JPS63181310A - Reformation treatment of solid electrolytic capacitor - Google Patents

Reformation treatment of solid electrolytic capacitor

Info

Publication number
JPS63181310A
JPS63181310A JP1220987A JP1220987A JPS63181310A JP S63181310 A JPS63181310 A JP S63181310A JP 1220987 A JP1220987 A JP 1220987A JP 1220987 A JP1220987 A JP 1220987A JP S63181310 A JPS63181310 A JP S63181310A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
oxidation polymerization
semiconductor layer
polymer thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1220987A
Other languages
Japanese (ja)
Other versions
JPH0750662B2 (en
Inventor
原川 順弘
賢次 玉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
Nitsuko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Corp filed Critical Nitsuko Corp
Priority to JP1220987A priority Critical patent/JPH0750662B2/en
Publication of JPS63181310A publication Critical patent/JPS63181310A/en
Publication of JPH0750662B2 publication Critical patent/JPH0750662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電解コンデンサの製造方法、特に再化成
処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor, particularly to a reconversion treatment method.

〔従来の技術〕[Conventional technology]

固体電解コンデンサは、弁作用を有する金属を陽極酸化
し、その陽極酸化股上に固体電解質の半導体層を形成す
るものであるが、固体電解質としては無機半導体の2酸
化マンガンおよび有機半導体のTCNQ塩を用いたもの
が周知である。しかし、2酸化マンガン、TCNQ塩よ
り優れた高導電度を有するビロール、フラン、チオフェ
ンなどの複素環式化合物のポリマー薄膜を用いることに
より、固体電解コンデンサの特性、製造上に幾多のメリ
ットを得ることができる(たとえば特願昭60−003
324号)。
Solid electrolytic capacitors are made by anodizing a metal that has a valve action and forming a solid electrolyte semiconductor layer on the anodized layer.The solid electrolyte uses manganese dioxide, an inorganic semiconductor, and TCNQ salt, an organic semiconductor. The one used is well known. However, by using polymer thin films of heterocyclic compounds such as pyrrole, furan, and thiophene, which have higher conductivity than manganese dioxide or TCNQ salt, numerous advantages can be obtained in terms of the properties and manufacturing of solid electrolytic capacitors. (For example, Japanese Patent Application No. 60-003)
No. 324).

本発明は、上記複素環式化合物のポリマー薄膜を半導体
層とする固体電解コンデンサの製造方法に関するもので
ある。
The present invention relates to a method for manufacturing a solid electrolytic capacitor using a polymer thin film of the above-mentioned heterocyclic compound as a semiconductor layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、半導体層形成後、酸化膜の耐圧が低下するので
、再化成を行なう。ポリマー薄膜を用いる固体電解コン
デンサの場合には、電解酸化重合の際に、酸化膜に欠陥
があった場合に、この部分に電解酸化重合液が入り、そ
の部分に実質的に酸化膜厚の薄いスポットが生じ、耐圧
不良になるものと推測される。特に、電解酸化重合は低
温でポリマー膜厚制御のため定電流で重合を行なうので
、酸化膜にかかる電圧が陽極化成電圧より通常高くなる
ため、耐圧不良が生じ易い4 従って、再化成によって、酸化膜厚を厚く修正すれば、
上記原因による不良を除去できる。この場合、アルミニ
ウムなどに酸化膜を形成する場合と異なり、ポリマー薄
膜を形成した状態での化成であるから、特にポリマー薄
膜の劣化が生じないようにしなければならない。
Generally, after the semiconductor layer is formed, re-formation is performed because the withstand voltage of the oxide film decreases. In the case of solid electrolytic capacitors that use a polymer thin film, if there is a defect in the oxide film during electrolytic oxidation polymerization, the electrolytic oxidation polymerization liquid enters the defective part, creating a thin oxide film in that part. It is presumed that spots will occur, resulting in poor withstand voltage. In particular, in electrolytic oxidation polymerization, polymerization is carried out at low temperatures and with a constant current to control the polymer film thickness, so the voltage applied to the oxide film is usually higher than the anodization voltage, which tends to cause breakdown voltage problems4. If you correct the film thickness to be thicker,
Defects caused by the above causes can be eliminated. In this case, unlike the case of forming an oxide film on aluminum or the like, since the chemical formation is carried out with a polymer thin film formed, it is particularly important to prevent the polymer thin film from deteriorating.

