JPS59115517A - Method of producing electrolytic condenser - Google Patents

Method of producing electrolytic condenser

Info

Publication number
JPS59115517A
JPS59115517A JP22515482A JP22515482A JPS59115517A JP S59115517 A JPS59115517 A JP S59115517A JP 22515482 A JP22515482 A JP 22515482A JP 22515482 A JP22515482 A JP 22515482A JP S59115517 A JPS59115517 A JP S59115517A
Authority
JP
Japan
Prior art keywords
aluminum
leakage current
titanium
sample
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22515482A
Other languages
Japanese (ja)
Inventor
長山 正道
哲雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP22515482A priority Critical patent/JPS59115517A/en
Publication of JPS59115517A publication Critical patent/JPS59115517A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、電解コンデンサの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing an electrolytic capacitor.

従来、電解コンデンサ用陽極体材料としては、タンタル
、アルミニウム、ニオブ、チタン、ジルコニウム、バナ
ジウム、ハフニウム、等のいbゆる弁作用金属が知られ
ている。これらの金属は、表面に形成される酸化皮膜を
防電体として、コンデンサを形成している。しかし実用
し得るコンデンサとしては、漏れ電流値、耐圧、誘電損
失等の緒特性が一定水準以上に達していなければならず
従9て、現在実用化されている陽極体材料は、タンタル
とアルミニウムだけでおる。このうち、タンタルは、優
れた特性を示し、特に漏れ電流値が小さい特徴があシ、
焼結型電解コンデンサ用陽極体材料として最も優れてい
る。しかし、タンタルは資源的に乏しく高価格でアシ、
省資源の問題も含めて問題がある。一方、アルミニウム
は高い動作電圧が得られ、かつ安価で資源的にも豊富で
あるという特徴があるが、漏れ電流値が大きく、かつ小
型で大容量のコンデンサをつくることがむずかしいとい
う問題をも含X7でいる。そこで、これらのタンタル電
解コンデンサおよびアルミニウム電解コンデンサの欠点
を補う目的でアルミニウムーチタン合金を陽極体とする
電解コンデンサが開発された(特願昭54−14804
2)。アルミニウムーチタン合金を陽極体とする電解コ
ンデンサ(以下、アルミニウムーチタン電解コンデンサ
と称する)は、原材料のアルミニウムおよびチタンがタ
ンタルに比較して著しく安価でアシ、又、焼結体の単位
体積MDの表面積はアルミニウム焼結体に比較して大き
いので、安価で小型の電解コンデンサを得ることができ
る。
Conventionally, various valve metals such as tantalum, aluminum, niobium, titanium, zirconium, vanadium, and hafnium are known as anode body materials for electrolytic capacitors. These metals form a capacitor using an oxide film formed on the surface as an electric shield. However, for a capacitor to be put into practical use, its characteristics such as leakage current value, withstand voltage, and dielectric loss must reach a certain level or higher.9 Therefore, the only anode body materials currently in practical use are tantalum and aluminum. I'll go. Among these, tantalum has excellent properties, especially low leakage current.
The best anode material for sintered electrolytic capacitors. However, tantalum is a scarce resource and expensive, and
There are problems, including the issue of resource conservation. On the other hand, aluminum has the characteristics of being able to obtain a high operating voltage, being inexpensive, and being an abundant resource, but it also has the problems of high leakage current and difficulty in making small, large-capacity capacitors. I'm in X7. Therefore, in order to compensate for the shortcomings of these tantalum electrolytic capacitors and aluminum electrolytic capacitors, an electrolytic capacitor using an aluminum-titanium alloy as an anode body was developed (Japanese Patent Application No. 14804-1983).
2). Electrolytic capacitors that use an aluminum-titanium alloy as the anode body (hereinafter referred to as aluminum-titanium electrolytic capacitors) use raw materials such as aluminum and titanium, which are significantly cheaper than tantalum, and which have a smaller unit volume MD of the sintered body. Since the surface area is larger than that of an aluminum sintered body, an inexpensive and small electrolytic capacitor can be obtained.

