JPH0550126B2 - - Google Patents

Info

Publication number
JPH0550126B2
JPH0550126B2 JP25184788A JP25184788A JPH0550126B2 JP H0550126 B2 JPH0550126 B2 JP H0550126B2 JP 25184788 A JP25184788 A JP 25184788A JP 25184788 A JP25184788 A JP 25184788A JP H0550126 B2 JPH0550126 B2 JP H0550126B2
Authority
JP
Japan
Prior art keywords
oxide film
dielectric
formula
anodic oxidation
anodizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25184788A
Other languages
Japanese (ja)
Other versions
JPH02100309A (en
Inventor
Tetsuya Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP25184788A priority Critical patent/JPH02100309A/en
Publication of JPH02100309A publication Critical patent/JPH02100309A/en
Publication of JPH0550126B2 publication Critical patent/JPH0550126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電極コンデンサを製造する際の陽極
酸化工程の改良に関し、さらに詳しくは、陽極酸
化を行う化成液中の独特の化合物を添加すること
により欠陥の少い強固な酸化被膜を形成する陽極
酸化方法に関する。 〔従来の技術〕 電解コンデサは、小形、大容量、安価で整流出
力の平滑化等に優れた特性を示し各種電気、電子
機器の重要な構成要素の1つであり、一般に表面
を電解酸化(陽極酸化)によつて酸化被膜に変え
たアルミニウムのような弁作用金属のフイルムを
陽極とし、この酸化被膜を誘電体とし集電陰極と
の間に電解液を介在させて作成される。 電解コンデンサは、使用中に化学反応を行わせ
ながら常に誘電体酸化被膜を再生しつつ使用する
ものであるため、表面を酸化被膜とした陽極と電
解液との間で起る化学反応の定常状態を維持し、
誘電体とするアルミニウムのような弁作用金属の
酸化被膜を良好に保持することが性能の安定化に
重要である。 コンデンサ特性の指標としては、静電容量
(Cap)、誘電正接(tanδ)、漏れ電流(LC)等が
ある。充電電流の位相と外部電界の位相との差で
ある損失角の正接すなわち誘電正接は、コンデン
サの消費電力の目安として用いられ、その値が小
さければ消費電力が少いことを示す。充電開始後
一定値に達したときに流れる電流である漏れ電流
は、誘電体の荷電担体の定常的な移動によるもの
で、誘電体中の不純物の解離等によつて生じたイ
オンが荷電担体の主体をなすと考えられており、
漏れ電流の大小は誘電体の電気化学的状態の安定
生を反映する。 一般的にアルミニウム電解コンデンサは、アル
ミ箔を前処理し、食塩等の塩化物水溶液中でエツ
チングし、ホウ酸アンモニウム等を含む電解液中
で陽極酸化(化成)し、裁断し、紙と陰極箔とを
巻回して素子を作成し、これに電解液を含浸し、
封止し、エージングして製造する。この内、陽極
酸化工程はコンデンサの誘電体とする酸化被膜を
形成する工程であつて、前工程でエツチングして
表面積を拡大したアルミニウム箔を陽極として、
連続的に陽極酸化を行うものである。 シリコンやチタンの化合物は、界面活性剤や金
属ポリマとを結合させるカツプリング剤として一
般に使用されている。特にチタンはコンデンサの
電極にも使用可能な金属であり、アルミニウムと
の合金を用いるコンデンサも検討され、コスト的
な面は別にして、アルミニウム単体より特性的に
優れていることが分つている。そこでシリコンや
チタンの化合物を電解コンデンサの製造に応用す
る可能性について検討を続けた結果、陽極酸化を
行う化成液中に特定のシリコンまたはチタン化合
物を添加することにより生成する酸化被膜の特性
が向上することをこの度突き止めた。 〔発明が解決しようとする課題〕 本発明は、陽極酸化を行う化成液中に特定の化
合物を添加することにより欠陥の少い強固な酸化
被膜を形成する陽極酸化を行つて、低い漏れ電流
と高い耐電圧性とを有する電解コンデンサを得る
ことを目的とする。 〔課題を解決するための手段〕 本発明によれば、電解コンデンサの誘電体とす
る弁作用金属の酸化被膜を電解質を含む化成液中
で弁作用金属の陽極体上に形成する陽極酸化を行
うに際し、
[Industrial Application Field] The present invention relates to improving the anodizing process when manufacturing electrode capacitors, and more specifically, by adding a unique compound to the chemical solution for anodizing, it is possible to improve the anodic oxidation process with fewer defects. The present invention relates to an anodic oxidation method for forming an oxide film. [Prior art] Electrolytic capacitors are small, large capacity, inexpensive, and have excellent characteristics such as smoothing rectified output, and are one of the important components of various electrical and electronic devices. It is created by using a film of a valve metal such as aluminum that has been converted into an oxide film by anodization (anodization) as an anode, and using this oxide film as a dielectric with an electrolyte interposed between it and a current collecting cathode. Electrolytic capacitors are used while constantly regenerating the dielectric oxide film while undergoing chemical reactions during use. maintain,
It is important to maintain a good oxide film on the valve metal such as aluminum, which serves as a dielectric, to stabilize performance. Indices of capacitor characteristics include capacitance (Cap), dielectric loss tangent (tanδ), and leakage current (LC). The loss angle tangent, that is, the dielectric loss tangent, which is the difference between the phase of the charging current and the phase of the external electric field, is used as a measure of the power consumption of a capacitor, and a small value indicates that the power consumption is low. Leakage current, which is the current that flows when a certain value is reached after the start of charging, is due to the steady movement of charge carriers in the dielectric, and ions generated by dissociation of impurities in the dielectric move the charge carriers. It is thought to be the main
The magnitude of leakage current reflects the stability of the electrochemical state of the dielectric. Generally, aluminum electrolytic capacitors are made by pre-treating aluminum foil, etching it in an aqueous chloride solution such as common salt, anodizing (forming) it in an electrolyte containing ammonium borate, cutting it, and then using paper and cathode foil. Create an element by winding and impregnating it with electrolyte,
Manufactured by sealing and aging. Among these, the anodizing process is a process of forming an oxide film that will be used as the dielectric of the capacitor, and the aluminum foil that has been etched in the previous process to enlarge its surface area is used as the anode.
This method performs continuous anodic oxidation. Silicon and titanium compounds are commonly used as coupling agents with surfactants and metal polymers. In particular, titanium is a metal that can be used for capacitor electrodes, and capacitors using alloys with aluminum have been studied, and it has been found that, apart from cost, they have better characteristics than aluminum alone. Therefore, we continued to study the possibility of applying silicon and titanium compounds to the manufacturing of electrolytic capacitors, and as a result, we found that adding a specific silicon or titanium compound to the anodizing chemical solution improved the properties of the oxide film that was produced. I finally figured out what to do. [Problems to be Solved by the Invention] The present invention performs anodic oxidation that forms a strong oxide film with few defects by adding a specific compound to the chemical solution for anodic oxidation, thereby achieving low leakage current. The purpose of the present invention is to obtain an electrolytic capacitor with high voltage resistance. [Means for Solving the Problems] According to the present invention, anodic oxidation is performed to form an oxide film of a valve metal to be used as a dielectric of an electrolytic capacitor on an anode body of a valve metal in a chemical solution containing an electrolyte. On this occasion,

