JPH01105525A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH01105525A
JPH01105525A JP62263026A JP26302687A JPH01105525A JP H01105525 A JPH01105525 A JP H01105525A JP 62263026 A JP62263026 A JP 62263026A JP 26302687 A JP26302687 A JP 26302687A JP H01105525 A JPH01105525 A JP H01105525A
Authority
JP
Japan
Prior art keywords
capacitor element
foil
anode foil
organic semiconductor
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263026A
Other languages
Japanese (ja)
Inventor
Hirobumi Inoue
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62263026A priority Critical patent/JPH01105525A/en
Publication of JPH01105525A publication Critical patent/JPH01105525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent the development of aluminum hydroxide when the section of an anode foil is formed, by boiling and cleaning a capacitor element prior to a process where a section part of the anode foil in the capacitor element is formed. CONSTITUTION:An anode foil which is made by slitting a formed aluminum foil and a cathode foil consisting of the aluminum foil are wound through a separatory paper to form a capacitor element and the capacitor element is impregnated with an organic semiconductor which is fusible to liquefy and it is cooled for solidification. In such a case, the capacitor element is boiled and cleaned prior to a process where a section part of the anode foil in the capacitor element is formed. Then a boehmite film is formed at the section part of the anode foil. The formation of this film prevents the development of aluminum hydroxide when the foregoing section is formed.

Description

【発明の詳細な説明】 −(イ) 産業上の利用分野 本発明は、TCNQ塩からなる有機半導体を固体電解質
とする固体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION - (A) Field of Industrial Application The present invention relates to a method for manufacturing a solid electrolytic capacitor using an organic semiconductor made of TCNQ salt as a solid electrolyte.

(ロ) 従来の技術 固体電解コンデンサの固体電解質としてTCNQ塩から
なる有機半導体を用い得ることは既に知られている。こ
の場合、固体電解質は酸化皮膜を有するアルミニウムな
どの皮膜形成性金属に直接付着されるものであるが、異
なる形態として、陽)l@イ^と陰F、9Mとをセパレ
ータ紙を挾んで巻取り、上記セパレーク紙に上記固体電
解質を含浸することも特願昭56−116861号の発
明として既に提案されている。尚T、CNQとは7,7
,8.8テトラシアノキノジメタンを意味する。このよ
うな従来の技術においては、有機半導体の粉末を適度に
加圧して良熱伝導性のアルミケースに詰めミこれを25
0℃〜300℃にて融解液化し、陽極箔の切り口を化成
したコンデンサ素子を予熱後浸漬して含浸している。モ
して含浸後、アルミケースごと素子を冷却固化し、樹脂
又はゴムで封口し、エージング(電圧処理)して完成す
る。
(b) Prior Art It is already known that an organic semiconductor made of TCNQ salt can be used as a solid electrolyte of a solid electrolytic capacitor. In this case, the solid electrolyte is directly attached to a film-forming metal such as aluminum that has an oxide film, but in a different form, positive) l@i^, negative F, and 9M are wrapped with separator paper in between. It has also been proposed in Japanese Patent Application No. 116861/1986 to impregnate the above-mentioned separate paper with the above-mentioned solid electrolyte. What is T and CNQ?7,7
, 8.8 means tetracyanoquinodimethane. In such conventional technology, organic semiconductor powder is appropriately pressurized and packed in an aluminum case with good thermal conductivity.
The capacitor element is melted and liquefied at 0°C to 300°C, and the cut end of the anode foil is chemically formed. After preheating, the capacitor element is immersed to be impregnated. After soaking and impregnating, the device is cooled and solidified together with the aluminum case, sealed with resin or rubber, and aged (voltage treatment) to complete the process.

ここでコンデンサ素子の陽極箔の切り口を化成する目的
について述べる。アルミニウム箔はあらかじめエツチン
グされ、その後化成されて陽極酸化皮膜が形成されるが
、このアルミニウム箔は使用するコンデンサに応じてス
リットされるので、このスリット時に出来た切吟口には
皮膜がない。
Here, we will discuss the purpose of chemically converting the cut edges of the anode foil of a capacitor element. The aluminum foil is etched in advance and then chemically converted to form an anodic oxide film, but since this aluminum foil is slit according to the capacitor used, there is no film at the cut holes created during the slitting.

