JPS63186411A - 磁性薄膜の製造方法 - Google Patents
磁性薄膜の製造方法Info
- Publication number
- JPS63186411A JPS63186411A JP1920287A JP1920287A JPS63186411A JP S63186411 A JPS63186411 A JP S63186411A JP 1920287 A JP1920287 A JP 1920287A JP 1920287 A JP1920287 A JP 1920287A JP S63186411 A JPS63186411 A JP S63186411A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- cylinder
- thin film
- vacuum
- magnetic thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000012808 vapor phase Substances 0.000 claims abstract description 7
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 24
- 239000007789 gas Substances 0.000 abstract description 19
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052786 argon Inorganic materials 0.000 abstract description 12
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 8
- 239000010408 film Substances 0.000 abstract description 5
- 229910001567 cementite Inorganic materials 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
産業上の利用分野
本発明は新規な方法によって得られる磁性薄膜に関する
もので、特に高磁束密度が得られ耐食性に優れた磁性薄
膜の製造方法に関するものである。
もので、特に高磁束密度が得られ耐食性に優れた磁性薄
膜の製造方法に関するものである。
従来の技術
従来、磁性薄膜の製造方法としてはスパッタ法や真空蒸
着法等が主として用いられている。しがし、スパッタ法
や真空蒸着法は、作成しようとする薄膜と同一組成の母
材を予め調整しなければならない。このため、磁性薄膜
の組成を変更する場合、新たな母材の調整が必要となる
。また、これらの方法においては母材から飛び出した粒
子が基板上に付着する割合が小さくそのため成膜速度も
小さい。これらの問題点を解決すべく近来気相分解化学
反応による磁性薄膜の製造方法が研究されてきている。
着法等が主として用いられている。しがし、スパッタ法
や真空蒸着法は、作成しようとする薄膜と同一組成の母
材を予め調整しなければならない。このため、磁性薄膜
の組成を変更する場合、新たな母材の調整が必要となる
。また、これらの方法においては母材から飛び出した粒
子が基板上に付着する割合が小さくそのため成膜速度も
小さい。これらの問題点を解決すべく近来気相分解化学
反応による磁性薄膜の製造方法が研究されてきている。
発明が解決しようとする問題点
しかし、従来のから鉄系の気相分解化学反応の原料ガス
として使用されているFe(Co)sは反応性が良く容
易に鉄原子を得易いが引火性でありなおかつ有毒である
ため原料の保存取り扱に危険を伴い、また排気ガスの処
理等に多大な設備を要する。
として使用されているFe(Co)sは反応性が良く容
易に鉄原子を得易いが引火性でありなおかつ有毒である
ため原料の保存取り扱に危険を伴い、また排気ガスの処
理等に多大な設備を要する。
問題点を解決するための手段
本発明は、上記問題点を解決するため、空気中で安定で
あり安全性の高い鉄のビスシクロペンタジェニル錯塩(
以下フェロセンと称す)を窒素と不活性ガスを含む水素
雰囲気においてプラズマを利用して気相分解化学反応さ
せ基板上に気相成長させることを特徴とする磁性薄膜の