本発明の目的は、これらの特徴を有するアルミニウムー
チタン電解コンデンサの漏れ電流値を改善する製造方法
を提供することにある。
An object of the present invention is to provide a manufacturing method that improves the leakage current value of an aluminum-titanium electrolytic capacitor having these characteristics.

本発明によれば、アルミニウムおよびチタンの合金金属
から成る陽極体の陽極酸化皮膜を訪電体とする電解コン
デンサの製造工程において、陽極酸化した後、純水中で
煮沸するか、あるいは、加圧水蒸気中に保持し、熱処理
をし、再度陽極酸化する工程を含むことによυ、誘電皮
膜となるアルミニウムとチタンの合金酸化皮膜はち密化
し、その結果漏れ電流値が小さく、かつそのバラツキも
小さいアルミニウムーチタン電解コンデンサが得られる
According to the present invention, in the manufacturing process of an electrolytic capacitor in which the anodized film of the anode body made of an alloy metal of aluminum and titanium is used as a current visitor, the anodized film is anodized and then boiled in pure water or in pressurized steam. By including the process of holding the aluminum and titanium in the aluminum alloy, heat treating it, and anodizing it again, the aluminum and titanium alloy oxide film that becomes the dielectric film becomes denser, resulting in a lower leakage current value and less variation in the aluminum alloy. A mu titanium electrolytic capacitor is obtained.

以下、本発明を実施例を示して詳細に説明する。Hereinafter, the present invention will be explained in detail by showing examples.

〔実施例1〕 組成比が所定の値であるアルミニウムとチタンの合金よ
シ成る多孔質焼結体を所定の濃度のリン酸水溶液中にお
いて、直流電圧100Vで陽極酸化した。第1表に各試
料のアルミニウムとチタンの組成比とリン酸濃度の組合
せを示した。これらの試料について、それぞれ陽極酸化
した後、第2表に示す本発明の純水煮沸処理あるいは加
圧水蒸気処理を行った。それぞれの処理後、300℃で
30分間熱処理を行った後、0.005容量チのリン酸
水溶液中で直流電圧100■で再度陽極酸化を行った。
[Example 1] A porous sintered body made of an alloy of aluminum and titanium having a predetermined composition ratio was anodized at a DC voltage of 100 V in a phosphoric acid aqueous solution of a predetermined concentration. Table 1 shows the combinations of aluminum and titanium composition ratios and phosphoric acid concentrations of each sample. After each sample was anodized, it was subjected to the pure water boiling treatment or pressurized steam treatment of the present invention shown in Table 2. After each treatment, heat treatment was performed at 300° C. for 30 minutes, and then anodization was performed again at a DC voltage of 100 μ in a 0.005 volume phosphoric acid aqueous solution.

2回目の陽極酸化後の漏れ電流値を第3表に示す。Table 3 shows the leakage current values after the second anodic oxidation.

第1表 なお、漏れ電流値は、0.005容量−のリン酸水溶液
中で、定格電圧20Vを印加した1分後の値であシ、第
3表は、1水準当たシタ9個の試料に対して漏れ電流値
を測定し、中心値を示しkものである。静電容量は、純
水中煮沸あるいは加圧水蒸気中の保持を経ても、顕著な
変化は認められず1は2.5μFでありた。第1図は、
純水煮沸処理を30分間行にっだ試料と、本発明の処理
を行なわ1かった試料の漏れ電流値を2回目の陽極酸化
後で比較したものである。第2図は加圧水蒸気(2,5
凰圧)処理を10分間行なった試料と、本発明の1理を
行たわなかった試料の漏れ電流値を、2回目の陽極酸化
後で比較したものである。
Table 1: The leakage current value is the value 1 minute after applying a rated voltage of 20V in a 0.005 volume phosphoric acid aqueous solution. The leakage current value is measured for the sample, and the center value is k. No significant change in capacitance was observed even after boiling in pure water or holding in pressurized steam, and the capacitance of 1 was 2.5 μF. Figure 1 shows
The leakage current values of a sample subjected to pure water boiling treatment for 30 minutes and a sample subjected to the treatment of the present invention are compared after the second anodic oxidation. Figure 2 shows pressurized steam (2,5
The leakage current values of a sample subjected to 10 minutes of anodic oxidation treatment and a sample not subjected to the first principle of the present invention are compared after the second anodic oxidation.