従ってこの切り口によって漏れ電流が増大するという問
題がある。一般の電解コンデンサにおいては特に切り口
を修復するために化成することはなく、エージング工程
において修復を行なっているが、固体電解コンデンサの
場合は電解コンデンサとは修復のメカニズムが異なり、
修復の程度も十分でないので、別に修復する必要がある
。また切り口には空気中で酸化したごくうすい酸化皮膜
が形成され静電容量が増大するが、この静電容量を微調
整するためにも酸化皮膜を形成して膜厚を厚くする必要
がある。
Therefore, there is a problem that leakage current increases due to this cut. In general electrolytic capacitors, no chemical conversion is performed to repair the cut edges, and the repair is performed during the aging process, but in the case of solid electrolytic capacitors, the repair mechanism is different from that of electrolytic capacitors.
Since the degree of repair is not sufficient, it is necessary to repair it separately. Furthermore, a very thin oxide film is formed on the cut end by oxidation in the air, increasing the capacitance, but in order to finely adjust this capacitance, it is necessary to form an oxide film and increase the film thickness.

切り口化或はこのような目的のために行なわれるのであ
るが、この切り口化成によって水酸化アルミニウムが発
生する。このため化成箔のエツチングの目またはセパレ
ータ紙の目を詰まらせて有機半導体の含浸率を低下させ
、静電容量、等価直列抵抗等種々の特性を悪化させる。
Aluminum hydroxide is generated by this cutting process, which is carried out for this purpose. This clogs the etching holes in the chemically formed foil or the holes in the separator paper, lowering the impregnation rate of the organic semiconductor and deteriorating various properties such as capacitance and equivalent series resistance.

さらに有機半導体の含浸率が低下すると、初期の静電容
量の低下のみならず高温(105℃)での寿命試験にお
いて、静電容量の減少率が大きくなるという問題点があ
る。
Furthermore, if the impregnation rate of the organic semiconductor is reduced, there is a problem that not only the initial capacitance decreases but also the rate of decrease in capacitance increases in a life test at a high temperature (105° C.).

(ハ) 発明が解決しようとする問題点本発明は、上記
問題点、即ち固体電解コンデンサの切り口化成によって
水酸化アルミニウムが発生し、有機半導体の含浸率を低
下きせ、静電容量、等価直列抵抗等種々の特性を悪化さ
せ、さらに高温寿命試験において静電容量の減少率が大
きくなる点を解決するものである。
(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problems, namely, aluminum hydroxide is generated by the chemical formation of the cut edges of solid electrolytic capacitors, which reduces the impregnation rate of organic semiconductors, and reduces capacitance and equivalent series resistance. This is to solve the problem of deteriorating various characteristics such as, and furthermore, increasing the rate of decrease in capacitance in high-temperature life tests.

(ニ)  問題点を解決するための手段゛本発明は、化
成したアルミニウム箔をスリットした陽極箔と、アルミ
ニウム箔からなる陰極箔とを、セパレータ紙を介して巻
回したコンデンサ素子に、融解液化可能な有機半導体を
含浸し、冷却固化した固体電解コンデンサの製造方法に
おいて、コンデンサ素子の陽極箔の切り口部分を化成す
る工程前又は化成する工程後にコンデンサ素子を煮沸洗
浄するものである。
(d) Means for Solving the Problems The present invention provides a capacitor element in which an anode foil made by slitting chemically formed aluminum foil and a cathode foil made of aluminum foil are wrapped around a capacitor element with separator paper interposed therebetween. In the manufacturing method of a solid electrolytic capacitor impregnated with a possible organic semiconductor and solidified by cooling, the capacitor element is boiled and washed before or after the step of chemically forming the cut end of the anode foil of the capacitor element.

(ホ)作用 切り口化成前に煮沸洗浄をすると、陽極箔の切り口部分
にベーミット皮膜が形成され、切り口化成時に水酸化ア
ルミニウムが発生しにくい、また切り口化成後に煮沸洗
浄をすると、切り口化成にて発生した水酸化アルミニウ
ムが除去され、セパレータ紙やエツチング消の目づまり
を防止する。
(E) Action If boiling and cleaning is performed before cut end chemical formation, a Boehmit film will be formed on the cut end of the anode foil, making it difficult for aluminum hydroxide to be generated during cut end chemical formation.Also, if boiling and cleaning is performed after cut end chemical formation, aluminum hydroxide will be generated during cut end chemical formation. The aluminum hydroxide removed prevents clogging of separator paper and etching eraser.

(へ) 実施例 以下本発明を実施例(i)〜(−)に沿って説明する。(f) Examples The present invention will be described below with reference to Examples (i) to (-).

