JPH02267915A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH02267915A
JPH02267915A JP8943389A JP8943389A JPH02267915A JP H02267915 A JPH02267915 A JP H02267915A JP 8943389 A JP8943389 A JP 8943389A JP 8943389 A JP8943389 A JP 8943389A JP H02267915 A JPH02267915 A JP H02267915A
Authority
JP
Japan
Prior art keywords
anodic oxidation
heat treatment
voltage
sintered body
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8943389A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iida
和幸 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP8943389A priority Critical patent/JPH02267915A/en
Publication of JPH02267915A publication Critical patent/JPH02267915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase capacitance and improve leakage current characteristics by performing heat treatment after a first anodic oxidation, and then performing a second anodic oxidation applying the higher voltage. CONSTITUTION:After a first anodic oxidation, a sintered body is subjected to a heat treatment, and then a second anodic oxidation is performed by applying a voltage higher than the first anodic oxidation. That is, the first anodic oxidation is formed by applying a voltage about 2-3 times the rated voltage, and electrostatic capacitance is made comparatively large. After the first anodic oxidation, leakage current is reduced by heat treatment. After the heat treatment, the second anodic oxidation is performed by applying a voltage higher than the first anodic oxidation, thereby selectively forming imperfect parts of an oxide film generated by heat treatment and the like. Thereby electrostatic capacitance can be increased, and tandelta characteristics, leakage current characteristics, etc., can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体電解コンデンサの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a solid electrolytic capacitor.

(従来の技術) タンタル等の固体電解コンデンサは、タンタルの微粉末
等をプレス成型し真空加熱して焼結体を形成し、この焼
結体に陽極酸化処理等の各処理を行ない製造する。
(Prior Art) Solid electrolytic capacitors made of tantalum or the like are manufactured by press-molding tantalum fine powder or the like, heating it in vacuum to form a sintered body, and subjecting the sintered body to various treatments such as anodization.

従来の陽極酸化処理は、リン酸や硝酸等の非金属元素の
酸素酸を電解液として用い、この電解液中に焼結体を浸
漬し、一定の電圧を数時間印加して行なっている。この
時の印加電圧は、歩留りや信頼性を向上させるなめに、
通常、定格電圧の約4倍以上に設定される。
Conventional anodic oxidation treatment is performed by using an oxyacid of a non-metallic element such as phosphoric acid or nitric acid as an electrolytic solution, immersing the sintered body in this electrolytic solution, and applying a constant voltage for several hours. The applied voltage at this time is determined to improve yield and reliability.
Usually, it is set to about four times or more the rated voltage.

(発明が解決しようとする課題) ところで、コンデンサの静電容量を増加するためには、
化成電圧を低くする方法と、焼結体の実効表面積を増加
する方法の二通りがある。が、前者の方法では、化成電
圧の低下にともなって誘電体酸化皮膜の厚さが薄くなり
、電気的特性及び機械的強度が低下して漏れ電流が増大
し、歩留り、信頼性が低下する。また、後者の方法では
、焼結体の実効表面積を増加するために、タンタルの微
粉末の粒径をより小さくしなければならず、そのなめに
、焼結体内の空孔形状が狭く、かつ複雑で、等個直列抵
抗が増し、tanδが増加する欠点があった。
(Problem to be solved by the invention) By the way, in order to increase the capacitance of a capacitor,
There are two methods: lowering the formation voltage and increasing the effective surface area of the sintered body. However, in the former method, as the anodizing voltage decreases, the thickness of the dielectric oxide film becomes thinner, the electrical characteristics and mechanical strength decrease, the leakage current increases, and the yield and reliability decrease. In addition, in the latter method, in order to increase the effective surface area of the sintered body, the particle size of the fine tantalum powder must be made smaller. It is complicated, and has disadvantages of increasing equal series resistance and increasing tan δ.

本発明の目的は、以上の欠点を改良し、静電容量を増加
しうるとともにtanδ特性や漏れ電流特性を向上しう
る固体電解コンデンサの製造方法を提供するものである
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that can improve the above-mentioned drawbacks, increase capacitance, and improve tan δ characteristics and leakage current characteristics.

(課題を解決するための手段) 本発明は、上記の目的を達成するために、焼結体に第1
の陽極酸化処理をした後に加熱処理を行ない、次いで第
1の陽極酸化よりも高い電圧で第2の陽極酸化を行なう
ことを特徴とする固体電解コンデンサの製造方法を提供
するものである。
(Means for Solving the Problem) In order to achieve the above object, the present invention provides a sintered body with a first
The present invention provides a method for manufacturing a solid electrolytic capacitor, which is characterized in that a heat treatment is performed after the anodization treatment, and then a second anodic oxidation is performed at a higher voltage than the first anodization.

