JP4349558B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP4349558B2
JP4349558B2 JP2002351538A JP2002351538A JP4349558B2 JP 4349558 B2 JP4349558 B2 JP 4349558B2 JP 2002351538 A JP2002351538 A JP 2002351538A JP 2002351538 A JP2002351538 A JP 2002351538A JP 4349558 B2 JP4349558 B2 JP 4349558B2
Authority
JP
Japan
Prior art keywords
complex salt
charge transfer
solid electrolytic
capacitor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351538A
Other languages
Japanese (ja)
Other versions
JP2004186424A (en
Inventor
公男 高瀬
容史 山口
秀雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2002351538A priority Critical patent/JP4349558B2/en
Publication of JP2004186424A publication Critical patent/JP2004186424A/en
Application granted granted Critical
Publication of JP4349558B2 publication Critical patent/JP4349558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、固体電解コンデンサに用いられる電荷移動錯塩及び該錯塩を用いた高周波数低等価直列抵抗(以下、「ESR」と略記する。)特性を有する固体電解コンデンサに関する。
【0002】
【従来の技術】
従来、固体電解質として、有機半導体である7,7’,8,8’−テトラシアノキノジメタン(以下、「TCNQ」と略記する。)錯塩を用いた固体電解コンデンサが、種々提案されている。
【0003】
陽極箔に、N−アルキル置換イソキノリニウム−TCNQ錯塩を、溶融、液化させて、コンデンサ素子に含浸させた後、冷却、固化させて、固体電解質を形成させた固体電解コンデンサが知られている(例えば、特許文献1参照。)。
【0004】
上記コンデンサは、優れた高周波数特性を有し、また、製造工程が比較的簡便であるため、安価なコンデンサを供給できる。
【0005】
しかしながら、近年、デジタル機器の発展に伴い、スイッチングレギュレータの高周波数化、小型大容量化が進み、固体電解コンデンサには、さらに高周波数低ESR化が要求されている。
【0006】
また、コンデンサのESR特性は、用いられる固体電解質の電気抵抗に依存しており、コンデンサの高周波数低ESR化の要求を満たす高電気伝導度の電荷移動錯塩が要求されていた。
【0007】
【特許文献1】
特公昭62−51491号公報(第2〜3頁)
【0008】
【発明が解決しようとする課題】
本発明の第1の目的は、高電気伝導度の電荷移動錯塩を提供することであり、第2の目的は、該電荷移動錯塩を固体電解質として用いた、高周波数低ESRの優れた特性を有する固体電解コンデンサを提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、N−nブチルイソキノリニウム−TCNQ錯塩(以下、「BIQ−TCNQ」と略記する。)と、N−nヘプチルイソキノリニウム−TCNQ錯塩(以下、「HIQ−TCNQ」と略記する。)とを組合わせた電荷移動錯塩混合物を固体電解質として用いることにより、高周波数低ESRの優れた特性を有する固体電解コンデンサが得られることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、BIQ−TCNQ錯塩とHIQ−TCNQ錯塩とからなることを特徴とする電荷移動錯塩混合物であり、該混合物を固体電解質として用いてなることを特徴とする固体電解コンデンサである。
【0011】
以下、本発明の電荷移動錯塩混合物について、詳細に説明する。
【0012】
本発明のBIQ−TCNQ錯塩及びHIQ−TCNQ錯塩は、特公平4−7086号公報の第2頁に記載のような公知の方法により得ることができる。
【0013】
本発明の電荷移動錯塩混合物は、BIQ−TCNQ錯塩に、含有率が1〜50質量%となる量のHIQ−TCNQ錯塩を加え、十分に混合させることにより得られる。HIQ−TCNQ錯塩の含有率は、好ましくは5〜40質量%である。
【0014】
HIQ−TCNQ錯塩が1質量%未満または50質量%超の場合、電気伝導度が従来のTCNQ錯塩と同等もしくは下回ってしまい、不都合である。
【0015】
また、一般にTCNQ錯塩は、アクセプターとドナーのモル比が1:1または2:1のものが知られているが、本発明のTCNQ錯塩においては、アクセプターであるTCNQと、ドナーであるN−nブチルイソキノリニウムまたはN−nヘプチルイソキノリニウムとのモル比は、1.5〜3:1であり、好ましくは、1.8〜2.7:1である。上記モル比が1.5〜3:1の範囲外の場合、得られる電荷移動錯塩混合物は、電気伝導度が小さく、不都合である。
【0016】
上記電荷移動錯塩混合物を固体電解質として用いた固体電解コンデンサは、特許文献1に記載された方法に準じて作製される。以下、その作製方法について説明する。
【0017】
弁作用金属であるアルミニウム箔の表面を、エッチングして粗面化させた後、陽極リードを、抵抗溶接やカシメ付け等により接続させ、ついで、アジピン酸アンモニウム等の水溶液中、電解酸化を行い、化成処理して、アルミニウム箔の表面に誘電体酸化皮膜を形成させた陽極箔を準備する。抵抗溶接やカシメ付け等により陰極リードを接続させた対向アルミニウム陰極箔と、誘電体酸化皮膜を形成させた陽極箔との間に、セパレータとしてマニラ紙を挟み、円筒状に巻き取った後、熱処理させて、マニラ紙を炭化させて、コンデンサ素子を準備する。
