JPS62119913A - Manufacture of solid electrolyte capacitor - Google Patents

Manufacture of solid electrolyte capacitor

Info

Publication number
JPS62119913A
JPS62119913A JP26005185A JP26005185A JPS62119913A JP S62119913 A JPS62119913 A JP S62119913A JP 26005185 A JP26005185 A JP 26005185A JP 26005185 A JP26005185 A JP 26005185A JP S62119913 A JPS62119913 A JP S62119913A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
solid
cooling
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26005185A
Other languages
Japanese (ja)
Inventor
土屋 宗次
康夫 工藤
小島 利邦
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26005185A priority Critical patent/JPS62119913A/en
Publication of JPS62119913A publication Critical patent/JPS62119913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、7,7.8.8−テトラシアノキノジメタン
(TCNQと略す)錯塩を固体電解質とする固体電解コ
ンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a solid electrolytic capacitor using a 7,7.8.8-tetracyanoquinodimethane (abbreviated as TCNQ) complex salt as a solid electrolyte. .

従来の技術 近年、電気機器回路の小形化、ディジタル化に伴って、
コンデ/すも小形大容量で高周波領域でのインピーダン
スの低いものが要求されている。
Conventional technology In recent years, with the miniaturization and digitalization of electrical equipment circuits,
Condensers/summers are required to be small, large in capacity, and have low impedance in the high frequency range.

従来、高周波領域で使用されるコンデンサには、フラス
チックフィルムコンデンサ、マイカコンデンサ、積層セ
ラミックコンデンサがあるが、これらのコンデンサでは
形状が大きくなり、大容量化が困難である。一方、大容
量コンデンサとして知られているアルミニウム乾式電解
コンデンサおよびタンタルあるいはアルミニウム固体電
解コンデンサでは、用いている電解質(溶液状電解質あ
るいは2酸化マンガン固体電解質)の抵抗が高いために
、高周波領域で十分低いインピーダンスを得ることがで
きない。
Conventionally, capacitors used in the high frequency range include plastic film capacitors, mica capacitors, and multilayer ceramic capacitors, but these capacitors have large shapes and are difficult to increase in capacity. On the other hand, in aluminum dry electrolytic capacitors and tantalum or aluminum solid electrolytic capacitors, which are known as large-capacity capacitors, the resistance of the electrolyte (solution electrolyte or manganese dioxide solid electrolyte) used is high, so the resistance is sufficiently low in the high frequency range. Impedance cannot be obtained.

これに対し、最近固体電解質として、2酸化マンガンの
代りに、導電性が高く、陽極酸化性の浸れた有機半導体
、TCNQ塩、を用いることが提案されている。同一出
願人による発明(特公昭56−10777号公報)およ
び丹羽信−氏による発明(特開昭58−17609号公
報)に公表されているように、TCNQ塩を用いたアル
ミニウム固体電解コンデンサは、周波数特性および温度
特性が著しく改良され、低い漏れ電流特性が達成されて
いる。また、TCNQ塩は有機物の導電材料としては熱
的安定性に優れた材料であるため、得られたコンデンサ
の高温寿命も従来の乾式電解コンデンサのそれを遥かに
凌ぐものである。
In contrast, it has recently been proposed to use TCNQ salt, a highly conductive and anodic oxidizable organic semiconductor, as a solid electrolyte instead of manganese dioxide. As disclosed in the invention by the same applicant (Japanese Patent Publication No. 56-10777) and the invention by Shin Niwa (Japanese Patent Application Laid-open No. 58-17609), an aluminum solid electrolytic capacitor using TCNQ salt is Frequency and temperature characteristics have been significantly improved, and low leakage current characteristics have been achieved. Furthermore, since TCNQ salt is an organic conductive material with excellent thermal stability, the high temperature life of the obtained capacitor far exceeds that of conventional dry electrolytic capacitors.

発明が解決しようとする問題点 しかしながらかかる固体電解コンデンサ°は、固体電解
質を含浸し、冷却処理を行って外装剤のコーティングを
終えた後、もれ電流の測定を行うと、それまでの工程で
の誘電体膜の損傷などにより大きい値をしめす。従って
、外装も終えた形でコンデンサに通電処理を行うエージ
ングにより、もれ電流の低減化をはかつているが充分な
結果が得られていないのが現状である。
Problems to be Solved by the Invention However, such a solid electrolytic capacitor is impregnated with a solid electrolyte, cooled, coated with an exterior material, and then measured for leakage current. The value is large due to damage to the dielectric film. Therefore, although attempts have been made to reduce the leakage current by aging, in which the capacitor is energized after the exterior packaging has been completed, the current situation is that sufficient results have not been obtained.

