JPH0338011A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0338011A
JPH0338011A JP17447489A JP17447489A JPH0338011A JP H0338011 A JPH0338011 A JP H0338011A JP 17447489 A JP17447489 A JP 17447489A JP 17447489 A JP17447489 A JP 17447489A JP H0338011 A JPH0338011 A JP H0338011A
Authority
JP
Japan
Prior art keywords
resin
solid electrolytic
sheathing
electrolytic capacitor
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17447489A
Other languages
Japanese (ja)
Other versions
JP2819628B2 (en
Inventor
Kenji Kuranuki
健司 倉貫
Junji Ozaki
尾崎 潤二
Yasuhiro Obata
小畑 康弘
Yoichi Aoshima
青島 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17447489A priority Critical patent/JP2819628B2/en
Publication of JPH0338011A publication Critical patent/JPH0338011A/en
Application granted granted Critical
Publication of JP2819628B2 publication Critical patent/JP2819628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve yield in manufacture without causing defective leakage currents by applying constant voltage for a fixed time during a process in which a capacitor element with an anode body element, to which a solid electrolytic layer composed of a conductive high molecule is formed, is sheathed by a resin for sheathing. CONSTITUTION:A capacitor element 10 is coated with a thermo-setting epoxy resin as a resin for sheathing through dipping, constant voltage is applied between an anode leader 2 and a cathode lead 9, the capacitor element 10 is introduced into a resin curing furnace, and aging treatment is executed while the capacitor element 10 is cured. That is, since a process in which constant voltage is applied for a fixed time is provided in a sheathing process, aging treatment simultaneously progresses in the process of curing the resin. Restoration progresses during the time of the small damage of a dielectric oxide film generated due to mechanical stress at the time of resin curing, thus preventing the elevation of the level of leakage currents. Accordingly, defective leakage currents in a resin sheathing process is reduced, thus decreasing manhours.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電性高分子を固体電解質として用いた固体電
解コンデンサの製造方法に関するもので、特にそのエー
ジング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, and particularly to a method for aging the capacitor.

従来の技術 従来よりタンタルやアルミを電極とし、かつ二酸化マン
ガンを固体電解質とした固体電解コンデンサは、樹脂で
外装されたものが一般的であり、ディッピング、ボッテ
ィング、キャスティング。
Conventional technology Solid electrolytic capacitors, which use tantalum or aluminum as electrodes and manganese dioxide as a solid electrolyte, are generally coated with resin, and are manufactured by dipping, botting, and casting.

インジェクションモールディングまたは粉体塗装などの
工法で外装形成するのが普通である。
The exterior is usually formed using methods such as injection molding or powder coating.

一般に固体電解コンデンサでは樹脂外装時の機械的スト
レスで漏れ電流が増大する傾向にあり、これを低減する
ために外装工程の後に、両極端子間に電圧を印加する、
いわゆるエージング工程を設けることが必要であり、こ
の工程によって漏れ電流の低減を図ってきていた。
In general, in solid electrolytic capacitors, leakage current tends to increase due to mechanical stress during resin packaging, and in order to reduce this, a voltage is applied between the two electrode terminals after the packaging process.
It is necessary to provide a so-called aging process, and this process has been used to reduce leakage current.

また導電性高分子を固体電解質として用いた固体道解コ
ンデンサの場合は、固体電解質がポリマーの薄膜である
ために、樹脂硬化時の熱変形などによるストレスが直接
誘電体酸化皮膜に損傷を与える傾向は、二酸化マンガン
以上であると考えられ、これにより漏れ電流が増大する
結果となる。
In addition, in the case of solid-state capacitors that use conductive polymers as the solid electrolyte, since the solid electrolyte is a thin film of polymer, stress caused by thermal deformation during resin curing tends to directly damage the dielectric oxide film. is believed to be greater than manganese dioxide, which results in increased leakage current.

そしてこの増大した漏れ電流を低下させるために、従来
、例えば特開昭64−32621号公報に示されている
ように、樹脂外装後にエージング処理として、水中や相
対湿度80%以上の高湿中で両極端子間に電圧を印加す
る工程を設けたものが公開されている。
In order to reduce this increased leakage current, for example, as shown in Japanese Patent Application Laid-Open No. 64-32621, aging treatment is carried out in water or in high humidity of 80% or more relative humidity after resin packaging. A method that includes a step of applying a voltage between both electrode terminals has been disclosed.