本発明の目的は、上記事情に鑑み、ポリマー薄膜を半導
体層とする固体電解コンデンサの再化成処理の最適な方
法を提供することにある。
In view of the above circumstances, an object of the present invention is to provide an optimal method for reconversion treatment of a solid electrolytic capacitor using a polymer thin film as a semiconductor layer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、電解酸化重合によりポリマー薄膜を
形成した後、電解酸化重合液を化成液に置換した後、5
0℃以下で再化成するようにしている。
In the present invention, after forming a polymer thin film by electrolytic oxidation polymerization and replacing the electrolytic oxidation polymerization solution with a chemical solution,
It is designed to re-form at temperatures below 0°C.

〔実施例〕〔Example〕

以下、図面を参照して、本発明の一実施例につき説明す
る。以下の実施例では、定格6.3V。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In the following example, the rating is 6.3V.

4.7μFのコンデンサを対象とし、陽極体としてアル
ミニウムを用い、表面を粗面化したアルミニウムエツチ
ド箔を5mmX3Q’mに切断し、先ずアジピン酸系化
成液中で20Vで定電圧化成を行ない、箔表面に陽極酸
化膜を形成する。
Targeting a 4.7 μF capacitor, aluminum was used as the anode body, aluminum etched foil with a roughened surface was cut into 5 mm x 3 Q'm, and first constant voltage chemical conversion was performed at 20 V in an adipic acid chemical solution. Form an anodic oxide film on the foil surface.

次に、アルミニウムエツチド箔の陽極リードになる部分
をレジスト部材で保護し、その他の部分にポリピロール
膜の電解酸化重合による形成を行なう。この形成はアセ
トニトリルII!を溶媒として、ビロール0.05mo
 l  (3,0g)と支持塩のアンモニウムボロジサ
リチレート約0.02mol  (6,0g)とを溶解
した電解液中で、−43℃、10mA/adの電流を1
0分間流して行なった。
Next, the portion of the aluminum etched foil that will become the anode lead is protected with a resist member, and a polypyrrole film is formed on the other portions by electrolytic oxidation polymerization. This formation is acetonitrile II! as a solvent, 0.05 mo of virol
In an electrolytic solution containing approximately 0.02 mol (6.0 g) of ammonium borodisalicylate as a supporting salt, a current of 10 mA/ad was applied at -43°C.
It was run for 0 minutes.

再化成処理は、先ず前処理として、アセトニトリル中で
十分洗浄した後、加熱乾燥してから、アジピン酸系化成
液中で真空含浸する。これによって、電解酸化重合液は
完全に置換される。上記前処理を終えたサンプルを、ア
ジピン酸系化成液中で5分間化成処理を行なう。このと
きの条件として、20℃、50℃、60℃、80℃の各
温度につき、サンプルを50ケずつ5分間化成を行なっ
た。
In the reconversion treatment, first, as a pretreatment, the material is sufficiently washed in acetonitrile, then heated and dried, and then vacuum impregnated in an adipic acid-based chemical solution. As a result, the electrolytic oxidation polymerization liquid is completely replaced. The sample that has undergone the above pretreatment is subjected to a chemical conversion treatment for 5 minutes in an adipic acid-based chemical solution. At this time, 50 samples were subjected to chemical conversion for 5 minutes at each temperature of 20°C, 50°C, 60°C, and 80°C.