【式】または[expression] or

【式】の 構造を分子鎖中に有する無機ポリマであつて親水
性基を導入して水溶性とした無機ポリマを化成液
中に添加することを特徴とする弁作用金属の陽極
酸化方法が提供される。 電解コンデンサの陽極としての使用し得る金属
は、アルミニウムまたはタンタルのように、電解
液中で陽極酸化を行う際に緻密な絶縁性のよい酸
化物を生成するものに限られる。このような金属
を弁金属あるいは弁作用金属と総称する。 化成液(電解液)として、ホウ酸アンモニウ
ム、リン酸アンモニウム、有機酸+アンモニアの
ような電解液を用い、コンデンサの定格電圧を約
2倍程度まで上回る電圧で陽極酸化を行えば好適
である。本発明の方法は、一段方式、多段方式、
陽極酸化を行う前に純水中で煮沸して最外表面に
疑似ベーマイト被膜を形成させる方式等のいずれ
の方式においても有用である。所定の工程終了
後、箔を裁断し、紙と陰極箔とを巻回して素子を
作成し、これに電解液を含浸し、封止し、エージ
ングして電解コンデンサを作成する。 置換基をRとし、無機ポリマを次の式で表す場
合(nは整数とする):
Provided is a method for anodizing a valve metal, which comprises adding an inorganic polymer having the structure of [Formula] in its molecular chain and made water-soluble by introducing a hydrophilic group into a chemical conversion solution. be done. Metals that can be used as the anode of electrolytic capacitors are limited to those that produce a dense oxide with good insulation properties when anodized in an electrolyte, such as aluminum or tantalum. Such metals are collectively called valve metals or valve metals. It is preferable to use an electrolytic solution such as ammonium borate, ammonium phosphate, or organic acid + ammonia as the chemical solution (electrolytic solution), and perform the anodic oxidation at a voltage that is about twice as high as the rated voltage of the capacitor. The method of the present invention includes a single-stage method, a multi-stage method,
Any method is useful, such as a method in which a pseudo-boehmite film is formed on the outermost surface by boiling in pure water before anodizing. After completing the prescribed steps, the foil is cut, the paper and the cathode foil are wound together to create an element, which is impregnated with an electrolytic solution, sealed, and aged to create an electrolytic capacitor. When the substituent is R and the inorganic polymer is represented by the following formula (n is an integer):