発明が解決しようとする課題 しかしながら、上記したように樹脂外装時の機械的スト
レスによる誘電体酸化皮膜の損傷が大きく、漏れ電流の
レベルが高くなってしまったものに関しては、樹脂外装
後にエージング処理を行っても、その漏れ電流のレベル
を十分に低減することはできず、その結果、漏れ電流不
良を引き起こすことがあり、これが製造上の歩留りを低
下させる原因となっていた。
Problems to be Solved by the Invention However, as mentioned above, in cases where the dielectric oxide film is severely damaged due to mechanical stress during resin sheathing and the level of leakage current has increased, aging treatment may be performed after resin sheathing. However, even if this method is used, the level of leakage current cannot be sufficiently reduced, and as a result, leakage current defects may occur, which causes a decrease in manufacturing yield.

また樹脂外装工程の後に、水中や高湿中でのエージング
工程を設けているため、このエージング、。
In addition, after the resin exterior process, an aging process is performed in water or in high humidity, so this aging process is difficult.

後にコンデンサ素子から水分を乾燥させる工程を設ける
必要があるとともに、雰囲気制御もする必要があり、そ
の結果、これらの工数が増えて煩雑になるという課題が
あった。
It is necessary to provide a process for drying moisture from the capacitor element afterwards, and it is also necessary to control the atmosphere, which results in an increase in the number of steps and the problem of complication.

本発明はこのような課題を解決した固体電解コンデンサ
の製造方法を提供することを目的とするものである。
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that solves these problems.

課題を解決するための手段 上記課題を解決するために本発明の固体電解コンデンサ
の製造方法は、弁金属よりなる陽極体に陽極酸化皮膜を
形成するとともに、導電性高分子よりなる固体電解質層
を形成した陽極体素子を備え、この陽極体素子を含むコ
ンデンサ素子を外装用樹脂によって外装する工程中に、
一定時間定電圧を印加する工程を設けたものである。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a solid electrolytic capacitor of the present invention includes forming an anodized film on an anode body made of a valve metal and a solid electrolyte layer made of a conductive polymer. During the process of equipping the formed anode body element and packaging the capacitor element including the anode body element with an exterior resin,
This method includes a step of applying a constant voltage for a certain period of time.

作用 上記した本発明の固体電解コンデンサの製造方法によれ
ば、外装用樹脂によって外装する工程中に、一定時間定
電圧を印加する工程を設けているため、樹脂が硬化する
過程でエージング処理が同時に進行し、これにより、樹
脂硬化時の機械的ストレスによって生した誘電体酸化皮
膜の損傷が少ない間に修復が進むため、漏れ電流のレベ
ルが大きくなることはなくなる。従って樹脂外装工程で
の漏れ電流不良が大幅に低減されることになる。
Effects According to the method for manufacturing a solid electrolytic capacitor of the present invention described above, a step of applying a constant voltage for a certain period of time is provided during the step of packaging with the resin for packaging, so that the aging treatment is simultaneously performed during the process of curing the resin. As a result, the repair progresses while the damage to the dielectric oxide film caused by mechanical stress during resin curing is small, so that the level of leakage current does not increase. Therefore, leakage current defects in the resin packaging process are significantly reduced.

また、樹脂外装中に同時にエージング処理も行えるため
、工数を低減することができ、これにより、煩雑であっ
た水中または高湿中でのエージング処理をなくすること
ができる。
Furthermore, since aging treatment can be performed simultaneously during the resin exterior packaging, the number of man-hours can be reduced, and thereby the complicated aging treatment in water or high humidity can be eliminated.

実施例 以下、本発明の実施例を添付図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

(実施例1) まず、第1図に示すように塩酸などで電解エツチングさ
れたアルミニウム箔からなる7mX1O閣の陽極体1の
一部に、アルミニウムよりなる陽極引出しリード1II
2を溶接し、そしてアジピン酸アンモニウム3%の水溶
液中で70Vの定電圧化成によって陽極酸化皮膜3を形
成した。
(Example 1) First, as shown in Fig. 1, an anode lead 1II made of aluminum was attached to a part of an anode body 1 of 7m x 1O made of aluminum foil electrolytically etched with hydrochloric acid or the like.
2 were welded, and an anodic oxide film 3 was formed by constant voltage anodization at 70 V in an aqueous solution of 3% ammonium adipate.