次に、再化成を終えた箔を純水で洗浄、乾燥し、グラフ
ァイト層・銀ペースト層を順にディップ法で形成した後
、恨ペーストで陰極リードを引出し、コンデンサ素子と
する。第2図が断面図で、1がアルミニウムエツチド箔
で先端が陽極リードになっている。コンデンサ構成要素
部は、アルミニウム酸化膜2.ポリピロール膜3.グラ
ファイト層4.銀ペースト層5からなり、銀ペースト6
によって陰極リード7が接続されている。8はレジスト
層である。
Next, the reconstituted foil is washed with pure water and dried, and a graphite layer and a silver paste layer are sequentially formed using a dipping method, and then a cathode lead is drawn out using greasy paste to form a capacitor element. Figure 2 is a cross-sectional view, and 1 is an aluminum etched foil whose tip is an anode lead. The capacitor component part has an aluminum oxide film 2. Polypyrrole film 3. Graphite layer 4. Consists of silver paste layer 5, silver paste 6
The cathode lead 7 is connected by. 8 is a resist layer.

再化成の条件による特性変化として、10KHzにおけ
るtanδを測定し、第1図の結果を得た。
As a characteristic change due to reconstitution conditions, tan δ at 10 KHz was measured, and the results shown in FIG. 1 were obtained.

第1図にみるように、再化成温度が50℃以下では5%
以下となり、50℃を超えるとtanδの上昇劣化がみ
られる。30℃以下ではtanδは3%程度となしうる
。なおtanδの許容値としては通常10%程度と考え
られている。tanδの劣化は、半導体層であるポリマ
ー薄膜の抵抗などの増大によるものと考えられる。ポリ
マー薄膜は、再化成後においてグラファイト・銀ペース
トなどの熱処理工程を経るので、それによる劣化も考え
られるが、このサンプルでは比較的低温の処理を行ない
、また第1図の各温度のサンプル(50ケ)は同一の処
理を経ているので、上記第1図の特性差異は再化成の温
度処理に起因するものとしてよい。
As shown in Figure 1, when the re-formation temperature is below 50℃, 5%
If the temperature exceeds 50°C, an increase in tan δ will be observed. At temperatures below 30°C, tan δ can be approximately 3%. Note that the permissible value of tan δ is generally considered to be about 10%. The deterioration of tan δ is considered to be due to an increase in the resistance of the polymer thin film, which is a semiconductor layer. Polymer thin films go through a heat treatment process such as graphite/silver paste after re-forming, so it is possible that they may deteriorate due to this, but this sample was treated at a relatively low temperature, and the samples at each temperature (50 (e) underwent the same treatment, so the difference in characteristics shown in FIG. 1 above can be attributed to the temperature treatment for re-formation.

なお、提示した実験データの再化成液はアジピン酸系で
あったが、一般に用いられる液、たとえば硼酸系、リン
酸系につき同様な結果を得ている。
Although the reconstitution liquid in the experimental data presented was an adipic acid-based liquid, similar results were obtained with commonly used liquids such as boric acid-based and phosphoric acid-based liquids.

また、電解酸化重合後に、化成液に置換することが完全
でないと、再化成時間を長くしなければならないことが
実験的にわかった。
Furthermore, it has been experimentally found that if the replacement with the chemical solution is not complete after the electrolytic oxidation polymerization, the re-forming time must be increased.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、ポリマー薄膜を半導体層とする
固体電解コンデンサの再化成条件として、温度を50℃
以下に制限することにより、コンデンサのtanδ(@
 10 K Hz)を10%以下におさえることができ
た。これによって、従来高周波コンデンサとしてもっば
らフィルムコンデンサが用いられていた用途に対して、
本発明による固体電解コンデンサが充分使用可能となる
As explained above, the temperature is set at 50°C as a re-forming condition for a solid electrolytic capacitor using a polymer thin film as a semiconductor layer.
By limiting the tan δ of the capacitor (@
10 KHz) was able to be suppressed to 10% or less. As a result, for applications where conventionally film capacitors were mostly used as high frequency capacitors,
The solid electrolytic capacitor according to the present invention can be fully used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例につき、化成温度を変えたと
きのコンデンサ特性を示す図、第2図はコンデンサ素子
断面図である。 1−アルミニウムエツチド箔、 2−アルミニウム酸化膜、 3−ポリピロール膜、  4−グラファイト層、5−1
艮ペ一スト層、 6・−・i艮ペースト、7−陰極リー
ド、  8− レジスト層。 特許出願人   日本通信工業株式会社代理人   弁
理士  佐藤秋比古 第2因
FIG. 1 is a diagram showing capacitor characteristics when the formation temperature is changed in one embodiment of the present invention, and FIG. 2 is a sectional view of a capacitor element. 1-Aluminum etched foil, 2-Aluminum oxide film, 3-Polypyrrole film, 4-Graphite layer, 5-1
1 paste layer, 6-i paste, 7 cathode lead, 8 resist layer. Patent applicant Nippon Tsushin Kogyo Co., Ltd. Agent Patent attorney Akihiko Sato 2nd cause