(作用) 第1の陽極酸化を定格電圧の2〜3倍程度で化成を行な
って、静電容量を比較的大きくする。そしてこの第1の
陽極酸化処理後に加熱処理を行なうことにより、酸化皮
膜を熱的に安定化し漏れ電流を低下させる。加熱処理後
に、第2の陽極酸化を第1の陽極酸化よりも高い電圧で
行なって、加熱処理等によって生じた酸化皮膜の欠陥部
を選択的に化成して電気的特性を安定化する。
(Function) The first anodic oxidation is performed at about 2 to 3 times the rated voltage to relatively increase the capacitance. By performing heat treatment after this first anodizing treatment, the oxide film is thermally stabilized and leakage current is reduced. After the heat treatment, second anodic oxidation is performed at a higher voltage than the first anodic oxidation to selectively form defects in the oxide film caused by the heat treatment and the like, thereby stabilizing the electrical characteristics.

(実施例) 以下、本発明を実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on examples.

先ず、タンタルの微粉末を圧縮成形し、真空中で加熱処
理し、硝酸及び純水中でCV[340μFの焼結体を形
成する。
First, tantalum fine powder is compression molded and heat treated in a vacuum to form a sintered body with CV [340 μF] in nitric acid and pure water.

次に、この焼結体を0.1%HNOx溶液中に浸漬して
電流密度70mA/rで化成電圧10Vまで定電流化成
を行ない、化成電圧10Vに到達後、約3時間定電圧化
成を行なう。
Next, this sintered body is immersed in a 0.1% HNOx solution and subjected to constant current formation at a current density of 70 mA/r until the formation voltage reaches 10V, and after reaching the formation voltage of 10V, constant voltage formation is performed for about 3 hours. .

この第1の陽極酸化処理後、焼結体を純水で洗浄し、空
気中で温度250〜350 ’Cで15分間、加熱処理
する。
After this first anodizing treatment, the sintered body is washed with pure water and heat treated in air at a temperature of 250 to 350'C for 15 minutes.

加熱処理後、第2の陽極酸化処理として焼結体を0.4
wt%のホウ酸アンモニウム溶液中に浸漬し、電流密度
700 m A / zで化成電圧80Vまで化成し、
化成電圧に到達後、1分間定電圧化成する。
After the heat treatment, the sintered body is subjected to a second anodic oxidation treatment of 0.4
Immersed in a wt% ammonium borate solution and chemically formed at a current density of 700 mA/z to a chemical formation voltage of 80V,
After reaching the formation voltage, constant voltage formation is carried out for 1 minute.

第2の陽極酸化処理の後、焼結体を純水中で煮沸洗浄し
、乾燥する。
After the second anodic oxidation treatment, the sintered body is washed by boiling in pure water and dried.

乾燥後、硝酸マンガン溶液中に焼結体を浸漬し含浸して
熱分解し、再化成する工程を7〜8回繰り返して二酸化
マンガン層を形成する。
After drying, the steps of immersing the sintered body in a manganese nitrate solution, impregnating it, thermally decomposing it, and reforming it are repeated 7 to 8 times to form a manganese dioxide layer.

二酸化マンガン層を形成後、グラファイト層、銀ペース
ト層を順次形成し、陽極端子、陰極端子を取り付け、樹
脂外装を形成する。
After forming the manganese dioxide layer, a graphite layer and a silver paste layer are sequentially formed, an anode terminal and a cathode terminal are attached, and a resin exterior is formed.

上記実施例において加熱処理の温度を350℃としたも
のについて、比較例とともに静電容量、tanδ及び漏
れ電流を測定しなところ表の通りの結果が得られた。
The capacitance, tan δ, and leakage current were measured for the heat treatment temperature of 350°C in the above example as well as for the comparative example, and the results shown in the table were obtained.

なお、比較例は、実施例において、陽極酸化処理として
、焼結体を0.1%HNO!洛中に浸漬し、電流密度7
0 m A / gで化成電圧15Vまで定電流化成を
行ない、化成電圧に到達後、約3時間定電圧化成を行な
ったものとする。また試料数は各々30ケとする。
In addition, in the comparative example, the sintered body was treated with 0.1% HNO! as the anodizing treatment in the example. Immersed in Raku, current density 7
It is assumed that constant current formation was performed at 0 mA/g up to a formation voltage of 15 V, and after reaching the formation voltage, constant voltage formation was performed for about 3 hours. The number of samples shall be 30 for each.

流はほぼ同じ値が得られる。Almost the same value is obtained for the flow.