次に、比重1.36の硝酸マンガン水溶液に前記陽極体
lを浸漬し、205℃で5分間熱分解して、陽極酸化皮
膜3上にマンガン酸化物層4を形威し、さらに熱分解反
応で破壊された酸化皮膜欠陥部を修復するために、再び
アジピン酸アンモニウム3%の化成液中で再化成を行っ
た。
Next, the anode body 1 is immersed in a manganese nitrate aqueous solution with a specific gravity of 1.36, and thermally decomposed at 205°C for 5 minutes to form a manganese oxide layer 4 on the anodic oxide film 3, and further undergoes a thermal decomposition reaction. In order to repair the defective parts of the oxide film that had been destroyed, reconversion was performed again in a conversion solution containing 3% ammonium adipate.

このようにして作製した陽極体素子5の表面に次のよう
な方法で導電性高分子よりなる固体電解質層6を形成し
た。すなわち、支持電解質としてトリイソプロピルナフ
タレンスルフォン酸ナトリウム0.1モル/e 、ポリ
アクリル酸0.2wt%。
A solid electrolyte layer 6 made of a conductive polymer was formed on the surface of the anode element 5 thus produced by the following method. That is, 0.1 mol/e of sodium triisopropylnaphthalene sulfonate and 0.2 wt% of polyacrylic acid were used as supporting electrolytes.

モノマーとしてビロール0.5モル/eの水溶液からな
る重合液中にマンガン酸化物層4を形成した陽極体素子
5を浸漬した。そして、この陽極体素子5の表面のマン
ガン酸化物層4に軽く接触させるように配置したステン
レス電極を陽極とし、かつ重合液中のステンレス板を陰
極として、定電流2mAを30分間印加し、陽極体素子
lの表面に、電解重合により、ポリピロールの導電性高
分子よりなる固体電解質層6を形成した。
The anode element 5 on which the manganese oxide layer 4 was formed was immersed in a polymerization solution consisting of an aqueous solution containing 0.5 mol/e of virol as a monomer. Then, a constant current of 2 mA was applied for 30 minutes, using the stainless steel electrode arranged so as to lightly contact the manganese oxide layer 4 on the surface of the anode body element 5 as an anode, and the stainless steel plate in the polymerization solution as a cathode. A solid electrolyte layer 6 made of a conductive polymer of polypyrrole was formed on the surface of the body element 1 by electrolytic polymerization.

さらに、この導電性高分子よりなる固体電解質層6の上
にグラファイト層7.銀ペイント層8をそれぞれ塗布し
、乾燥させることによって順次形成し、さらにまた銀ペ
イント層8上にリード線を半田付けすることより陰極リ
ード&!9を引き出した。
Furthermore, a graphite layer 7. The silver paint layers 8 are applied and dried to form one after another, and furthermore, by soldering lead wires on the silver paint layers 8, cathode leads &! I pulled out a 9.

以上のようにして構成されたコンデンサ素子10の構造
は第2図(a) 、 (b)に示した。
The structure of the capacitor element 10 constructed as described above is shown in FIGS. 2(a) and 2(b).

そしてこのようにして構成されたコンデンサ素子10は
外装用樹脂によって被覆されるものであり、この外装用
樹脂として、熱硬化性のエボ午シ樹脂をディッピングに
よりコンデンサ素子10に塗布した後、陽極引出しリー
ド線2と陰極リード線9間に20Vの電圧を印加し、1
05℃の樹脂硬化炉に入れ、2時間硬化させながら、エ
ージング処理を施した。
The capacitor element 10 thus constructed is covered with an exterior resin, and after coating the capacitor element 10 with thermosetting resin by dipping as the exterior resin, the anode is drawn out. A voltage of 20V is applied between the lead wire 2 and the cathode lead wire 9, and 1
The resin was placed in a resin curing oven at 05° C., and aged for 2 hours.

このような定格16Vの固体電解コンデンサを50個作
製し、その初期特性の平均値と歩留まりを第1表に示し
た。また、このエージング処理中の漏れ電流値の経時変
化の様子を比較例1と一緒に第3図に示した。この第3
図からも明らかなように、樹脂硬化と同時にエージング
処理を施した実施例1では、樹脂硬化時の機械的ストレ
スがかかるたびに、漏れ電流の一次的増大と、その後の
修復の様子が伺われ、そして誘電体酸化皮膜の損傷が少
ないうちに修復が行われている様子がよく分かるが、樹
脂硬化終了後のエージング処理(比較例1〉では、最初
から漏れ電流のレベルが高く、修復が行われないことが
分かる。
Fifty such solid electrolytic capacitors with a rating of 16V were manufactured, and the average values of their initial characteristics and yields are shown in Table 1. Further, the change in leakage current value over time during this aging process is shown in FIG. 3 together with Comparative Example 1. This third
As is clear from the figure, in Example 1, in which aging treatment was performed at the same time as resin curing, there was a temporary increase in leakage current and subsequent recovery every time mechanical stress was applied during resin curing. , and it is clearly seen that the repair is performed while the dielectric oxide film is only slightly damaged.However, in the aging treatment after the resin curing (Comparative Example 1), the level of leakage current was high from the beginning, and the repair was not completed. I know that it won't happen.