Claims (1)

【特許請求の範囲】  複素環式化合物のポリマー薄膜を半導体層とする固体
電解コンデンサにおいて、 弁作用を有する金属体を陽極酸化し、前記陽極酸化膜上
に、半導体層を電解酸化重合により形成後、電解酸化重
合液を化成液に置換した後、50℃以下で再化成するこ
とを特徴とする固体電解コンデンサの再化成処理方法。
[Claims] In a solid electrolytic capacitor having a polymer thin film of a heterocyclic compound as a semiconductor layer, a metal body having a valve action is anodized, and a semiconductor layer is formed on the anodic oxide film by electrolytic oxidation polymerization. . A reconversion treatment method for a solid electrolytic capacitor, which comprises replacing an electrolytic oxidation polymerization solution with a chemical conversion solution, and then performing reconversion at a temperature of 50° C. or lower.
JP1220987A 1987-01-23 1987-01-23 Solid electrolytic capacitor re-formation treatment method Expired - Lifetime JPH0750662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220987A JPH0750662B2 (en) 1987-01-23 1987-01-23 Solid electrolytic capacitor re-formation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220987A JPH0750662B2 (en) 1987-01-23 1987-01-23 Solid electrolytic capacitor re-formation treatment method

Publications (2)

Publication Number Publication Date
JPS63181310A true JPS63181310A (en) 1988-07-26
JPH0750662B2 JPH0750662B2 (en) 1995-05-31

Family

ID=11798993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220987A Expired - Lifetime JPH0750662B2 (en) 1987-01-23 1987-01-23 Solid electrolytic capacitor re-formation treatment method

Country Status (1)

Country Link
JP (1) JPH0750662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336944B1 (en) 1999-01-28 2002-01-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336944B1 (en) 1999-01-28 2002-01-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitors

Also Published As

Publication number Publication date
JPH0750662B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JPS63181308A (en) Method of forming semiconductor layer of solid electrolytic capacitor
WO1999065043A1 (en) Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP3314480B2 (en) Solid electrolytic capacitors
JPS63181310A (en) Reformation treatment of solid electrolytic capacitor
JP4802640B2 (en) Manufacturing method of solid electrolytic capacitor
US6334945B1 (en) Aging process for solid electrode capacitor
JPH0267708A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JPH0338011A (en) Manufacture of solid electrolytic capacitor
JP3552415B2 (en) Solid electrolytic capacitors
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2004040134A (en) Manufacturing method of solid electrolytic capacitor
JP2840522B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPS62119913A (en) Manufacture of solid electrolyte capacitor
JPS61174712A (en) Solid electrolytic capacitor
JP2001267185A (en) Method for manufacturing solid electrolytic capacitor
JPH01105525A (en) Manufacture of solid electrolytic capacitor
JPH0883735A (en) Manufacture of capacitor
JPH0550125B2 (en)
JPH0274016A (en) Solid electrolytic condenser
JPS63146425A (en) Manufacture of solid electrolytic capacitor