【式】【formula】 〔作用〕[Effect]

化成液に前記した本発明のポリマを添加するこ
とにより、どのような機構で電解コンデンサの誘
電体とする酸化被膜が欠陥の少い強固な被膜とな
るか、そのメカニズム自体は明らかではない。 しかしながら、通常の非金属の界面活性剤を添
加して陽極酸化を行つても、漏れ電流の低下、耐
電圧の上昇等の効果は小さいため、酸化被膜の特
性向上には本発明のポリマにおける疎水部分であ
る。
The mechanism by which the addition of the above-mentioned polymer of the present invention to the chemical conversion liquid makes the oxide film used as the dielectric of the electrolytic capacitor a strong film with few defects is not clear. However, even when anodic oxidation is performed with the addition of a normal nonmetallic surfactant, the effect of reducing leakage current and increasing withstand voltage is small. It is a part.

【式】【formula】

【式】が深く関与してい ると推定される。Si、Ti化合物は有機物と無機
物との結合を強めるカツプリング剤として広く使
用されている。このような作用によりポリマの無
機部分が酸化被膜表面に吸着あるいは化学結合
し、場合によつては一部が内部に侵入し、酸化被
膜を欠陥の少い強固なものにしていると推定され
る。 分子鎖中に
It is presumed that [Formula] is deeply involved. Si and Ti compounds are widely used as coupling agents to strengthen the bonds between organic and inorganic substances. It is presumed that due to this action, the inorganic part of the polymer is adsorbed or chemically bonded to the surface of the oxide film, and in some cases, some of it penetrates into the interior, making the oxide film strong with few defects. . in the molecular chain

【式】【formula】 〔発明の効果〕〔Effect of the invention〕

本発明によれば、陽極酸化を行う化成液中に所
定の構造の化合物を添加することにより欠陥の少
い強固な酸化被膜を形成する陽極酸化を行つて誘
電体とする酸化被膜の特性を改良し、これを用い
て電解コンデンサを作成することにより低い漏れ
電流と高い耐電圧性とを有する電解コンデンサを
得ることができる。 〔実施例〕 以下に実施例により本発明をさらに詳細に説明
するが、本発明は以下の実施例にのみ限定される
ものではない。 実施例 1 ホウ酸150g/、アンモニア水1.5ml/を溶
解した化成液にケイ素ポリマ系界面活性剤
According to the present invention, the properties of the oxide film used as a dielectric are improved by performing anodic oxidation to form a strong oxide film with few defects by adding a compound with a predetermined structure to the chemical solution for anodic oxidation. However, by manufacturing an electrolytic capacitor using this, an electrolytic capacitor having low leakage current and high voltage resistance can be obtained. [Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples. Example 1 A silicon polymer surfactant was added to a chemical solution containing 150 g of boric acid and 1.5 ml of ammonia water.

【式】を1重量%添加し、液温85℃、電圧 400Vで化成して陽極酸化を行つた。この化成箔
を7×100mmに裁断し、紙と陰極箔とを巻き回し
て素子とし、エチレングリコール88.3重量%、純
水2.8重量%、安息香酸アンモニウム8.9重量%の
組成の電解液を含浸して常法により電解コンデン
サを作成した。定格は250V、5.4μF、サイズは8φ
×11.5であつた静電容量(Cap)、誘電正接
(tanδ)、漏れ電流(LC)の初期値および高温で
の長時間使用(110℃、1000時間)後の値ならび
に不良発生(10個当りのシヨート数)についての
試験結果を第1表に示す。 実施例 2 ケイ素ポリマ系界面活性剤の代わりにチタンポ
リマ系界面活剤剤
[Formula] was added in an amount of 1% by weight, and anodic oxidation was carried out by chemical conversion at a liquid temperature of 85°C and a voltage of 400V. This chemically formed foil was cut into pieces of 7 x 100 mm, and the paper and cathode foil were wound together to form an element, which was then impregnated with an electrolytic solution having a composition of 88.3% by weight of ethylene glycol, 2.8% by weight of pure water, and 8.9% by weight of ammonium benzoate. An electrolytic capacitor was created using a conventional method. Rating is 250V, 5.4μF, size is 8φ
×11.5 initial values of capacitance (Cap), dielectric loss tangent (tanδ), leakage current (LC), values after long-term use at high temperature (110℃, 1000 hours), and failure occurrence (per 10 pieces) Table 1 shows the test results for the shot number). Example 2 Titanium polymer surfactant instead of silicon polymer surfactant