(発明の効果) 以上の通り、本発明の製造方法によれば、第1の陽極酸
化後に加熱処理を行ない、次いでより高い電圧で第2の
陽極酸化を行なうことにより、容量を増加しうるととも
にtanδや漏れ電流特性を向上しうる固体電解コンデ
ンサが得られる。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, by performing heat treatment after the first anodization and then performing the second anodization at a higher voltage, the capacity can be increased and A solid electrolytic capacitor with improved tan δ and leakage current characteristics can be obtained.

特許出願人 日立コンデンサ株式会社 表Patent applicant: Hitachi Capacitor Co., Ltd. table

Claims (1)

【特許請求の範囲】[Claims] (1)弁作用金属の粉末からなる焼結体を陽極酸化して
酸化皮膜を形成し、次いで半導体層、グラファイト層、
銀層を積層した固体電解コンデンサの製造方法において
、第1の陽極酸化後に加熱処理を行ない、次いで第1の
陽極酸化よりも高い電圧で第2の陽極酸化を行なうこと
を特徴とする固体電解コンデンサの製造方法。
(1) A sintered body made of valve metal powder is anodized to form an oxide film, and then a semiconductor layer, a graphite layer,
A method for manufacturing a solid electrolytic capacitor having a laminated silver layer, characterized in that a heat treatment is performed after the first anodization, and then a second anodization is performed at a higher voltage than the first anodization. manufacturing method.
JP8943389A 1989-04-07 1989-04-07 Manufacture of solid-state electrolytic capacitor Pending JPH02267915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8943389A JPH02267915A (en) 1989-04-07 1989-04-07 Manufacture of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8943389A JPH02267915A (en) 1989-04-07 1989-04-07 Manufacture of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02267915A true JPH02267915A (en) 1990-11-01

Family

ID=13970538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8943389A Pending JPH02267915A (en) 1989-04-07 1989-04-07 Manufacture of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02267915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530688A (en) * 2000-03-23 2003-10-14 キャボット コーポレイション Niobium oxide with reduced oxygen
EP1592030A1 (en) * 2003-01-31 2005-11-02 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
JP2007123629A (en) * 2005-10-28 2007-05-17 Nichicon Corp Solid electrolytic capacitor and manufacturing method thereof
JP2007273839A (en) * 2006-03-31 2007-10-18 Nichicon Corp Method for manufacturing electrode foil for electrolytic capacitor
JP2010074197A (en) * 2010-01-05 2010-04-02 Showa Denko Kk Capacitor, and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165622A (en) * 1979-06-12 1980-12-24 Tokyo Shibaura Electric Co Method of manufacturing solid electrolytic condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165622A (en) * 1979-06-12 1980-12-24 Tokyo Shibaura Electric Co Method of manufacturing solid electrolytic condenser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530688A (en) * 2000-03-23 2003-10-14 キャボット コーポレイション Niobium oxide with reduced oxygen
JP4754755B2 (en) * 2000-03-23 2011-08-24 キャボット コーポレイション Niobium oxide with reduced oxygen
EP1592030A1 (en) * 2003-01-31 2005-11-02 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
EP1592030A4 (en) * 2003-01-31 2009-04-29 Showa Denko Kk Method for manufacturing solid electrolytic capacitor
JP2007123629A (en) * 2005-10-28 2007-05-17 Nichicon Corp Solid electrolytic capacitor and manufacturing method thereof
JP4671350B2 (en) * 2005-10-28 2011-04-13 ニチコン株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2007273839A (en) * 2006-03-31 2007-10-18 Nichicon Corp Method for manufacturing electrode foil for electrolytic capacitor
JP2010074197A (en) * 2010-01-05 2010-04-02 Showa Denko Kk Capacitor, and method of manufacturing the same
JP4694642B2 (en) * 2010-01-05 2011-06-08 昭和電工株式会社 Capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3850764A (en) Method of forming a solid tantalum capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
US3292053A (en) Anodized-film dielectric capacitor having colloidal graphite coating on the film
US3314124A (en) Method of manufacturing solid electrolytic capacitor
JP3026817B2 (en) Method for manufacturing solid electrolytic capacitor
US3496075A (en) Surface treatment for improved dry electrolytic capacitors
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP2833383B2 (en) Method for manufacturing solid electrolytic capacitor
US3366556A (en) Process for the manufacture of dry electrolytic condensers
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
US3553087A (en) Method of manufacturing solid electrolytic capacitors
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10275746A (en) Manufacture of solid-state electrolytic capacitor
JP3082424B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0338728B2 (en)
JPS63146425A (en) Manufacture of solid electrolytic capacitor
JPH07153650A (en) Manufacture of solid electrolytic capacitor
JPH033311A (en) Manufacture of solid electrolytic capacitor
JP2946591B2 (en) Method for manufacturing solid electrolytic capacitor
JPS59115517A (en) Method of producing electrolytic condenser
JPH02162711A (en) Manufacture of solid electrolytic capacitor