製造方法を提供する。
あり安全性の高い鉄のビスシクロペンタジェニル錯塩(
以下フェロセンと称す)を窒素と不活性ガスを含む水素
雰囲気においてプラズマを利用して気相分解化学反応さ
せ基板上に気相成長させることを特徴とする磁性薄膜の
製造方法を提供する。
作用
発明者らは、研究の結果、水素と窒素の混合ガスのプラ
ズマ中に発生するN Hラジカルがフェロセンの分解過
程で出来る炭化水素化合物の気相成長中の薄膜への混入
を減少させることを見いだした。この反応の発見により
、熱的に安定であるが、鉄に対する炭素の構成比率が大
きいため気相分解化学反応には不向きとされていたフェ
ロセンを気相分解化学反応の原料として利用することを
可能にした。また、水素と窒素の混合比を変化すること
により気相成長中の薄膜内の炭素量を変化させその磁気
特性を制御することができる事を発見した。
ズマ中に発生するN Hラジカルがフェロセンの分解過
程で出来る炭化水素化合物の気相成長中の薄膜への混入
を減少させることを見いだした。この反応の発見により
、熱的に安定であるが、鉄に対する炭素の構成比率が大
きいため気相分解化学反応には不向きとされていたフェ
ロセンを気相分解化学反応の原料として利用することを
可能にした。また、水素と窒素の混合比を変化すること
により気相成長中の薄膜内の炭素量を変化させその磁気
特性を制御することができる事を発見した。
反応系に供給する水素と窒素の比率は、NHラジカルの
生成量に関係するため、NZ/H2体積比率0.02〜
0.25が望ましい。窒素量が少ない場合発生するNH
ラジカルの量が少なく樹脂状未分解物が堆積し、窒素量
が多い場合水素量が相対的に減少しフェロセンの分解が
充分進行せずやはり樹脂状の堆積物ができる。
生成量に関係するため、NZ/H2体積比率0.02〜
0.25が望ましい。窒素量が少ない場合発生するNH
ラジカルの量が少なく樹脂状未分解物が堆積し、窒素量
が多い場合水素量が相対的に減少しフェロセンの分解が
充分進行せずやはり樹脂状の堆積物ができる。
また、上記反応中に不活性ガスが存在することによりフ
ェロセンの分解が促進されるだけでなく気相成長した薄
膜の密度も上げることを見いだした。この場合の不活性
ガスには、ヘリウム、アルゴン等が有功であるが分子量
の大きいアルゴンが望ましい。混合する不活性ガスの量
は、上記役割をさせる為で有り多量に用いる必要はない
、望ましくはフェロセンと同量多くとも2倍量が望まし
い。
ェロセンの分解が促進されるだけでなく気相成長した薄
膜の密度も上げることを見いだした。この場合の不活性
ガスには、ヘリウム、アルゴン等が有功であるが分子量
の大きいアルゴンが望ましい。混合する不活性ガスの量
は、上記役割をさせる為で有り多量に用いる必要はない
、望ましくはフェロセンと同量多くとも2倍量が望まし
い。
また、発明者らは、気相分解化学反応時の圧力が低いほ
ど気相成長させた薄膜の磁気特性が向上することを発見
した。そのため、真空度の高い状態で気相成長すること
のできる電子サイクロトロン共鳴を利用した、プラ、ズ
マ発生装置をもちいることによりより磁気特性のよい炭
化物系磁性薄膜を得ることができる。
ど気相成長させた薄膜の磁気特性が向上することを発見
した。そのため、真空度の高い状態で気相成長すること
のできる電子サイクロトロン共鳴を利用した、プラ、ズ
マ発生装置をもちいることによりより磁気特性のよい炭
化物系磁性薄膜を得ることができる。
実施例
以下本発明の一実施例について、図面を用いて説明する
。
。
(実施例1)
第1図は、本−実施例で使用したプラズマ装置の一例で
ある。基板1を真空容器2内の電極9の下に配置し、排
気装置12により真空装置2を排気する。
ある。基板1を真空容器2内の電極9の下に配置し、排
気装置12により真空装置2を排気する。
次に、ヒーター4により、電極9を適当な温度に加熱す
ることにより、基板1を加熱する。このとき、基板の温
度により、保持力を変化させることが可能である。その
後、ボンベ5よりN2等の還元性気体を、ボンベ5゛よ
りN2等の窒素系気体を、またボンベ6よりアルゴンを
ミキサー8を介して真空装置2内に電極3の穴10より
導入する。
ることにより、基板1を加熱する。このとき、基板の温
度により、保持力を変化させることが可能である。その
後、ボンベ5よりN2等の還元性気体を、ボンベ5゛よ
りN2等の窒素系気体を、またボンベ6よりアルゴンを
ミキサー8を介して真空装置2内に電極3の穴10より
導入する。
次に、ボンベ7内のフェロセンをヒータ13により加熱
し、真空容器2内にノズルの穴10より導入し基板1に
吹出される。その後、真空容器2内を0.01〜10T
o r rの真空度に制御し、RF電[11により電
極3及び電極9のあいだに13.56Mtlzの高周波
を印加してプラズマ放電を生じさせ、基板1の表面に磁
性薄膜を形成する。
し、真空容器2内にノズルの穴10より導入し基板1に
吹出される。その後、真空容器2内を0.01〜10T
o r rの真空度に制御し、RF電[11により電
極3及び電極9のあいだに13.56Mtlzの高周波
を印加してプラズマ放電を生じさせ、基板1の表面に磁
性薄膜を形成する。
第1図に示したプラズマ装置において、基板1としてガ
ラス板を用い、これをヒーター4により200℃に加熱
しながら真空容器2を1.OX 1O−6Torrまで
排気した。次に、ボンベ5より水素ガスをボンベ5°よ
り窒素ガスをボンベ6よりアルゴンガスを真空容器2に
導入した。水素ガス、窒素ガス、アルゴンガスの体積比
率は磁性薄膜の特性等と共に表1に示す。ただし水素ガ
ス、窒素ガス、アルゴンガスの総量は、毎分3QcJと
した。次に、ボンベ7よりフェロセンを毎分5dずつ真
空容器2内に導入した。その後、真空容器2内を、0、
IT o r rの真空度に制御し、RF電源11によ
り13.56MHzの高周波を300W印加し、30分
磁性薄膜の形成を行った。得られた薄膜の特性とX線解
析により確認した薄膜内の生成物を表1に示す。
ラス板を用い、これをヒーター4により200℃に加熱
しながら真空容器2を1.OX 1O−6Torrまで
排気した。次に、ボンベ5より水素ガスをボンベ5°よ
り窒素ガスをボンベ6よりアルゴンガスを真空容器2に
導入した。水素ガス、窒素ガス、アルゴンガスの体積比
率は磁性薄膜の特性等と共に表1に示す。ただし水素ガ
ス、窒素ガス、アルゴンガスの総量は、毎分3QcJと
した。次に、ボンベ7よりフェロセンを毎分5dずつ真
空容器2内に導入した。その後、真空容器2内を、0、
IT o r rの真空度に制御し、RF電源11によ
り13.56MHzの高周波を300W印加し、30分
磁性薄膜の形成を行った。得られた薄膜の特性とX線解
析により確認した薄膜内の生成物を表1に示す。
この表から明らかなように、窒素量が、水素量に対して
モル比率で0.02倍ないし0.25倍においてより良
好な特性を有する炭化鉄が得られている。また、窒素量
により炭素量の変化した炭化鉄が得られている。
モル比率で0.02倍ないし0.25倍においてより良
好な特性を有する炭化鉄が得られている。また、窒素量
により炭素量の変化した炭化鉄が得られている。
(実施例2)
実施例1と同じ方法において、真空容器2内を0、OI
T o r rとした。それ以外は実施例1のサンプル
4と同じにし磁性薄膜を形成した。その結果を表2に示
す。
T o r rとした。それ以外は実施例1のサンプル
4と同じにし磁性薄膜を形成した。その結果を表2に示
す。
(実施例3)
第2図は、本−実施例で使用された電子サイクロトロン
共鳴を利用したプラズマ装置の一例である。基板1を真
空容器2内の中央に配置し、排気装置12により真空装
置2を排気する。
共鳴を利用したプラズマ装置の一例である。基板1を真
空容器2内の中央に配置し、排気装置12により真空装
置2を排気する。
次に、ボンベ5よりH2を、ボンベ5′よりN2を、ま
たボンベ6よりアルゴンをミキサー8を介して真空装置
2内に電極3の穴10より導入する。
たボンベ6よりアルゴンをミキサー8を介して真空装置
2内に電極3の穴10より導入する。
次に、ボンベ7内のフェロセンをヒータ13により加熱
し、真空容器2内にノズルの穴10より導入し基板1に
吹出される。その後、真空容器2内を1−OX10−5
〜1.0xlO−2T o r rの真空度に制御し、
磁場発生器15により真空容器1内に875Gauss
の磁場を発生させその後高周波発信器14により発生さ
せた2、 45 G llzの高周波を高周波i3過窓
より真空容器2内に導き内部のガスをプラズマ化し、基
板lの表面に磁性薄膜を形成する。
し、真空容器2内にノズルの穴10より導入し基板1に