【0018】
次に、別途、用意した有底円筒状のアルミニウム製コンデンサケースに、先に準備した電荷移動錯塩混合物を適量詰め込んだ後、加熱し、該コンデンサケース内の電荷移動錯塩混合物を、溶融、液化させる。
【0019】
続いて、該コンデンサケース内の溶融、液化させた電荷移動錯塩混合物中に、予め加熱したコンデンサ素子を浸漬した後、直ちに冷却し、該電荷移動錯塩混合物を固化させて、固体電解質を形成させる。
【0020】
さらに、エポキシ樹脂等を用いて、該コンデンサケースを封口し、電圧を印加して、エージングを行い、本発明の固体電解コンデンサを完成する。
【0021】
本発明のBIQ−TCNQ錯塩とHIQ−TCNQ錯塩とからなる電荷移動錯塩混合物は、高電気伝導度であり、該電荷移動錯塩混合物を固体電解質として用いた、本発明の固体電解コンデンサは、高周波数低ESRの優れたコンデンサ特性を有する。
【0022】
【発明の実施の形態】
以下、発明の実施の形態を、実施例に基づき説明する。なお、本発明は、実施例により、なんら限定されない。
【0023】
実施例1
アルミニウム箔の表面をエッチングして粗面化させた後、カシメ付けにより、陽極リードを接続させ、ついで、アジピン酸アンモニウムの10質量%水溶液中、電圧10Vで化成処理して、表面に誘電体酸化皮膜を形成させた陽極箔を得た。次に、抵抗溶接により陰極リードを接続させた対向アルミニウム陰極箔と、該陽極箔との間に、厚さ50μmのマニラ紙をセパレータとして挟み、円筒状に巻き取り、ついで、温度400℃で4分間、熱処理して、マニラ紙を炭化させ、コンデンサ素子を準備した。
【0024】
次に、BIQ−TCNQ錯塩に、5質量%となる量のHIQ−TCNQ錯塩を添加させ、十分に混合させて、本発明の電荷移動錯塩混合物を得た。
【0025】
有底円筒状のアルミニウム製コンデンサケース(直径6mmφ×高さ7mm)に、上記電荷移動錯塩混合物を適量詰め込んだ後、温度300℃の熱板上に、該コンデンサケースを20秒間載置し、該コンデンサケース内の電荷移動錯塩混合物を、溶融、液化させた。
【0026】
溶融、液化させた電荷移動錯塩混合物中に、温度300℃で予熱したコンデンサ素子を浸漬した後、直ちに、水を用いて、該コンデンサケース毎、冷却、固化させて、導電性の電荷移動錯塩混合物からなる固体電解質層を形成させた。
【0027】
ついで、エポキシ樹脂を用いて、該コンデンサケースを封口した後、電圧10Vを印加して、エージングし、定格電圧10V×定格静電容量22μFの固体電解コンデンサを完成した。
【0028】
完成したコンデンサについて、120Hzでの静電容量(以下、「C」と略記する。)及びtanδ、並びに100kHzでのESRの初期特性を測定した。結果を表1に示した。
【0029】
また、上記電荷移動錯塩混合物を温度200℃で融解させた後、冷却、固化してから、圧力0.3MPaで加圧成形し、円盤状ペレットを作製した。該ペレットの電導度を4端子法にて測定した。結果を表1に示す。
【0030】
実施例2〜4
実施例1において、表1に示した組成のBIQ−TCNQ錯塩とHIQ−TCNQ錯塩との電荷移動錯塩混合物を用いて、実施例1と同様にして、固体電解コンデンサを作製し、実施例1と同様にして、固体電解コンデンサの初期特性及びペレットの電気伝導度を測定した。結果を表1に示す。
【0031】
比較例1
実施例1において、BIQ−TCNQ錯塩を単独で用いた以外は、実施例1と同様にして、固体電解コンデンサを作製し、実施例1と同様にして、固体電解コンデンサの初期特性及びペレットの電気伝導度を測定した。結果を表1に示す。
【0032】
比較例2
実施例1において、HIQ−TCNQ錯塩を単独で用いた以外は、実施例1と同様にして、固体電解コンデンサを作製し、実施例1と同様にして、固体電解コンデンサの初期特性及びペレットの電気伝導度を測定した。結果を表1に示す。
【0033】
【表1】

Figure 0004349558
【0034】
表1に示すように、従来の電荷移動錯塩単体(比較例1,2)の場合に比し、本発明の電荷移動錯塩混合物(実施例1〜4)は、電気伝導度が高く、該混合物を固体電解質として用いた固体電解コンデンサは、ESRが低く、高周波数で優れたコンデンサ特性を有していることがわかる。
【0035】
【発明の効果】
本発明のBIQ−TCNQ錯塩とHIQ−TCNQ錯塩とからなる電荷移動錯塩混合物は、高電気伝導度であり、該電荷移動錯塩混合物を固体電解質として用いた、本発明の固体電解コンデンサは、ESRが低く、高周波数で優れたコンデンサ特性を有する。[0001]
[Industrial application fields]
The present invention relates to a charge transfer complex salt used in a solid electrolytic capacitor and a solid electrolytic capacitor having a high frequency low equivalent series resistance (hereinafter abbreviated as “ESR”) characteristic using the complex salt.
[0002]
[Prior art]
Conventionally, various solid electrolytic capacitors using a complex salt of 7,7 ′, 8,8′-tetracyanoquinodimethane (hereinafter abbreviated as “TCNQ”), which is an organic semiconductor, have been proposed as solid electrolytes. .
[0003]
