JPS63181310A - Reformation treatment of solid electrolytic capacitor - Google Patents
Reformation treatment of solid electrolytic capacitorInfo
- Publication number
- JPS63181310A JPS63181310A JP1220987A JP1220987A JPS63181310A JP S63181310 A JPS63181310 A JP S63181310A JP 1220987 A JP1220987 A JP 1220987A JP 1220987 A JP1220987 A JP 1220987A JP S63181310 A JPS63181310 A JP S63181310A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolytic
- electrolytic capacitor
- oxidation polymerization
- semiconductor layer
- polymer thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims description 19
- 239000007787 solid Substances 0.000 title claims description 11
- 239000010408 film Substances 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 11
- 238000006116 polymerization reaction Methods 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 239000010407 anodic oxide Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical class CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、固体電解コンデンサの製造方法、特に再化成
処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor, particularly to a reconversion treatment method.
固体電解コンデンサは、弁作用を有する金属を陽極酸化
し、その陽極酸化股上に固体電解質の半導体層を形成す
るものであるが、固体電解質としては無機半導体の2酸
化マンガンおよび有機半導体のTCNQ塩を用いたもの
が周知である。しかし、2酸化マンガン、TCNQ塩よ
り優れた高導電度を有するビロール、フラン、チオフェ
ンなどの複素環式化合物のポリマー薄膜を用いることに
より、固体電解コンデンサの特性、製造上に幾多のメリ
ットを得ることができる(たとえば特願昭60−003
324号)。Solid electrolytic capacitors are made by anodizing a metal that has a valve action and forming a solid electrolyte semiconductor layer on the anodized layer.The solid electrolyte uses manganese dioxide, an inorganic semiconductor, and TCNQ salt, an organic semiconductor. The one used is well known. However, by using polymer thin films of heterocyclic compounds such as pyrrole, furan, and thiophene, which have higher conductivity than manganese dioxide or TCNQ salt, numerous advantages can be obtained in terms of the properties and manufacturing of solid electrolytic capacitors. (For example, Japanese Patent Application No. 60-003)
No. 324).
本発明は、上記複素環式化合物のポリマー薄膜を半導体
層とする固体電解コンデンサの製造方法に関するもので
ある。The present invention relates to a method for manufacturing a solid electrolytic capacitor using a polymer thin film of the above-mentioned heterocyclic compound as a semiconductor layer.
一般に、半導体層形成後、酸化膜の耐圧が低下するので
、再化成を行なう。ポリマー薄膜を用いる固体電解コン
デンサの場合には、電解酸化重合の際に、酸化膜に欠陥
があった場合に、この部分に電解酸化重合液が入り、そ
の部分に実質的に酸化膜厚の薄いスポットが生じ、耐圧
不良になるものと推測される。特に、電解酸化重合は低
温でポリマー膜厚制御のため定電流で重合を行なうので
、酸化膜にかかる電圧が陽極化成電圧より通常高くなる
ため、耐圧不良が生じ易い4
従って、再化成によって、酸化膜厚を厚く修正すれば、
上記原因による不良を除去できる。この場合、アルミニ
ウムなどに酸化膜を形成する場合と異なり、ポリマー薄
膜を形成した状態での化成であるから、特にポリマー薄
膜の劣化が生じないようにしなければならない。Generally, after the semiconductor layer is formed, re-formation is performed because the withstand voltage of the oxide film decreases. In the case of solid electrolytic capacitors that use a polymer thin film, if there is a defect in the oxide film during electrolytic oxidation polymerization, the electrolytic oxidation polymerization liquid enters the defective part, creating a thin oxide film in that part. It is presumed that spots will occur, resulting in poor withstand voltage. In particular, in electrolytic oxidation polymerization, polymerization is carried out at low temperatures and with a constant current to control the polymer film thickness, so the voltage applied to the oxide film is usually higher than the anodization voltage, which tends to cause breakdown voltage problems4. If you correct the film thickness to be thicker,
Defects caused by the above causes can be eliminated. In this case, unlike the case of forming an oxide film on aluminum or the like, since the chemical formation is carried out with a polymer thin film formed, it is particularly important to prevent the polymer thin film from deteriorating.