【式】を1重量%添加 する以外は実施例1と同様にして陽極酸化を行
い、電解コンデンサを作成した。試験結果を第1
表に示す。 比較例 1 ケイ素ポリマ系界面活性剤の代わりに炭化水素
系界面活性剤ポリエチレングリコールモノラウリ
ン酸エステルを1重量%添加する以外は実施例1
と同様にして陽極酸化を行い、電解コンデンサを
作成した。試験結果を第1表に示す。 比較例 2 界面活性剤は全く添加せず、他は実施例1と同
様にして陽極酸化を行い、電解コンデンサを作成
した。試験結果を第1表に示す。
An electrolytic capacitor was produced by anodizing in the same manner as in Example 1 except that 1% by weight of [Formula] was added. Test results first
Shown in the table. Comparative Example 1 Example 1 except that 1% by weight of the hydrocarbon surfactant polyethylene glycol monolaurate was added instead of the silicon polymer surfactant.
Anodizing was performed in the same manner as above to create an electrolytic capacitor. The test results are shown in Table 1. Comparative Example 2 An electrolytic capacitor was produced by anodizing in the same manner as in Example 1 except that no surfactant was added. The test results are shown in Table 1.

【表】 第1表から分かるように、本発明による陽極酸
化を行つて作成した電解コンデンサは、漏れ電流
は小さく、耐電圧性と相関するシヨートは全く発
生しなかつた。高温での長時間使用後の消費電力
増加の尺度である誘電正接の増加も従来の電解コ
ンデンサより低く抑えられた。
[Table] As can be seen from Table 1, the electrolytic capacitors produced by anodizing according to the present invention had small leakage currents and no shoots correlated with withstand voltage properties were generated. The increase in dielectric loss tangent, which is a measure of the increase in power consumption after long-term use at high temperatures, was also suppressed to a lower level than with conventional electrolytic capacitors.

Claims (1)

【特許請求の範囲】 1 電解コンデンサの誘電体とする弁作用金属の
酸化被膜を電解質を含む化成液中で弁作用金属の
陽極体上に形成する陽極酸化を行うに際し、
【式】または【式】の構造を分子 鎖中に有する無機ポリマであつて親水性基を導入
して水溶性とした無機ポリマを化成液中に添加す
ることを特徴とする弁作用金属の陽極酸化方法。
[Scope of Claims] 1. When performing anodic oxidation to form an oxide film of a valve metal as a dielectric of an electrolytic capacitor on an anode body of a valve metal in a chemical solution containing an electrolyte,
An anode of a valve metal, characterized in that an inorganic polymer having the structure of [Formula] or [Formula] in its molecular chain and made water-soluble by introducing a hydrophilic group is added to the chemical solution. Oxidation method.
JP25184788A 1988-10-07 1988-10-07 Anodic oxidation of valve action metal Granted JPH02100309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25184788A JPH02100309A (en) 1988-10-07 1988-10-07 Anodic oxidation of valve action metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25184788A JPH02100309A (en) 1988-10-07 1988-10-07 Anodic oxidation of valve action metal

Publications (2)

Publication Number Publication Date
JPH02100309A JPH02100309A (en) 1990-04-12
JPH0550126B2 true JPH0550126B2 (en) 1993-07-28

Family

ID=17228804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25184788A Granted JPH02100309A (en) 1988-10-07 1988-10-07 Anodic oxidation of valve action metal

Country Status (1)

Country Link
JP (1) JPH02100309A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428898A (en) * 1990-05-25 1992-01-31 Yokoyama Hyomen Kogyo Kk Article having anodically-oxidized film and its production
JP4701940B2 (en) * 2004-09-13 2011-06-15 株式会社村田製作所 Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02100309A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
WO2004040605A1 (en) Electrolyte for electrolytic capacitor, electrolytic capacitor and process for producing tetrafluoroaluminate salt of organic onium
JP4780812B2 (en) Aluminum electrolytic capacitor
JPS6199322A (en) High voltage aluminum electrolytic capacitor
KR970004300B1 (en) Electrolyte for condenser
JPH0550126B2 (en)
JP2000114109A (en) Solid electrolytic capacitor and its manufacture
JPH0553051B2 (en)
JP2001223136A (en) Aluminum electrolytic capacitor
JP4164911B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3663245B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4570790B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH09115782A (en) Electrolyte for driving electrolytic capacitor
JP3963575B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH01245508A (en) Electrolyte for electrolytic capacitor
JP3625234B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS5892207A (en) Electrolyte for driving electrolytic condenser
JP3979104B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same
JP2005109264A (en) Manufacturing method of solid electrolytic capacitor
JPH0690994B2 (en) Electrolytic solution for electrolytic capacitors
JPH0410514A (en) Electrolyte for electrolytic capacitor
JPH0530292B2 (en)
JP2001358040A (en) Solid electrolytic capacitor
JPS627684B2 (en)
JPH0582726B2 (en)