A solid electrolytic capacitor is known in which an N-alkyl-substituted isoquinolinium-TCNQ complex salt is melted and liquefied on an anode foil, impregnated in a capacitor element, and then cooled and solidified to form a solid electrolyte (for example, , See Patent Document 1).
[0004]
Since the capacitor has excellent high frequency characteristics and the manufacturing process is relatively simple, an inexpensive capacitor can be supplied.
[0005]
However, in recent years, with the development of digital devices, switching regulators have increased in frequency and size and capacity have increased, and solid electrolytic capacitors are required to have higher frequency and lower ESR.
[0006]
Further, the ESR characteristic of the capacitor depends on the electric resistance of the solid electrolyte used, and a charge transfer complex salt having a high electric conductivity that satisfies the requirement for a high frequency and low ESR of the capacitor has been required.
[0007]
[Patent Document 1]
Japanese Examined Patent Publication No. 62-51491 (pages 2 and 3)
[0008]
[Problems to be solved by the invention]
The first object of the present invention is to provide a charge transfer complex salt having high electrical conductivity, and the second object is to provide excellent characteristics of high frequency and low ESR using the charge transfer complex salt as a solid electrolyte. A solid electrolytic capacitor is provided.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that an Nn butylisoquinolinium-TCNQ complex salt (hereinafter abbreviated as “BIQ-TCNQ”) and an Nn heptylisoquinolinium-TCNQ complex salt (hereinafter referred to as “BIQ-TCNQ”). And abbreviated as “HIQ-TCNQ”) as a solid electrolyte, a solid electrolytic capacitor having excellent characteristics of high frequency and low ESR can be obtained. It came to complete.
[0010]
That is, the present invention is a charge transfer complex salt mixture comprising a BIQ-TCNQ complex salt and a HIQ-TCNQ complex salt, and a solid electrolytic capacitor comprising the mixture as a solid electrolyte.
[0011]
Hereinafter, the charge transfer complex salt mixture of the present invention will be described in detail.
[0012]
The BIQ-TCNQ complex salt and the HIQ-TCNQ complex salt of the present invention can be obtained by a known method as described on page 2 of JP-B-4-7086.
[0013]
The charge transfer complex salt mixture of the present invention can be obtained by adding HIQ-TCNQ complex salt in an amount of 1 to 50% by mass to BIQ-TCNQ complex salt and mixing them well. The content of the HIQ-TCNQ complex salt is preferably 5 to 40% by mass.
[0014]
When the HIQ-TCNQ complex salt is less than 1% by mass or more than 50% by mass, the electric conductivity is equal to or lower than that of the conventional TCNQ complex salt, which is inconvenient.