(i)vh極用化成アルミニウム箔と陰極用アルミニウ
ム箔とを厚さ50μのマニラ紙を介して巻回し、テープ
で巻止めしたコンデンサ素子を95℃以上の純水中で約
7分間煮沸洗浄を行なう0次にコンデンサ素子の陽極箔
の切り口を、アジピン酸アンモニウム2%からなる化成
液を用いて、陽極化成電圧と等しいか又は静電容量調整
のため0〜数士ボルト(実施例では20■)高い電圧を
印加し化成する。そしてコンデンサ素子乾燥後3〜5分
間予熱した後に、n−ブチル−イソキノリニウムのTC
NQ塩からなる融解液化した有機半導体を含浸きせ、冷
却固化きせる。さらに樹脂封口し、エージング(電圧処
理)して固体電解コンデンサが完成する。
(i) The chemical aluminum foil for the VH electrode and the aluminum foil for the cathode are wrapped around a 50μ thick manila paper, and the capacitor element is wrapped with tape and washed by boiling in pure water at 95°C or higher for about 7 minutes. The cut end of the anode foil of the zero-order capacitor element is heated to a voltage equal to the anodizing voltage or from 0 to several volts (20 volts in the example) to adjust the capacitance using a chemical solution consisting of 2% ammonium adipate. ) A high voltage is applied to form a chemical compound. After drying the capacitor element and preheating for 3 to 5 minutes, the n-butyl-isoquinolinium TC
It is impregnated with a melted and liquefied organic semiconductor made of NQ salt, and then cooled and solidified. The solid electrolytic capacitor is then sealed with resin and subjected to aging (voltage treatment).

(i)  実施例(i)と同じコンデンサ素子を95°
C以上のPH約8.0にI*tしたアンモニア水溶液°
中で約7分間煮沸洗浄を行なう、その後実施例(i)と
同様に、切り口化成、有機半導体の含浸、冷却固化の工
程後、樹脂封口、エージング(電圧処理)して完成する
(i) The same capacitor element as in Example (i) is rotated at 95°.
Ammonia aqueous solution adjusted to a pH of approximately 8.0 above C°
After that, in the same manner as in Example (i), the material is boiled for about 7 minutes, and after the process of chemically cutting the cut, impregnating with an organic semiconductor, cooling and solidifying, it is sealed with resin and aged (voltage treatment) to complete the product.

(i)  実施例(i)と同じコンデンサ素子を95℃
以上のPH約3.0に調整したリン酸水溶液中で約7分
間煮沸洗浄を行なう、その後実施例(i)と同様に、切
り口化成、有機半導体の含浸、冷却固化の工程後、樹脂
封口、エージング(1を圧処’FりI、て完成する。
(i) The same capacitor element as in Example (i) was heated to 95°C.
Boiling cleaning is performed for about 7 minutes in the above phosphoric acid aqueous solution adjusted to pH about 3.0, and then, in the same manner as in Example (i), after the steps of cut chemical formation, organic semiconductor impregnation, and cooling solidification, resin sealing, Aging (press treatment 1) to complete.

(iv)  実施例(+>と同じフンデンサ素子の陽極
箔の切り口を、アジピン酸アンモニウム2%からなる化
成液を用いて陽極化成電圧より20V高い電圧を印加し
切り口化成する。その後95゛C以上の純水中で約7分
間煮沸洗浄を行ない、再度陽極化成電圧より20V高い
電圧で切り口化成を行なう、そして実施例(i)と同様
に、素子乾燥、素子予熱、有機半導体の含浸、冷却固化
の工程後、樹脂封口、エージング(電圧処理)して固体
電解コンデンサが完成′する。
(iv) The cut end of the anode foil of the same Fundensa element as in Example (+) is chemically treated by applying a voltage 20V higher than the anodizing voltage using a chemical solution consisting of 2% ammonium adipate.Then, the temperature is increased to 95°C or higher. Cleaning is performed by boiling in pure water for about 7 minutes, and then the cut anodization is performed again at a voltage 20 V higher than the anodization voltage, and the device is dried, preheated, impregnated with an organic semiconductor, and cooled and solidified in the same manner as in Example (i). After this process, the solid electrolytic capacitor is completed by resin sealing and aging (voltage treatment).