吹出される。その後、真空容器2内を1−OX10−5
〜1.0xlO−2T o r rの真空度に制御し、
磁場発生器15により真空容器1内に875Gauss
の磁場を発生させその後高周波発信器14により発生さ
せた2、 45 G llzの高周波を高周波i3過窓
より真空容器2内に導き内部のガスをプラズマ化し、基
板lの表面に磁性薄膜を形成する。
第2図に示したプラズマ装置において、基板lとしてガ
ラス板を用い、真空容器2を1.OX to−’Tor
rまで排気した。次に、ボンベ5より水素ガスをボンベ
5゛より窒素ガスをボンベ6よりアルゴンガスを真空容
器2に導入する。水素ガス、窒素ガス、アルゴンガスの
体積比率は実施例1のサンプル4と同じにする。次に、
ボンベ7よりフェロセンを毎分5cnlずつ真空容器2
内のノズルの穴10より導入した。その後、真空容器2
内を、4.Ox 10−’T o r rの真空度に制
御し、高周波発信器14により2.45GIIzの高周
波を300W印加し、10分磁性薄膜の形成を行った。
ラス板を用い、真空容器2を1.OX to−’Tor
rまで排気した。次に、ボンベ5より水素ガスをボンベ
5゛より窒素ガスをボンベ6よりアルゴンガスを真空容
器2に導入する。水素ガス、窒素ガス、アルゴンガスの
体積比率は実施例1のサンプル4と同じにする。次に、
ボンベ7よりフェロセンを毎分5cnlずつ真空容器2
内のノズルの穴10より導入した。その後、真空容器2
内を、4.Ox 10−’T o r rの真空度に制
御し、高周波発信器14により2.45GIIzの高周
波を300W印加し、10分磁性薄膜の形成を行った。
得られた6イ1性薄膜の特性を表3に示す。
表 3
表2、表3から明らかなように、成膜時の圧力を減少さ
せることにより高Brの磁性薄膜を作ることができる。
せることにより高Brの磁性薄膜を作ることができる。
発明の効果
以上要するに、本発明は、プラズマを利用した気相分解
反応により磁性薄膜を作る場合において水素雰囲気中に
窒素とアルゴンを導入することによりより安全性の高い
フェロセンを原料ガスとして用いることができる。また
、低圧力下での成膜において、より特性の良い炭化鉄磁
性薄膜が得られるため電子サイクロトロン共鳴を用いて
プラズマを発生させる装置を用いることが有功である。
反応により磁性薄膜を作る場合において水素雰囲気中に
窒素とアルゴンを導入することによりより安全性の高い
フェロセンを原料ガスとして用いることができる。また
、低圧力下での成膜において、より特性の良い炭化鉄磁
性薄膜が得られるため電子サイクロトロン共鳴を用いて
プラズマを発生させる装置を用いることが有功である。
第1図、第2図は、本発明の磁性薄膜の製造装置の構成
図である。 1・・・・・・基板、2・・・・・・真空容器、3,9
・・・・・・電極、4.13・・・・・・ヒーター、5
・・・・・・水素ガスボンベ、5゜・・・・・・窒素系
ガスボンベ、6・・・・・・アルゴンガスボンベ、7・
・・・・・フェロセンガスボンベ、8・・・・・・ミキ
サー、10・・・・・・穴、11・・・・・・RF電源
、12・・・・・・排気ポンプ、14・・・・・・高周
波発信器、15・・・・・・磁場発生器、16・・・・
・・高周波導入窓。 代理人の氏名 弁理士 中尾敏男 はか1名j−基板
図である。 1・・・・・・基板、2・・・・・・真空容器、3,9
・・・・・・電極、4.13・・・・・・ヒーター、5
・・・・・・水素ガスボンベ、5゜・・・・・・窒素系
ガスボンベ、6・・・・・・アルゴンガスボンベ、7・
・・・・・フェロセンガスボンベ、8・・・・・・ミキ
サー、10・・・・・・穴、11・・・・・・RF電源
、12・・・・・・排気ポンプ、14・・・・・・高周
波発信器、15・・・・・・磁場発生器、16・・・・
・・高周波導入窓。 代理人の氏名 弁理士 中尾敏男 はか1名j−基板
Claims (2)
- (1)減圧下において鉄のビスシクロペンタジエニル錯
塩を窒素と不活性ガスを含む水素雰囲気においてプラズ
マを利用して気相分解化学反応させ基板上に気相成長さ
せることを特徴とする磁性薄膜の製造方法。 - (2)プラズマは、電子サイクロトロン共鳴を利用する
発生方法からなることを特徴とする特許請求の範囲第(
1)項に記載の磁性薄膜の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1920287A JPS63186411A (ja) | 1987-01-29 | 1987-01-29 | 磁性薄膜の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1920287A JPS63186411A (ja) | 1987-01-29 | 1987-01-29 | 磁性薄膜の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63186411A true JPS63186411A (ja) | 1988-08-02 |
Family
ID=11992768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1920287A Pending JPS63186411A (ja) | 1987-01-29 | 1987-01-29 | 磁性薄膜の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63186411A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010842A (en) * | 1988-10-25 | 1991-04-30 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for forming thin film |
-
1987
- 1987-01-29 JP JP1920287A patent/JPS63186411A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010842A (en) * | 1988-10-25 | 1991-04-30 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for forming thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0346436B2 (ja) | ||
JPH08232069A (ja) | 固体物質の昇華方法及び装置 | |
JPH0424284B2 (ja) | ||
Suhr | Applications and trends of nonequilibrium plasma chemistry with organic and organometallic compounds | |
JPS61158899A (ja) | ダイヤモンド膜の製法 | |
JPS6136200A (ja) | ダイヤモンドの気相合成法 | |
JPS63186411A (ja) | 磁性薄膜の製造方法 | |
JPS62158195A (ja) | ダイヤモンドの合成法 | |
JPS6221757B2 (ja) | ||
JPH06144993A (ja) | 硼素ドープダイヤモンド | |
JPS63120408A (ja) | 磁性薄膜の製造方法 | |
JP2569423B2 (ja) | 窒化ホウ素の気相合成法 | |
JPS60210597A (ja) | ダイヤモンドの気相合成法 | |
JPS63185894A (ja) | ダイヤモンド薄膜又はダイヤモンド状薄膜の製造方法 | |
JPS63215596A (ja) | ダイヤモンド薄膜又はダイヤモンド状薄膜の製造方法 | |
JPH01203297A (ja) | 燃焼炎によるダイヤモンドの合成法 | |
JP2840750B2 (ja) | 被膜形成方法 | |
JPS63129099A (ja) | ダイヤモンド薄膜又はダイヤモンド状薄膜の製造方法 | |
JPH01246357A (ja) | 立方晶窒化ホウ素膜の製造方法 | |
JPH01157497A (ja) | 粒状ダイヤモンドの製造法 | |
JPS60200896A (ja) | 繊維状ダイヤモンドの合成法 | |
JPS63215597A (ja) | ダイヤモンド薄膜又はダイヤモンド状薄膜の製造方法 | |
JPH0742197B2 (ja) | プラズマを用いるダイヤモンドの合成法 | |
JPS6293911A (ja) | 磁性流体の製造装置 | |
JPS63117996A (ja) | ダイヤモンドの気相合成法 |