[0015]
In general, a TCNQ complex salt having an acceptor to donor molar ratio of 1: 1 or 2: 1 is known. In the TCNQ complex salt of the present invention, an acceptor TCNQ and a donor N-n are used. The molar ratio with butylisoquinolinium or Nn heptylisoquinolinium is 1.5-3: 1, preferably 1.8-2.7: 1. When the molar ratio is outside the range of 1.5 to 3: 1, the resulting charge transfer complex salt mixture is disadvantageous because of its low electrical conductivity.
[0016]
A solid electrolytic capacitor using the above charge transfer complex salt mixture as a solid electrolyte is produced according to the method described in Patent Document 1. Hereinafter, a manufacturing method thereof will be described.
[0017]
After etching and roughening the surface of the aluminum foil, which is a valve metal, the anode lead is connected by resistance welding, caulking, etc., and then electrolytically oxidized in an aqueous solution such as ammonium adipate, An anode foil having a dielectric oxide film formed on the surface of an aluminum foil by chemical conversion treatment is prepared. Between the opposing aluminum cathode foil with the cathode lead connected by resistance welding, caulking, etc. and the anode foil with the dielectric oxide film sandwiched between manila paper as a separator, wound into a cylindrical shape, and then heat treated Then, the capacitor paper is prepared by carbonizing the manila paper.
[0018]
Next, an appropriate amount of the charge transfer complex salt mixture prepared previously is packed in a separately prepared cylindrical aluminum capacitor case, and then heated to melt and liquefy the charge transfer complex salt mixture in the capacitor case. .
[0019]
Subsequently, after the capacitor element heated in advance is immersed in the molten and liquefied charge transfer complex salt mixture in the capacitor case, the capacitor element is immediately cooled, and the charge transfer complex salt mixture is solidified to form a solid electrolyte.
[0020]
Further, the capacitor case is sealed with an epoxy resin or the like, a voltage is applied, and aging is performed to complete the solid electrolytic capacitor of the present invention.
[0021]
The charge transfer complex salt mixture composed of the BIQ-TCNQ complex salt and the HIQ-TCNQ complex salt of the present invention has high electrical conductivity, and the solid electrolytic capacitor of the present invention using the charge transfer complex salt mixture as a solid electrolyte has a high frequency. Excellent capacitor characteristics with low ESR.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the invention will be described based on examples. In addition, this invention is not limited at all by the Example.
[0023]
Example 1
After roughening the surface of the aluminum foil by etching, the anode lead is connected by caulking, and then subjected to chemical conversion treatment at a voltage of 10 V in a 10% by weight aqueous solution of ammonium adipate to oxidize the surface of the aluminum foil. An anode foil on which a film was formed was obtained. Next, a 50 μm-thick Manila paper is sandwiched as a separator between the opposing aluminum cathode foil to which the cathode lead is connected by resistance welding, and the anode foil, and then rolled into a cylindrical shape. The capacitor paper was prepared by carbonizing the Manila paper by heat treatment for a minute.
[0024]
Next, the HIQ-TCNQ complex salt in an amount of 5% by mass was added to the BIQ-TCNQ complex salt and mixed well to obtain the charge transfer complex salt mixture of the present invention.
[0025]
An appropriate amount of the above charge transfer complex salt mixture is packed in a bottomed cylindrical aluminum capacitor case (diameter 6 mmφ × height 7 mm), and then placed on a hot plate at a temperature of 300 ° C. for 20 seconds. The charge transfer complex salt mixture in the capacitor case was melted and liquefied.
[0026]
After the capacitor element preheated at a temperature of 300 ° C. is immersed in the melted and liquefied charge transfer complex salt mixture, the capacitor case is immediately cooled and solidified with water to form a conductive charge transfer complex salt mixture. A solid electrolyte layer was formed.
[0027]
Next, after sealing the capacitor case with an epoxy resin, a voltage of 10 V was applied and aged to complete a solid electrolytic capacitor having a rated voltage of 10 V and a rated capacitance of 22 μF.
[0028]
With respect to the completed capacitor, electrostatic capacity at 120 Hz (hereinafter abbreviated as “C”) and tan δ, and initial characteristics of ESR at 100 kHz were measured. The results are shown in Table 1.
[0029]
The charge transfer complex salt mixture was melted at a temperature of 200 ° C., cooled and solidified, and then pressure-molded at a pressure of 0.3 MPa to produce a disk-shaped pellet. The conductivity of the pellet was measured by the 4-terminal method. The results are shown in Table 1.