(V)  実施例(檜)の純水による煮沸の代りにPH
約8.0のアンモニア水溶液中で約7分間煮沸洗浄を行
ない、その後再度切り口化成を行ない、実施例(i)と
同様に、素子乾燥、・素子予熱、有機半導体の含浸、冷
却固化の工程後、樹脂封口、エージング(電圧処理)し
て完成する。
(V) PH instead of boiling with pure water in Example (cypress)
After boiling and cleaning in an ammonia aqueous solution of about 8.0 for about 7 minutes, and then performing cut chemical formation again, the process of drying the device, preheating the device, impregnating the organic semiconductor, and solidifying by cooling was performed in the same manner as in Example (i). , resin sealing, aging (voltage treatment) and completion.

(−)  実施例(〜)の純水による煮沸の代りにPH
約3L OにlI整したリン酸水溶液中で約7分間煮沸
洗浄を行ない、その後再度切り口化成を行ない、実施例
(i)と同様に素子乾燥、素子予熱、有機半導体の含浸
、冷却固化の工程後、樹脂封口、エージング(電圧処理
)して完成する。
(-) PH instead of boiling with pure water in Examples (~)
Boiling cleaning was performed for about 7 minutes in a phosphoric acid aqueous solution adjusted to about 3 L O, and then the cut surface was chemically formed again, and the steps of drying the device, preheating the device, impregnating the organic semiconductor, and solidifying by cooling were performed in the same manner as in Example (i). Afterwards, it is sealed with resin and subjected to aging (voltage treatment).

次に従来例と実施例<+)〜(−)との比較データを第
1表に示す、第1表の各データは25V、 6.8μF
、外形寸法d6.3X6.8のコンデンサ20個の平均
値を示し、(apは静電容量、LCは漏れ電流、ESR
は等個直列抵抗を表わす、 Capおよびtanδの測
定周波数は120Hz 、ΔC/dは20℃の静電容量
に対する85°Cの静電i量の変化率、ムC/Cは20
℃の静電容量に対する105℃で25Vの電圧をかけ1
000時間後の静電容量の変化率を示す。
Next, Table 1 shows comparative data between the conventional example and the examples <+) to (-). Each data in Table 1 is 25V, 6.8μF.
, shows the average value of 20 capacitors with external dimensions d6.3x6.8, (ap is capacitance, LC is leakage current, ESR
represents equal series resistance, the measurement frequency of Cap and tan δ is 120Hz, ΔC/d is the rate of change in the amount of electrostatic charge at 85°C with respect to the capacitance at 20°C, and MuC/C is 20
Applying a voltage of 25V at 105℃ for the capacitance of ℃1
The rate of change in capacitance after 000 hours is shown.

ここでCap(20°C):20℃における初期の静電
容量(μF) Cap(85°C):85℃における初期の静電容量(
μF) (ap(105℃) 7105”CX 25V X 1
000時間の高温負荷試験後の静電容 量(μF) 以下余白 第1表から明らかなように、切り口部分を化成する工程
前にコンデンサ素子を煮沸洗浄する実施例(i)、(i
)、(i)および切り口部分を化成する工程後にコンデ
ンサ素子を煮沸洗浄する実施例(N、(V)、(vi)
は、いずれも初期の静電容量が従来例に対し5%〜9%
アップし、温度変化による容量変化率も従来例に対し小
きく、また高温負荷試験<105℃X 25V X 1
00OH)後の容量減少率も小さい、これは前述したよ
うに切り口化成前に煮沸洗浄をすると、陽極笛の切り口
部分にベーミット皮膜が形成され、切り口化成時に水酸
化アルミニウムが発生しにくいからであり、切り口化成
後に煮沸洗浄をすると、切り口化成にて発生した水酸化
アルミニウムが除去され、セパレータ紙やエツチング惰
の目づまりを防止するからである。
Here, Cap (20°C): Initial capacitance at 20°C (μF) Cap (85°C): Initial capacitance at 85°C (
μF) (ap(105℃) 7105”CX 25V x 1
Capacitance (μF) after 000 hours of high temperature load test As is clear from Table 1 in the margin below, Examples (i) and (i
), (i) and examples (N, (V), (vi) in which the capacitor element is boiled and washed after the process of chemically converting the cut portion)
In each case, the initial capacitance is 5% to 9% compared to the conventional example.
The capacity change rate due to temperature change is smaller than the conventional example, and high temperature load test <105℃ x 25V x 1
The capacity reduction rate after 00OH) is also small. This is because, as mentioned above, if boiling is performed before the cut end is chemically formed, a Boehmit film is formed on the cut end of the anode whistle, making it difficult for aluminum hydroxide to be generated during the cut end chemical formation. This is because boiling and cleaning after the cut surface formation removes the aluminum hydroxide generated during the cut surface formation, thereby preventing clogging of the separator paper and the etching plate.