(実施例2〉 コンデンサ素子10の作製までは実施例1と同様で、外
装用樹脂として、紫外線硬化用エポキシ樹脂をデイピン
グによりコンデンサ素子10に塗布した後、実施例1と
同様に陽極引出しリード線2と陰極リード線9間に20
Vの電圧を印加しなからUV硬化炉に入れ、約3分間硬
化させながら、エージング処理を施した。この後、10
5℃でさらにエージング処理を続けた。このようにして
定格16Vの固体電解コンデンサを50個作製し5その
初期特性の平均値と歩留まりを第1表に示した。
(Example 2) The process up to the production of the capacitor element 10 is the same as in Example 1. After coating the capacitor element 10 with an ultraviolet curing epoxy resin as the exterior resin by dipping, the anode lead wire is attached as in Example 1. 20 between 2 and cathode lead wire 9
The material was placed in a UV curing oven without applying a voltage of V, and was subjected to an aging treatment while being cured for about 3 minutes. After this, 10
Further aging treatment was continued at 5°C. In this way, 50 solid electrolytic capacitors with a rating of 16V were manufactured, and the average values of their initial characteristics and yields are shown in Table 1.

(実施例3) 外装用樹脂が熱硬化性のフェノール樹脂であること以外
は、実施例1と同様の方法で固体電解コンデンサを50
個作製し、その初期特性の平均値と歩留まりを第1表に
示した。
(Example 3) A solid electrolytic capacitor was manufactured in the same manner as in Example 1, except that the exterior resin was a thermosetting phenolic resin.
Table 1 shows the average value of initial characteristics and yield.

(実施例4) コンデンサ素子10の作製までは実施例1と同様で、外
装用樹脂として、粉体塗装用エポキシ樹脂をコンデンサ
素子lOに粉体塗装機で10回繰返して塗布し、かつ硬
化させた後、実施例1と同様に陽極引出しリード線2と
陰極クー1419間に20Vの電圧を印加しながら、1
05℃の樹脂硬化炉に入れ、1時間硬化させながら、エ
ージング処理を施した。この後、105℃でさらに1時
間樹脂硬化を続けた。このようにして定格16Vの固体
電解コンデンサを50個作製し、その初期特性の平均値
と歩留まりを第1表に示した。
(Example 4) The process up to the production of the capacitor element 10 was the same as in Example 1. As the exterior resin, an epoxy resin for powder coating was repeatedly applied to the capacitor element 10 10 times using a powder coater, and then cured. After that, as in Example 1, while applying a voltage of 20V between the anode lead wire 2 and the cathode cooler 1419,
The resin was placed in a resin curing oven at 05° C. and was cured for 1 hour while being subjected to aging treatment. Thereafter, resin curing was continued for an additional hour at 105°C. In this way, 50 solid electrolytic capacitors with a rating of 16V were manufactured, and the average values of their initial characteristics and yields are shown in Table 1.

(比較例1〜4〉 樹脂硬化中に電圧を印加してエージング処理をすること
なく、樹脂硬化終了後、105℃で2時間20Vの電圧
を印加してエージング処理を施す以外、実施例1〜4と
全く同様の方法で固体電解コンデンサを50個ずつ作製
し、その初期性イ1の平均値と歩留まりを第1表に示し
た。
(Comparative Examples 1 to 4) Examples 1 to 4 except that the aging treatment was not performed by applying a voltage during resin curing, and the aging treatment was performed by applying a voltage of 20 V for 2 hours at 105 ° C. after the resin curing. Fifty solid electrolytic capacitors were manufactured in exactly the same manner as in Example 4, and the average value of initiality I1 and yield are shown in Table 1.

(以  下  余  白) 第1表 固体電解コンデンサの初期特性と歩留まり第1表からも
明らかなように、樹脂硬化工程中に電圧を印加し、エー
ジング処理を同時に行ったものは、漏れ電流のレベルが
低くなり、歩留まりはほぼ100%となることが分かる
(Leaving space below) Table 1 Initial characteristics and yield of solid electrolytic capacitors As is clear from Table 1, the leakage current level of capacitors in which voltage was applied during the resin curing process and aging treatment was performed at the same time. It can be seen that the yield is almost 100%.