そこで本発明は上記欠点を解消するもので、エージング
工程での作業効率を上げ、もれ電流の低減をはかること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention aims to eliminate the above-mentioned drawbacks, and aims to improve work efficiency in the aging process and reduce leakage current.

問題点を解決するための手段 本発明は上記目的を達成するだめになされたもので、表
面に酸化皮膜を有する第1の電極と、前記第1の電極と
対向して設けられた第2の電極との間に7.7.8.8
−テトラシアノキノジメタン塩に基づく固体電解質を熱
溶融により含浸付着し、前記固体電解質の溶融状態ある
いは溶融状態から冷却固化する過程で固体電解質をエー
ジング処理することを特徴とする固体電解コンデンサの
製造方法を提供するものである。
Means for Solving the Problems The present invention has been made to achieve the above object, and includes a first electrode having an oxide film on its surface, and a second electrode provided opposite to the first electrode. 7.7.8.8 Between the electrodes
- Manufacture of a solid electrolytic capacitor characterized in that a solid electrolyte based on a tetracyanoquinodimethane salt is impregnated and adhered by thermal melting, and the solid electrolyte is subjected to an aging treatment during the process of cooling and solidifying the solid electrolyte in a molten state or from a molten state. The present invention provides a method.

作用 本発明はTCNQ塩が溶融状態にある間または溶融状態
から冷却固化される過程で、通電処理のエージングを行
うために、従来のような冷却固化後のエージング時間が
省略されて、作業効率が大幅に向上するとともにもれ電
流の低減化がはかれる。
Function The present invention performs the aging of the energization treatment while the TCNQ salt is in a molten state or in the process of being cooled and solidified from the molten state, so the aging time after cooling and solidification, which is conventional, is omitted and work efficiency is improved. This results in a significant improvement and a reduction in leakage current.

ここで用いられるTCNQ塩は吸湿性が少なく水に対し
ては不活性であるので、冷却剤として水を用いることが
好ましい。コンデンサユニットを水だ浸漬することによ
り冷却を行い、かつこの時間に通電処理を行うと、大幅
なもれ電流の低減がはかれる。
Since the TCNQ salt used here has low hygroscopicity and is inert to water, it is preferable to use water as a coolant. If the capacitor unit is cooled by immersing it in water and the current is applied during this time, leakage current can be significantly reduced.

実施例 以下に本発明の実施例を詳細に説明する。Example Examples of the present invention will be described in detail below.

本実施例による固体電解コンデンサの基本構成は、たと
えば捲回形アルミ電解コンデンサの場合、陽極酸化(化
成)によって表面に陽極酸化膜を有するアルミニウムエ
ッチ基を第1の電極とし、これに対向して配置させられ
た対極の間に、TCNQ塩を有していて、外装が施され
ているものである。
The basic configuration of the solid electrolytic capacitor according to this embodiment is, for example, in the case of a wound aluminum electrolytic capacitor, an aluminum etched group having an anodized film on the surface by anodizing (chemical formation) is used as the first electrode, and an aluminum etch group is used as the first electrode. It has a TCNQ salt between the counter electrodes arranged and is coated.

TCNQ塩を陽極と陰極間に加熱溶融により含浸し、付
着後、冷却剤を用いて冷却固化を行うのが通常であるが
、もれ電流の低減のだめの、通電処理のエージングをT
CNQ塩が電極に付着後、冷却固化される過程で行うの
が本実施例の特徴である。これを行うことによって、エ
ージングのだめの時間が省略されて、作業効率が大幅に
アップ謙7 ト1τIW日I+山iも二手 液中容量が3.3μFをしめすように化成された、巻回
型アルミニウム電解コンデンサユニットを用いた。TC
NQ塩としてはインアミルイソキノリウム(TCNQ、
)tを用いた。260℃で加熱溶融し、含浸を行い、水
で冷却したところ、120Hgの特性として、容量2,
8μF、損失0.5%のものが得られた。これをこのま
ま、エポキシ樹脂で、外装を行い、もれ電流を測定する
と、たとえば16V印加で2分値としては500μN〜
数μAの範囲にばらついてしまう。これを85℃下で、
20V印加で2時間エージング処理を行うと、0.1μ
入前後に低減化できる。
Normally, TCNQ salt is impregnated between the anode and cathode by heating and melting, and after adhesion, it is cooled and solidified using a coolant.
A feature of this embodiment is that the process is performed in the process of cooling and solidifying the CNQ salt after it adheres to the electrode. By doing this, the aging time is omitted and work efficiency is greatly improved. An electrolytic capacitor unit was used. T.C.
NQ salts include inamylisoquinolium (TCNQ,
)t was used. When heated and melted at 260°C, impregnated, and cooled with water, the capacity of 120Hg was 2,
A capacitor of 8 μF and a loss of 0.5% was obtained. If you cover this as it is with epoxy resin and measure the leakage current, for example, when 16V is applied, the two-minute value is 500 μN ~
It varies within a range of several μA. This at 85℃,
When aging treatment is performed for 2 hours with 20V applied, 0.1μ
It can be reduced before and after entering.