(ト) 発明の詳細 な説明したように未発明によれば、固体電解コンデンサ
の切り口化成によって水酸化アルミニウムが発生し、有
機半導体の含浸率を低下啓せ、静電容量、等個直列抵抗
等の種々の特性を悪化させ、さらに高温負荷試験におい
て静電容量の減少率が大きくなる点を、切り口化成の前
後に煮沸洗浄をすることにより容易に解決することがで
きる。
(G) According to the invention as described in detail, aluminum hydroxide is generated by the chemical formation of the cut surface of the solid electrolytic capacitor, which reduces the impregnation rate of the organic semiconductor and increases capacitance, equal series resistance, etc. The problem of deteriorating various properties of the material and increasing the rate of decrease in capacitance in high-temperature load tests can be easily solved by boiling and washing before and after the cut-edge chemical formation.

Claims (2)

【特許請求の範囲】[Claims] (1)化成したアルミニウム箔をスリットした陽極箔と
、アルミニウム箔からなる陰極箔とを、セパレータ紙を
介して巻回したコンデンサ素子に、融解液化可能な有機
半導体を含浸し、冷却固化した固体電解コンデンサの製
造方法において、前記コンデンサ素子の前記陽極箔の切
り口部分を化成する工程前に、前記コンデンサ素子を煮
沸洗浄することを特徴とする固体電解コンデンサの製造
方法。
(1) A capacitor element made by winding an anode foil made by slitting chemically formed aluminum foil and a cathode foil made of aluminum foil with separator paper interposed therebetween is impregnated with an organic semiconductor that can be melted and liquefied, and solidified by cooling. A method for manufacturing a solid electrolytic capacitor, characterized in that the capacitor element is washed by boiling before a step of chemically converting the cut portion of the anode foil of the capacitor element.
(2)化成したアルミニウム箔をスリットした陽極箔と
、アルミニウム箔からなる陰極箔とを、セパレータ紙を
介して巻回したコンデンサ素子に、融解液化可能な有機
半導体を含浸し、冷却固化した固体電解コンデンサの製
造方法において、前記コンデンサ素子の前記陽極箔の切
り口部分を化成する工程後に、前記コンデンサ素子を煮
沸洗浄することを特徴とする固体電解コンデンサの製造
方法。
(2) A solid electrolyte made by impregnating an organic semiconductor that can be melted and liquefied into a capacitor element made by winding an anode foil made by slitting chemically formed aluminum foil and a cathode foil made of aluminum foil with separator paper interposed therebetween, and then cooling and solidifying the capacitor element. A method for manufacturing a solid electrolytic capacitor, characterized in that the capacitor element is washed by boiling after the step of chemically converting the cut portion of the anode foil of the capacitor element.
JP62263026A 1987-10-19 1987-10-19 Manufacture of solid electrolytic capacitor Pending JPH01105525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263026A JPH01105525A (en) 1987-10-19 1987-10-19 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263026A JPH01105525A (en) 1987-10-19 1987-10-19 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01105525A true JPH01105525A (en) 1989-04-24

Family

ID=17383851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263026A Pending JPH01105525A (en) 1987-10-19 1987-10-19 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01105525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065043A1 (en) * 1998-06-09 1999-12-16 Showa Denko K.K. Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JP2010021376A (en) * 2008-07-11 2010-01-28 Nichicon Corp Production process of electrode foil for electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065043A1 (en) * 1998-06-09 1999-12-16 Showa Denko K.K. Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JP2010021376A (en) * 2008-07-11 2010-01-28 Nichicon Corp Production process of electrode foil for electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2810418B2 (en) Method for manufacturing solid electrolytic capacitor
JPH01105525A (en) Manufacture of solid electrolytic capacitor
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
US3270254A (en) Electrical capacitors and method of making the same
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
US3255390A (en) Electrical capacitor
JPH03280520A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JP2840522B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP4349558B2 (en) Solid electrolytic capacitor
JPS63181310A (en) Reformation treatment of solid electrolytic capacitor
JPH06132172A (en) Manufacture of tab terminal for electrolytic capacitor
JPH0766900B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0550126B2 (en)
JPH047086B2 (en)
JPS62119913A (en) Manufacture of solid electrolyte capacitor
JPS60214519A (en) Method of producing solid electrolytic condenser