本発明の目的は、上記事情に鑑み、ポリマー薄膜を半導
体層とする固体電解コンデンサの再化成処理の最適な方
法を提供することにある。In view of the above circumstances, an object of the present invention is to provide an optimal method for reconversion treatment of a solid electrolytic capacitor using a polymer thin film as a semiconductor layer.
本発明においては、電解酸化重合によりポリマー薄膜を
形成した後、電解酸化重合液を化成液に置換した後、5
0℃以下で再化成するようにしている。In the present invention, after forming a polymer thin film by electrolytic oxidation polymerization and replacing the electrolytic oxidation polymerization solution with a chemical solution,
It is designed to re-form at temperatures below 0°C.
以下、図面を参照して、本発明の一実施例につき説明す
る。以下の実施例では、定格6.3V。Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In the following example, the rating is 6.3V.
4.7μFのコンデンサを対象とし、陽極体としてアル
ミニウムを用い、表面を粗面化したアルミニウムエツチ
ド箔を5mmX3Q’mに切断し、先ずアジピン酸系化
成液中で20Vで定電圧化成を行ない、箔表面に陽極酸
化膜を形成する。Targeting a 4.7 μF capacitor, aluminum was used as the anode body, aluminum etched foil with a roughened surface was cut into 5 mm x 3 Q'm, and first constant voltage chemical conversion was performed at 20 V in an adipic acid chemical solution. Form an anodic oxide film on the foil surface.
次に、アルミニウムエツチド箔の陽極リードになる部分
をレジスト部材で保護し、その他の部分にポリピロール
膜の電解酸化重合による形成を行なう。この形成はアセ
トニトリルII!を溶媒として、ビロール0.05mo
l (3,0g)と支持塩のアンモニウムボロジサ
リチレート約0.02mol (6,0g)とを溶解
した電解液中で、−43℃、10mA/adの電流を1
0分間流して行なった。Next, the portion of the aluminum etched foil that will become the anode lead is protected with a resist member, and a polypyrrole film is formed on the other portions by electrolytic oxidation polymerization. This formation is acetonitrile II! as a solvent, 0.05 mo of virol
In an electrolytic solution containing approximately 0.02 mol (6.0 g) of ammonium borodisalicylate as a supporting salt, a current of 10 mA/ad was applied at -43°C.
It was run for 0 minutes.
再化成処理は、先ず前処理として、アセトニトリル中で
十分洗浄した後、加熱乾燥してから、アジピン酸系化成
液中で真空含浸する。これによって、電解酸化重合液は
完全に置換される。上記前処理を終えたサンプルを、ア
ジピン酸系化成液中で5分間化成処理を行なう。このと
きの条件として、20℃、50℃、60℃、80℃の各
温度につき、サンプルを50ケずつ5分間化成を行なっ
た。In the reconversion treatment, first, as a pretreatment, the material is sufficiently washed in acetonitrile, then heated and dried, and then vacuum impregnated in an adipic acid-based chemical solution. As a result, the electrolytic oxidation polymerization liquid is completely replaced. The sample that has undergone the above pretreatment is subjected to a chemical conversion treatment for 5 minutes in an adipic acid-based chemical solution. At this time, 50 samples were subjected to chemical conversion for 5 minutes at each temperature of 20°C, 50°C, 60°C, and 80°C.
次に、再化成を終えた箔を純水で洗浄、乾燥し、グラフ
ァイト層・銀ペースト層を順にディップ法で形成した後
、恨ペーストで陰極リードを引出し、コンデンサ素子と
する。第2図が断面図で、1がアルミニウムエツチド箔
で先端が陽極リードになっている。コンデンサ構成要素
部は、アルミニウム酸化膜2.ポリピロール膜3.グラ
ファイト層4.銀ペースト層5からなり、銀ペースト6
によって陰極リード7が接続されている。8はレジスト
層である。Next, the reconstituted foil is washed with pure water and dried, and a graphite layer and a silver paste layer are sequentially formed using a dipping method, and then a cathode lead is drawn out using greasy paste to form a capacitor element. Figure 2 is a cross-sectional view, and 1 is an aluminum etched foil whose tip is an anode lead. The capacitor component part has an aluminum oxide film 2. Polypyrrole film 3. Graphite layer 4. Consists of silver paste layer 5, silver paste 6
The cathode lead 7 is connected by. 8 is a resist layer.