第3表、第1図及び第2図に見られるように、陽極酸化
後、純水中で煮沸するかあるいは加圧水1気中に保持し
、熱処理した後再度陽極酸化する工程を含むと漏れ電流
値は低下し、かつそのバラl上も小さくなる。
As seen in Table 3, Figures 1 and 2, leakage current occurs if the process of anodizing is followed by boiling in pure water or holding in pressurized water, heat-treating, and then anodizing again. The value decreases, and its variation also decreases.

実施例2〕 実施例1の試料T−1〜試料T−19に硝酸マンガンの
熱分解によシ、二酸化マンガン層を形成し、グラファイ
ト、釧ペースト及び半田により外部陰極を取り出し、試
料T′−1〜試料T−19を形成した。
Example 2] A manganese dioxide layer was formed on Samples T-1 to T-19 of Example 1 by thermal decomposition of manganese nitrate, and the external cathode was taken out using graphite, Senshi paste and solder, and Sample T'- 1 to Sample T-19 were formed.

第3図及び第4図は、1水準当た#)29個の試料に対
し、漏れ電流値を測定し、最大値、最小値及び中心値を
示したものである。第3図及び第4図に見られるように
、陽極酸化後、純水中で煮沸するかあるいは加圧水蒸気
中に保持し、熱処理した後、再度陽極酸化する工程を経
た試料は、本発明の処理を行なわない試料と比較し、固
体化時における陽極酸化皮膜の損傷が少なく固体化後の
漏れ電流値は低下した。
3 and 4 show the maximum value, minimum value, and center value of leakage current values measured for 29 samples per level. As shown in FIGS. 3 and 4, samples that have been anodized, boiled in pure water or kept in pressurized steam, heat treated, and then anodized again are treated according to the present invention. Compared to samples that were not subjected to this process, there was less damage to the anodic oxide film during solidification, and the leakage current value after solidification was reduced.

以上、本発明によシ次の効果がある。As described above, the present invention has the following effects.

(:)アルミニウムとチタンの合金より成る多孔質焼結
体を陽極酸化した後に、純水中で煮沸するか、あるいは
加圧水蒸気中に保持し、熱処理した後、再度陽極酸化す
る工程を含むことによシ、陽極酸化後の漏れ電流値は低
下し、かつそのバラツキも小さくなる。
(:) After anodizing a porous sintered body made of an alloy of aluminum and titanium, the process involves boiling it in pure water or holding it in pressurized steam, heat-treating it, and then anodizing it again. Additionally, the leakage current value after anodic oxidation is reduced and its variation is also reduced.

(11)固体化する際に、硝酸マンガンの熱分解によっ
て受ける陽極酸化皮膜の損傷が少々くなυ、固体化後の
漏れ電流値が低下し、かつそのバラツキも小さくなる。
(11) During solidification, the anodic oxide film is less damaged by the thermal decomposition of manganese nitrate, the leakage current value after solidification is reduced, and its variation is also reduced.