ここでは、TCNQ塩を溶融し含浸直後に電圧20V印
加しそのまま水中で冷却固化し、固化が終了後通電をや
めた。さらに、エポキシ樹脂で外装処理を行った後、も
れ電流を測定したところ、16V印加後2分値の値は0
.1〜1μ人の範囲に入っていた。サンプル数は10個
で試験を行ったが、いずれももれ電流を低減させること
ができだ。
Here, the TCNQ salt was melted and immediately after impregnation, a voltage of 20 V was applied, the solution was cooled and solidified in water, and after the solidification was completed, the current application was stopped. Furthermore, after performing exterior treatment with epoxy resin, we measured the leakage current and found that the value for 2 minutes after applying 16V was 0.
.. It was in the range of 1 to 1 μ people. The test was conducted with 10 samples, and all of them were able to reduce leakage current.

ト駅実施例では冷加固イヒ中にエージングを行う場合に
ついて述べたが、溶融状態でエージングを行った後冷却
固化しても良い。
In the above embodiment, the case where aging is performed during cooling and solidification is described, but it is also possible to perform aging in a molten state and then cool and solidify.

発明の効果 以上要するに本発明はTCNQ塩をコンデンサユニッX
/C含浸し、溶融状態または冷却固化する過程で通電処
理するもので、もれ電流が低減化できて、コンデンサの
製造工数の短縮化がはかられる。
Effects of the Invention In short, the present invention combines TCNQ salt into a capacitor unit
/C is impregnated and then energized during the process of melting or cooling and solidifying, which reduces leakage current and reduces the number of capacitor manufacturing steps.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に酸化皮膜を有する第1の電極と、前記第1
の電極と対向して設けられた第2の電極との間に7、7
、8.8−テトラシアノキノジメタン塩に基づく固体電
解質を熱溶融により含浸付着し、前記固体電解質の溶融
状態あるいは溶融状態から冷却固化する過程で固体電解
質をエージング処理することを特徴とする固体電解コン
デンサの製造方法。
(1) a first electrode having an oxide film on its surface;
7, 7 between the electrode and the second electrode provided oppositely.
, 8. A solid characterized in that a solid electrolyte based on an 8-tetracyanoquinodimethane salt is impregnated and adhered by thermal melting, and the solid electrolyte is subjected to an aging treatment during the process of cooling and solidifying the solid electrolyte in a molten state or from a molten state. Method of manufacturing electrolytic capacitors.
(2)冷却固化を行う冷却剤として水を用いることを特
徴とする特許請求の範囲第1項記載の固体電解コンデン
サの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that water is used as a coolant for cooling and solidifying.
JP26005185A 1985-11-20 1985-11-20 Manufacture of solid electrolyte capacitor Pending JPS62119913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26005185A JPS62119913A (en) 1985-11-20 1985-11-20 Manufacture of solid electrolyte capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26005185A JPS62119913A (en) 1985-11-20 1985-11-20 Manufacture of solid electrolyte capacitor

Publications (1)

Publication Number Publication Date
JPS62119913A true JPS62119913A (en) 1987-06-01

Family

ID=17342620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26005185A Pending JPS62119913A (en) 1985-11-20 1985-11-20 Manufacture of solid electrolyte capacitor

Country Status (1)

Country Link
JP (1) JPS62119913A (en)

Similar Documents

Publication Publication Date Title
US5223120A (en) Method for fabricating solid electrolytic capacitors using an organic conductive layer
JPH0158856B2 (en)
KR920009178B1 (en) An organic semiconductor electrolyte capacitor and process for producing the same
JPS61240625A (en) Solid electrolytic capacitor
JPS62119913A (en) Manufacture of solid electrolyte capacitor
JPS6292424A (en) Solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JP2755767B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPS63181310A (en) Reformation treatment of solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6337609A (en) Manufacture of solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JPS6065520A (en) Solid electrolytic condenser
JPS62152118A (en) Solid electrolytic capacitor
JPS61163627A (en) Manufacture of solid electrolytic capacitor
JPH01105525A (en) Manufacture of solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0260047B2 (en)
JPH0337854B2 (en)
JPH0766900B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03276711A (en) Manufacture of solid-state electrolytic capacitor of organic semiconductor
JPS63100710A (en) Solid electrolyte capacitor and manufacture of the same