[0030]
Examples 2-4
In Example 1, a solid electrolytic capacitor was prepared in the same manner as in Example 1 using a charge transfer complex salt mixture of BIQ-TCNQ complex salt and HIQ-TCNQ complex salt having the composition shown in Table 1. Similarly, the initial characteristics of the solid electrolytic capacitor and the electrical conductivity of the pellet were measured. The results are shown in Table 1.
[0031]
Comparative Example 1
In Example 1, a solid electrolytic capacitor was produced in the same manner as in Example 1 except that the BIQ-TCNQ complex salt was used alone. In the same manner as in Example 1, the initial characteristics of the solid electrolytic capacitor and the electrical properties of the pellets were obtained. Conductivity was measured. The results are shown in Table 1.
[0032]
Comparative Example 2
In Example 1, a solid electrolytic capacitor was produced in the same manner as in Example 1 except that the HIQ-TCNQ complex salt was used alone. In the same manner as in Example 1, the initial characteristics of the solid electrolytic capacitor and the electrical properties of the pellets were obtained. Conductivity was measured. The results are shown in Table 1.
[0033]
[Table 1]
Figure 0004349558
[0034]
As shown in Table 1, the charge transfer complex salt mixture (Examples 1 to 4) of the present invention has a higher electrical conductivity than the conventional charge transfer complex salt alone (Comparative Examples 1 and 2). It can be seen that a solid electrolytic capacitor using as a solid electrolyte has low ESR and excellent capacitor characteristics at a high frequency.
[0035]
【The invention's effect】
The charge transfer complex salt mixture composed of the BIQ-TCNQ complex salt and the HIQ-TCNQ complex salt of the present invention has high electrical conductivity. Low and excellent capacitor characteristics at high frequencies.

Claims (1)

N−nブチルイソキノリニウム−7,7’,8,8’−テトラシアノキノジメタン錯塩と、N−nヘプチルイソキノリニウム−7,7’,8,8’−テトラシアノキノジメタン錯塩とからなり、N−nヘプチルイソキノリニウム−7,7’,8,8’−テトラシアノキノジメタン錯塩の含有率が、5〜40質量%である電荷移動錯塩混合物を、固体電解質として用いてなることを特徴とする固体電解コンデンサ。 Nnbutylisoquinolinium-7,7 ′, 8,8′-tetracyanoquinodimethane complex salt and Nnheptylisoquinolinium-7,7 ′, 8,8′-tetracyanoquinodi A charge transfer complex salt mixture comprising a methane complex salt, wherein the content of Nn heptylisoquinolinium-7,7 ′, 8,8′-tetracyanoquinodimethane complex salt is 5 to 40% by mass , A solid electrolytic capacitor characterized by being used as an electrolyte.
JP2002351538A 2002-12-03 2002-12-03 Solid electrolytic capacitor Expired - Fee Related JP4349558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351538A JP4349558B2 (en) 2002-12-03 2002-12-03 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351538A JP4349558B2 (en) 2002-12-03 2002-12-03 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004186424A JP2004186424A (en) 2004-07-02
JP4349558B2 true JP4349558B2 (en) 2009-10-21

Family

ID=32753421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351538A Expired - Fee Related JP4349558B2 (en) 2002-12-03 2002-12-03 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4349558B2 (en)

Also Published As

Publication number Publication date
JP2004186424A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP2009505413A (en) Solid capacitor and manufacturing method thereof
JPH0456445B2 (en)
KR20090080907A (en) Electrolytic capacitor anode treated with an organometallic compound
JPH0158856B2 (en)
CN102893350A (en) Solid electrolytic capacitor
CN102420052B (en) Solid electrolytic capacitor
CN1539031A (en) Metal foil consiting of alloy of earth-acid metal and capacitor provided with the same
JP3624898B2 (en) Niobium powder, sintered body using the same, and capacitor using the same
JP4349558B2 (en) Solid electrolytic capacitor
JP2006253169A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4334323B2 (en) Charge transfer complex salt mixture and solid electrolytic capacitor using the mixture
JPS63226912A (en) Electrolyte for electrolytic capacitor
JP2004186431A (en) Charge transfer complex salt mixture and solid electrolytic capacitor using the same
JP3490868B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0763045B2 (en) Capacitor
JP2009252913A (en) Method of manufacturing solid electrolytic capacitor
JP3551020B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2002222741A (en) Method of manufacturing polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JP2002198266A (en) Method of manufacturing electrolytic capacitor
JPH0530292B2 (en)
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JP2919730B2 (en) Solid electrolytic capacitors
JP2002008954A (en) Electric double-layer capacitor, carbon electrode and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees