate and scanning line are connected by a different high resistance film 28. .

これらの例において、走査線は1000〜2000人厚
のOrで形成され、半導体膜25はプラズマCVD法で
形成された非晶質シリコン、絶縁膜は同じくプラズマC
VD法で形成された窒化シリコン、また信号線・ソース
・ドレインはムEである。絵素は透明導電体であるIT
Oが用いられる。そしてゲート接続部の高抵抗膜として
はCrSi等が適用可能である。
In these examples, the scanning line is formed of 1000 to 2000 layers of Or, the semiconductor film 25 is amorphous silicon formed by plasma CVD, and the insulating film is also formed of plasma CVD.
Silicon nitride is formed by the VD method, and the signal lines, sources, and drains are made of muE. IT picture elements are transparent conductors
O is used. CrSi or the like can be used as the high resistance film of the gate connection portion.

第2図(C)はさらに第3の実施例であり、高抵抗膜2
8にn+α−8iを用いたものである。n+α−8iは
、半導体層とソース・ドレインのオーミックコンタクト
用に一般的に用いられる層であるから、この実施例は、
プロセス的に従来と全く変わらないという長所を有する
。メタル接続29は信号線パソース・ドレインと同一の
材料を用いている。またコンタクト穴3oは走査線、あ
るいはゲー) 21bとメタル接続29の接触を確保す
るために絶縁膜24にあけた穴である。
FIG. 2(C) shows a third embodiment, in which the high resistance film 2
8 using n+α-8i. Since n+α-8i is a layer commonly used for ohmic contact between a semiconductor layer and a source/drain, this example
It has the advantage that the process is completely unchanged from the conventional method. The metal connection 29 uses the same material as the signal line source/drain. Further, the contact hole 3o is a hole made in the insulating film 24 to ensure contact between the scanning line or the gate electrode 21b and the metal connection 29.

以上のように構成された薄膜トランジスタアレイについ
ての動作を説明する。まず絵素電極26は走査線4が選
択されるタイミングで信号線3の情報を受けて充電され
る。以後次のフレームで再び同じ走査線4が選択される
まで前の電圧を保持する。
The operation of the thin film transistor array configured as described above will be explained. First, the picture element electrode 26 receives information from the signal line 3 at the timing when the scanning line 4 is selected and is charged. Thereafter, the previous voltage is held until the same scanning line 4 is selected again in the next frame.

次にトランジスタが何らかの原因でゲート・ソース間が
短絡した場合、従来ならこのトランジスタにつながる走
査線4および信号線3上の線欠陥に本来印加される電圧
波形は短絡によって変化を受けない。したがって従来の
ような走査線あるいは信号線上の重大不良である線欠陥
をもたらさず、短絡したトランジスタ自体の点欠陥にと
どめておくことができる。
Next, if the gate and source of the transistor are short-circuited for some reason, conventionally the voltage waveform originally applied to the line defect on the scanning line 4 and signal line 3 connected to this transistor is not changed by the short-circuit. Therefore, line defects, which are serious defects on scanning lines or signal lines, as in the conventional case are not caused, and the short-circuited transistor itself can be limited to a point defect.

発明の効果 以上のように本発明は走査線とゲート電極間に高抵抗を
設けることによシ従来技術で生じていた重大不良である
線欠陥を点欠陥にとどめておくことができる。
Effects of the Invention As described above, in the present invention, by providing a high resistance between the scanning line and the gate electrode, line defects, which are serious defects that occur in the prior art, can be reduced to point defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第」図は本発明の一実施例における薄膜トランジスタア
レイの等価回路図、第2図(IL)は第1の実施例にお
ける薄膜トランジスタの平面構造図、第2図(b) 、
 (C)はそれぞれ第2、第3の実施例における薄膜ト
ランジスタの平面構造図、第3図は従来の薄膜トランジ
スタアレイの等価回路図、第4図は上記薄膜トランジス
タアレイの走査線に加える選択パルスの波形図、第5図
は従来の薄膜トランジスタの断面図、第6図は同平面構
造図である。 1・・・・・・接続部の抵抗、2・・・・・・ゲート容
量、11・・・・・・TFT、13・・・・・・液晶、
14・・・・・・絵素、xl。 X2. X、・・・・・・走査線、Yl、 Y2. Y
3・・・・・・信号線0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−ギ受予屹tさの度丸争℃尺り 2−−−デート卒I艷O) /l−一一丁FT 窮1図      16−漢ら /4−一一織崇 Xt冷X3−一一足魚蜜 YIY2乃−−−信号機 第2図 第 2 図 (C,) 泡3裸 //−−−TFT /3−一一液易 /4−一一唸衆 Y1γzY5−−一佑労界隈 第4図 第5図 27絶切14叉 第6図
Fig. 1 is an equivalent circuit diagram of a thin film transistor array in one embodiment of the present invention, Fig. 2 (IL) is a planar structural diagram of a thin film transistor in the first embodiment, Fig. 2 (b),
(C) is a plan view of the structure of the thin film transistor in the second and third embodiments, FIG. 3 is an equivalent circuit diagram of a conventional thin film transistor array, and FIG. 4 is a waveform diagram of the selection pulse applied to the scanning line of the thin film transistor array. , FIG. 5 is a sectional view of a conventional thin film transistor, and FIG. 6 is a plan view of the same structure. 1... Connection resistance, 2... Gate capacitance, 11... TFT, 13... Liquid crystal,
14...Picture element, xl. X2. X,...scanning line, Yl, Y2. Y
3...Signal line 0 Name of agent Patent attorney Toshio Nakao and 1 other person/-
--Gi Ukeyo 屹t SA's degree ℃ measure 2---Date graduation I 艷O) /l-11-cho FT 1 figure 16-Kan et al./4-11 Ori Takashi Xt Cold X3- 11 foot fish honey YIY2no --- Traffic light Figure 2 Figure 2 (C,) Bubbles 3 naked //--- TFT / 3-11 liquid easy / 4-11 roaring Y1 γz Y5 --- Ichiyuro Neighborhood Figure 4 Figure 5 Figure 27 Cut off 14 forks Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)複数の走査線と、複数の信号線と、前記各走査線
と前記各信号線の交叉点に対応して前記走査線で制御さ
れるトランジスタと、前記トランジスタに対応した絵素
電極とを備え、前記走査線と前記トランジスタのゲート
電極間の抵抗値を走査線および信号線の抵抗値より大き
くしたことを特徴とする薄膜トランジスタアレイ。
(1) A plurality of scanning lines, a plurality of signal lines, a transistor controlled by the scanning line corresponding to the intersection point of each scanning line and each signal line, and a picture element electrode corresponding to the transistor; A thin film transistor array, characterized in that a resistance value between the scanning line and the gate electrode of the transistor is greater than resistance values of the scanning line and the signal line.
(2)走査線とトランジスタのゲート電極間の抵抗値を
、その抵抗値とトランジスタのゲート容量の積が走査線
に加わるパルス幅より短くなるように設定したことを特
徴とする特許請求の範囲第(1)項記載の薄膜トランジ
スタアレイ。
(2) The resistance value between the scanning line and the gate electrode of the transistor is set so that the product of the resistance value and the gate capacitance of the transistor is shorter than the pulse width applied to the scanning line. The thin film transistor array described in (1).
(3)ゲートが走査線と同一のシート抵抗を持つ同一の
材料で構成され、前記ゲートと前記走査線の接線部の抵
抗が前記走査線およびゲート材料よりも高抵抗材料で形
成されたことを特徴とする特許請求の範囲第(1)項又
は第(2)項記載の薄膜トランジスタアレイ。
(3) The gate is made of the same material with the same sheet resistance as the scanning line, and the resistance of the tangent between the gate and the scanning line is made of a material with higher resistance than the scanning line and the gate material. A thin film transistor array according to claim (1) or (2).
JP61164914A 1986-07-14 1986-07-14 Thin film transistor array Pending JPS6319627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164914A JPS6319627A (en) 1986-07-14 1986-07-14 Thin film transistor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164914A JPS6319627A (en) 1986-07-14 1986-07-14 Thin film transistor array

Publications (1)

Publication Number Publication Date
JPS6319627A true JPS6319627A (en) 1988-01-27

Family

ID=15802255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164914A Pending JPS6319627A (en) 1986-07-14 1986-07-14 Thin film transistor array

Country Status (1)

Country Link
JP (1) JPS6319627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1008457C2 (en) 1997-03-06 2000-08-15 Ntn Toyo Bearing Co Ltd Hydrodynamic, porous oil-impregnated bearing.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1008457C2 (en) 1997-03-06 2000-08-15 Ntn Toyo Bearing Co Ltd Hydrodynamic, porous oil-impregnated bearing.
US7059052B2 (en) 1997-03-06 2006-06-13 Ntn Corporation Hydrodynamic type porous oil-impregnated bearing
DE19809770B4 (en) * 1997-03-06 2006-06-29 Ntn Corp. Hydrodynamic, porous, oil-impregnated bearing

Similar Documents

Publication Publication Date Title
US6104449A (en) Liquid crystal display device having DTFTs connected to a short ring
US6175393B1 (en) Active-matrix type liquid crystal display device and method of compensating for defective pixel
US5042916A (en) Active matrix display device having divided additional capacitors
US6765630B2 (en) Display panel
JPH0814669B2 (en) Matrix type display device
JP3304272B2 (en) Active matrix substrate and method for treating structural defect thereof
JP3241981B2 (en) Liquid crystal display
EP0605176B1 (en) An active matrix type liquid crystal display panel and a method for producing the same
JPS61121034A (en) Thin film transistor array
JPS6319627A (en) Thin film transistor array
JP3231410B2 (en) Thin film transistor array and method of manufacturing the same
JPH08262485A (en) Liquid crystal display device
JPS60198579A (en) Semiconductor display
JPH0646345B2 (en) Active matrix substrate
JPS61250696A (en) Active matrix display element
JP3418684B2 (en) Active matrix type liquid crystal display
JPH06222389A (en) Production of active matrix type liquid crystal display element
JPH09113923A (en) Manufacture of liquid crystal display device
JPH0646347B2 (en) Active matrix substrate
JP3213067B2 (en) Thin film transistor array and method of manufacturing the same
JP3418683B2 (en) Active matrix type liquid crystal display
JPH0468607B2 (en)
JP3301532B2 (en) Active matrix substrate and driving method thereof
JP2002350896A (en) Liquid crystal display device
JP2647083B2 (en) Active matrix display