【図面の簡単な説明】 第1図及び第2図は、2回目の陽極酸化後における従来
例の無処理品と本発明処理品の漏れ電流値の比較図であ
り、第1図は純水煮沸処理、第2図は加圧水蒸気処理を
行なった試料である。第3図及び第4図は、固体化後に
おける従来例の無処理品と本発明処理品の漏れ電流値の
比較図でl)、第3図は純水煮沸処理、第4図は加圧水
蒸気処理を行なった試料である。 T−1〜T −5・・・・・・従来例の無処理品、T−
6〜T−19・・・・・・本発明処理品、T−1〜T’
−19・・・・・・T−1〜’l’−19を固体化した
試料、a・・・・・・最大値、b・・・・・・中央値、
C・・・・・・最小値。
[Brief Description of the Drawings] Figures 1 and 2 are comparison diagrams of the leakage current values of the conventional untreated product and the product treated with the present invention after the second anodic oxidation. Boiling treatment, Figure 2 shows a sample subjected to pressurized steam treatment. Figures 3 and 4 are comparison diagrams of the leakage current values of the conventional untreated product and the product treated with the present invention after solidification. This is a processed sample. T-1 to T-5...Conventional untreated product, T-
6 to T-19...Products treated according to the present invention, T-1 to T'
-19... Sample solidified from T-1 to 'l'-19, a... Maximum value, b... Median value,
C: Minimum value.

Claims (1)

【特許請求の範囲】[Claims] アルミニウムおよびチタンの合金金属から成る陽極体の
陽優酸化皮膜をKl電体とする電解コンデンサの製造工
程において、陽罹酸化した後、紳水中で煮沸するかある
いは、加圧水蒸気中に保持したのち、熱処理をし、再度
陽極酸化する工程を含むことを特徴とする電解コンデン
サの製造方法。
In the manufacturing process of electrolytic capacitors in which the positive oxidation film of the anode body made of an alloy metal of aluminum and titanium is used as a Kl electrolyte, after being subjected to positive oxidation, the product is boiled in clean water or kept in pressurized steam, A method for manufacturing an electrolytic capacitor, comprising the steps of heat treatment and re-anodizing.
JP22515482A 1982-12-22 1982-12-22 Method of producing electrolytic condenser Pending JPS59115517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22515482A JPS59115517A (en) 1982-12-22 1982-12-22 Method of producing electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22515482A JPS59115517A (en) 1982-12-22 1982-12-22 Method of producing electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS59115517A true JPS59115517A (en) 1984-07-04

Family

ID=16824787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22515482A Pending JPS59115517A (en) 1982-12-22 1982-12-22 Method of producing electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS59115517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043812A (en) * 1983-08-19 1985-03-08 松下電器産業株式会社 Method of compounding aluminum electrolytic condenser electrode foil
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043812A (en) * 1983-08-19 1985-03-08 松下電器産業株式会社 Method of compounding aluminum electrolytic condenser electrode foil
JPH0365010B2 (en) * 1983-08-19 1991-10-09
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP4596543B2 (en) * 2003-01-31 2010-12-08 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPS59115517A (en) Method of producing electrolytic condenser
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP3467827B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JPS62126623A (en) Solid electrolytic capacitor
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JPS62188215A (en) Manufacture of electrolytic capacitor
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
RU1813811C (en) Method for treating low-voltage aluminium foil for capacitor anodes
JP4776510B2 (en) Method for producing anode foil for electrolytic capacitor
JPH0338728B2 (en)
JPS6053453B2 (en) Aluminum chemical conversion method
JP2772154B2 (en) Method for manufacturing solid electrolytic capacitor
JPH01201909A (en) Preparation of electrode foil for electrolytic capacitor
JP2946591B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62185307A (en) Solid electrolytic capacitor
JPH04364019A (en) Fabrication of electrolytic capacitor electrode foil
JPH04279017A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPS59193017A (en) Method of producing electrolytic condenser
JP3218818B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS63116416A (en) Manufacture of electrolytic capacitor
JPH01287916A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPS60726A (en) Method of producing anode foil for aluminum electrolytic condenser
JPH02276215A (en) Manufacture of solid electrolyte capacitor
JPS63268235A (en) Manufacture of solid electrolytic capacitor