なお、上記各実施例では、陽極体1を構成する弁金属と
してアルミニウムを使用したものについて説明したが、
この弁金属としてタンタルを使用して同様の検討を行っ
た結果においても、上記各実施例と同様の傾向の結果が
得られた。
In each of the above embodiments, aluminum was used as the valve metal constituting the anode body 1.
A similar study was conducted using tantalum as the valve metal, and results similar to those of the above embodiments were obtained.

また、上記実施例では固体電解質層6を形成する導電性
高分子としてポリピロールを使用したものについて説明
したが、導電性高分子としてポリピロール以外に、ポリ
チオフェンやポリフランまたはポリアニリンを用いて検
討を行った結果においても、上記各実施例と全く同様の
傾向の結果が得られた。
Furthermore, in the above embodiment, polypyrrole was used as the conductive polymer forming the solid electrolyte layer 6, but as a conductive polymer other than polypyrrole, studies were conducted using polythiophene, polyfuran, or polyaniline. Also, results with exactly the same tendency as in each of the above-mentioned Examples were obtained.

発明の効果 上記実施例の説明から明らかなように本発明によれば、
導電性高分子を固体電解質として使用する固体電解コン
デンサの漏れ電流のレベルを低減し、完成品の歩留まり
を向上させることができるだけでなく、工程数を減らし
て時間を短縮することができるというすぐれた効果を有
するものである。すなわち、コンデンサ素子を外装用樹
脂によって外装する工程中に一定時間定電圧を印加する
工程を設°けることによって、樹脂が硬化する過程でエ
ージング処理が同時に進行し、樹脂硬化時の機械的スト
レスによって生じた誘電体酸化皮膜の損傷が小さい筒に
修復が進み、漏れ電流のレベルが大きくなることはなく
なるため、樹脂外装工程での漏れ電流不良を大幅に低減
することができる。また、樹脂外装中に同時にエージン
グ処理も行えるため、工数を低減することができ、これ
により、煩雑であった水中または高温中でのエージング
処理をなくすることができるというすぐれた効果を奏す
るものである。
Effects of the Invention As is clear from the description of the above embodiments, according to the present invention,
This is an excellent technology that not only reduces the leakage current level of solid electrolytic capacitors that use conductive polymers as solid electrolytes and improves the yield of finished products, but also reduces the number of steps and time. It is effective. In other words, by providing a process of applying a constant voltage for a certain period of time during the process of encasing the capacitor element with an exterior resin, the aging process proceeds at the same time as the resin hardens, and the mechanical stress caused by the resin curing process causes the aging process to proceed simultaneously. Since the repair progresses to a tube with less damage to the dielectric oxide film that has occurred, and the level of leakage current does not increase, leakage current defects in the resin sheathing process can be significantly reduced. In addition, since aging treatment can be performed simultaneously during the resin exterior, the number of man-hours can be reduced, and this has the excellent effect of eliminating the complicated aging treatment in water or at high temperatures. be.

【図面の簡単な説明】[Brief explanation of drawings]

T%1図は本発明の一実施例で用いた固体電解コンデン
サの陽極体の構造を示す斜視図、第2図は同固体電解コ
ンデンサのコンデンサ素子の構造を示したもので、(a
)は横断面図、(b)は縦断面図、第3図はエージング
処理中の漏れ電流値の経時変化を示したグラフである。 ■・・・・・・陽極体、3・・・・・・陽極酸化皮膜、
4・・・・・・マンガン酸化物層、5・・・・・・陽極
体素子、6・・・・・・固体′Fi解質層、10・・・
・・・コンデンサ素子。
Figure T%1 is a perspective view showing the structure of the anode body of the solid electrolytic capacitor used in one embodiment of the present invention, and Figure 2 shows the structure of the capacitor element of the same solid electrolytic capacitor.
) is a cross-sectional view, (b) is a longitudinal cross-sectional view, and FIG. 3 is a graph showing changes in leakage current value over time during aging treatment. ■・・・Anode body, 3...Anodized film,
4... Manganese oxide layer, 5... Anode element, 6... Solid 'Fi desolate layer, 10...
...Capacitor element.