再化成の条件による特性変化として、10KHzにおけ
るtanδを測定し、第1図の結果を得た。As a characteristic change due to reconstitution conditions, tan δ at 10 KHz was measured, and the results shown in FIG. 1 were obtained.
第1図にみるように、再化成温度が50℃以下では5%
以下となり、50℃を超えるとtanδの上昇劣化がみ
られる。30℃以下ではtanδは3%程度となしうる
。なおtanδの許容値としては通常10%程度と考え
られている。tanδの劣化は、半導体層であるポリマ
ー薄膜の抵抗などの増大によるものと考えられる。ポリ
マー薄膜は、再化成後においてグラファイト・銀ペース
トなどの熱処理工程を経るので、それによる劣化も考え
られるが、このサンプルでは比較的低温の処理を行ない
、また第1図の各温度のサンプル(50ケ)は同一の処
理を経ているので、上記第1図の特性差異は再化成の温
度処理に起因するものとしてよい。As shown in Figure 1, when the re-formation temperature is below 50℃, 5%
If the temperature exceeds 50°C, an increase in tan δ will be observed. At temperatures below 30°C, tan δ can be approximately 3%. Note that the permissible value of tan δ is generally considered to be about 10%. The deterioration of tan δ is considered to be due to an increase in the resistance of the polymer thin film, which is a semiconductor layer. Polymer thin films go through a heat treatment process such as graphite/silver paste after re-forming, so it is possible that they may deteriorate due to this, but this sample was treated at a relatively low temperature, and the samples at each temperature (50 (e) underwent the same treatment, so the difference in characteristics shown in FIG. 1 above can be attributed to the temperature treatment for re-formation.
なお、提示した実験データの再化成液はアジピン酸系で
あったが、一般に用いられる液、たとえば硼酸系、リン
酸系につき同様な結果を得ている。Although the reconstitution liquid in the experimental data presented was an adipic acid-based liquid, similar results were obtained with commonly used liquids such as boric acid-based and phosphoric acid-based liquids.
また、電解酸化重合後に、化成液に置換することが完全
でないと、再化成時間を長くしなければならないことが
実験的にわかった。Furthermore, it has been experimentally found that if the replacement with the chemical solution is not complete after the electrolytic oxidation polymerization, the re-forming time must be increased.
以上、説明したように、ポリマー薄膜を半導体層とする
固体電解コンデンサの再化成条件として、温度を50℃
以下に制限することにより、コンデンサのtanδ(@
10 K Hz)を10%以下におさえることができ
た。これによって、従来高周波コンデンサとしてもっば
らフィルムコンデンサが用いられていた用途に対して、
本発明による固体電解コンデンサが充分使用可能となる
。As explained above, the temperature is set at 50°C as a re-forming condition for a solid electrolytic capacitor using a polymer thin film as a semiconductor layer.
By limiting the tan δ of the capacitor (@
10 KHz) was able to be suppressed to 10% or less. As a result, for applications where conventionally film capacitors were mostly used as high frequency capacitors,
The solid electrolytic capacitor according to the present invention can be fully used.
第1図は本発明の一実施例につき、化成温度を変えたと
きのコンデンサ特性を示す図、第2図はコンデンサ素子
断面図である。
1−アルミニウムエツチド箔、
2−アルミニウム酸化膜、
3−ポリピロール膜、 4−グラファイト層、5−1
艮ペ一スト層、 6・−・i艮ペースト、7−陰極リー
ド、 8− レジスト層。
特許出願人 日本通信工業株式会社代理人 弁
理士 佐藤秋比古
第2因FIG. 1 is a diagram showing capacitor characteristics when the formation temperature is changed in one embodiment of the present invention, and FIG. 2 is a sectional view of a capacitor element. 1-Aluminum etched foil, 2-Aluminum oxide film, 3-Polypyrrole film, 4-Graphite layer, 5-1
1 paste layer, 6-i paste, 7 cathode lead, 8 resist layer. Patent applicant Nippon Tsushin Kogyo Co., Ltd. Agent Patent attorney Akihiko Sato 2nd cause
Claims (1)
電解コンデンサにおいて、 弁作用を有する金属体を陽極酸化し、前記陽極酸化膜上
に、半導体層を電解酸化重合により形成後、電解酸化重
合液を化成液に置換した後、50℃以下で再化成するこ
とを特徴とする固体電解コンデンサの再化成処理方法。[Claims] In a solid electrolytic capacitor having a polymer thin film of a heterocyclic compound as a semiconductor layer, a metal body having a valve action is anodized, and a semiconductor layer is formed on the anodic oxide film by electrolytic oxidation polymerization. . A reconversion treatment method for a solid electrolytic capacitor, which comprises replacing an electrolytic oxidation polymerization solution with a chemical conversion solution, and then performing reconversion at a temperature of 50° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1220987A JPH0750662B2 (en) | 1987-01-23 | 1987-01-23 | Solid electrolytic capacitor re-formation treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1220987A JPH0750662B2 (en) | 1987-01-23 | 1987-01-23 | Solid electrolytic capacitor re-formation treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63181310A true JPS63181310A (en) | 1988-07-26 |
JPH0750662B2 JPH0750662B2 (en) | 1995-05-31 |
Family
ID=11798993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1220987A Expired - Lifetime JPH0750662B2 (en) | 1987-01-23 | 1987-01-23 | Solid electrolytic capacitor re-formation treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0750662B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6336944B1 (en) | 1999-01-28 | 2002-01-08 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing solid electrolytic capacitors |
-
1987
- 1987-01-23 JP JP1220987A patent/JPH0750662B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6336944B1 (en) | 1999-01-28 | 2002-01-08 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing solid electrolytic capacitors |
Also Published As
Publication number | Publication date |
---|---|
JPH0750662B2 (en) | 1995-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63181308A (en) | Method of forming semiconductor layer of solid electrolytic capacitor | |
WO1999065043A1 (en) | Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor | |
JPH11186110A (en) | Electrolytic capacitor and manufacture thereof | |
JPH0396210A (en) | Manufacture of solid electrolytic capacitor | |
JP3314480B2 (en) | Solid electrolytic capacitors | |
JPS63181310A (en) | Reformation treatment of solid electrolytic capacitor | |
JP4802640B2 (en) | Manufacturing method of solid electrolytic capacitor | |
US6334945B1 (en) | Aging process for solid electrode capacitor | |
JPH0267708A (en) | Manufacture of organic semiconductor solid electrolytic capacitor | |
JP3669191B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2730345B2 (en) | Manufacturing method of capacitor | |
JP2007103468A (en) | Electrolytic capacitor and manufacturing method thereof | |
JPH0338011A (en) | Manufacture of solid electrolytic capacitor | |
JP3552415B2 (en) | Solid electrolytic capacitors | |
JPH11121280A (en) | Solid electrolytic capacitor and manufacturing method therefor | |
JP2004040134A (en) | Manufacturing method of solid electrolytic capacitor | |
JP2840522B2 (en) | Manufacturing method of organic semiconductor solid electrolytic capacitor | |
JPS62119913A (en) | Manufacture of solid electrolyte capacitor | |
JPS61174712A (en) | Solid electrolytic capacitor | |
JP2001267185A (en) | Method for manufacturing solid electrolytic capacitor | |
JPH01105525A (en) | Manufacture of solid electrolytic capacitor | |
JPH0883735A (en) | Manufacture of capacitor | |
JPH0550125B2 (en) | ||
JPH0274016A (en) | Solid electrolytic condenser | |
JPS63146425A (en) | Manufacture of solid electrolytic capacitor |