Claims (5)

【特許請求の範囲】[Claims] (1)弁金属よりなる陽極体に陽極酸化皮膜を形成する
とともに、導電性高分子よりなる固体電解質層を形成し
た陽極体素子を備え、この陽極体素子を含むコンデンサ
素子を外装用樹脂によって外装する工程中に、一定時間
定電圧を印加する工程を設けたことを特徴とする固体電
解コンデンサの製造方法。
(1) Equipped with an anode element in which an anode body made of a valve metal is coated with an anodized film and a solid electrolyte layer made of a conductive polymer is formed, and the capacitor element including this anode body element is exteriorized with an exterior resin. A method for manufacturing a solid electrolytic capacitor, comprising a step of applying a constant voltage for a certain period of time during the step of applying a constant voltage.
(2)外装用樹脂がエポキシ樹脂,フェノール樹脂,尿
素樹脂,キシレン樹脂などの熱硬化性樹脂または光硬化
性樹脂であることを特徴とする特許請求の範囲第1項記
載の固体電解コンデンサの製造方法。
(2) Manufacturing a solid electrolytic capacitor according to claim 1, wherein the exterior resin is a thermosetting resin or a photocurable resin such as an epoxy resin, a phenol resin, a urea resin, or a xylene resin. Method.
(3)コンデンサ素子を外装用樹脂によって外装する工
程中の定電圧を印加する時間が、外装用樹脂の熱硬化工
程または光硬化工程の初期から樹脂硬化完了までの時間
内の一部または全部であることを特徴とする特許請求の
範囲第1項記載の固体電解コンデンサの製造方法。
(3) The time during which constant voltage is applied during the process of sheathing the capacitor element with the sheathing resin is part or all of the time from the beginning of the heat curing process or photocuring process of the sheathing resin to the completion of curing the resin. A method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that:
(4)導電性高分子がポリピロール,ポリチオフェン,
ポリフラン,ポリアニリンのいずれかである特許請求の
範囲第1項記載の固体電解コンデンサの製造方法。
(4) The conductive polymer is polypyrrole, polythiophene,
A method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is made of either polyfuran or polyaniline.
(5)弁金属がアルミニウムまたはタンタルであること
を特徴とする特許請求の範囲第1項記載の固体電解コン
デンサの製造方法。
(5) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the valve metal is aluminum or tantalum.
JP17447489A 1989-07-05 1989-07-05 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2819628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17447489A JP2819628B2 (en) 1989-07-05 1989-07-05 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17447489A JP2819628B2 (en) 1989-07-05 1989-07-05 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0338011A true JPH0338011A (en) 1991-02-19
JP2819628B2 JP2819628B2 (en) 1998-10-30

Family

ID=15979115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17447489A Expired - Fee Related JP2819628B2 (en) 1989-07-05 1989-07-05 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2819628B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195758A (en) * 1998-12-25 2000-07-14 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2008172277A (en) * 2008-03-31 2008-07-24 Nippon Chemicon Corp Solid-state electrolytic capacitor
JP2008240988A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Cap nut holder
JP2010147342A (en) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195758A (en) * 1998-12-25 2000-07-14 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2008240988A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Cap nut holder
JP4684256B2 (en) * 2007-03-28 2011-05-18 大阪瓦斯株式会社 Cap nut holder
JP2008172277A (en) * 2008-03-31 2008-07-24 Nippon Chemicon Corp Solid-state electrolytic capacitor
JP2010147342A (en) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2819628B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPH0338011A (en) Manufacture of solid electrolytic capacitor
JP2836114B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001148328A (en) Manufacturing method for solid electrolytic capacitor
JP3539047B2 (en) Method for manufacturing solid electrolytic capacitor
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
JP2012129293A (en) Solid electrolytic capacitor, and method of manufacturing the same
JPH0794369A (en) Solid electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP4100854B2 (en) Manufacturing method of solid electrolytic capacitor
JPH04119623A (en) Solid electrolytic capacitor and manufacture thereof
JPH03231414A (en) Solid electrolytic capacitor
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100654998B1 (en) Method for manufacturing a capacitor using conducting polymer
JP2001203128A (en) Method of manufacturing solid electrolytic capacitor
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JPH08153650A (en) Manufacture of solid-state electrolytic capacitor
JP2570121B2 (en) Method for manufacturing solid electrolytic capacitor
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JPS63181309A (en) Manufacture of solid electrolytic capacitor
JP3493042B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0513286A (en) Solid electrolytic capacitor
JP3978822B2 (en) Manufacturing method of solid electrolytic capacitor
KR100591400B1 (en) Manufacturing method of tantalum condenser
JP2003109850A (en) Method for manufacturing solid electrolytic capacitor
JPH0478121A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees