JPS59193017A - Method of producing electrolytic condenser - Google Patents

Method of producing electrolytic condenser

Info

Publication number
JPS59193017A
JPS59193017A JP58066423A JP6642383A JPS59193017A JP S59193017 A JPS59193017 A JP S59193017A JP 58066423 A JP58066423 A JP 58066423A JP 6642383 A JP6642383 A JP 6642383A JP S59193017 A JPS59193017 A JP S59193017A
Authority
JP
Japan
Prior art keywords
water bath
phosphoric acid
ammonium
bath solution
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58066423A
Other languages
Japanese (ja)
Inventor
清水 成章
荒井 吉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58066423A priority Critical patent/JPS59193017A/en
Publication of JPS59193017A publication Critical patent/JPS59193017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は型別コンデンサの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing capacitors by type.

従来、寛塵コンデンサ用の陽極体材料としては、タンタ
ル、ニオフ、ジルコニウム、バナジウム。
Traditionally, tantalum, nioff, zirconium, and vanadium have been used as anode body materials for free-flowing capacitors.

ハフニウム、チタン、アルミニウム等の所陥弁作用金属
が知られており、過去多くの研死者がこれらの金属の単
体あるいは合金糸に対して電調コンデンサとしての基礎
特性を調べ、実用化全検討して来た。
Metals such as hafnium, titanium, and aluminum that act as valves are known, and in the past many researchers have investigated the basic characteristics of these metals alone or with alloy threads as electric control capacitors, and have thoroughly investigated their practical application. I came.

しかし、コンデンサとして実用化しうるためには、その
陽極体材料固有の酸化皮膜の漏れ電流。
However, in order to be put to practical use as a capacitor, the leakage current of the oxide film unique to the anode material is required.

誘電損失などの電気的特性が一定の水準に達していなけ
ればならず、現在実用化されてbる電8手コンデンサは
、タンタルおよびアルミニウムを陽極体としたものだけ
である。
Electrical characteristics such as dielectric loss must reach a certain level, and the only electric capacitors currently in practical use use tantalum and aluminum as anode bodies.

タンタルを陽極材料とするコンデンサは、漏し電流2誘
電損失などの電気的特性が優れてお9、安定で極めて信
頼性が高く、かつ小型で大容量のものが得られるという
点に特徴がある。
Capacitors using tantalum as anode material have excellent electrical properties such as leakage current2 and dielectric loss9, are stable and extremely reliable, and are characterized by being compact and having large capacity. .

しかし、タンタルはここ数年の*f * j’a犬に対
して供給が追いつかず、資諒が不足していることもあっ
て材料価格の筒胎が著しく、製品価格の上昇金部いてい
る。一方、アルミニラムラ陽極材料とするコンデンサは
安価であるという点に特徴があるが、小型大容量化がよ
り困難なことのほか、電気的特性および安定性の点でタ
ンタルを陽極材料とするコンデンサに劣っている。
However, the supply of tantalum has not been able to keep up with the demand in recent years, and due to a shortage of supplies, the price of the material has significantly increased, causing product prices to rise. . On the other hand, capacitors using aluminum Rammura anode material are characterized by being inexpensive, but in addition to being more difficult to make smaller and larger capacitors, capacitors using tantalum anode material have lower electrical characteristics and stability. Inferior.

このような情゛況から、―れ電流、誘電損失などの電気
的特性および安定性が優れていると共に、小型大容量化
が1−II iff:であり、かつ安価で安定供給可能
な材料を陽極体とした電解コンテンサの開発が強く望ま
れていた。
Under these circumstances, we are developing materials that have excellent electrical properties such as leakage current and dielectric loss, and are stable, as well as being able to achieve small size and large capacity, and that can be inexpensively and stably supplied. There was a strong desire to develop an electrolytic capacitor as an anode body.

本発明者らは、枦々倹約した結果原料として水素化チタ
ンとアルミニウムの粉末全使用し、これらの粉末全混合
、プレス、焼結してなるアルミニウムーチタン合金多孔
質焼結体を陽極体とした場合にこのような賛望に叶う電
解コンテンサ用多孔質体の得られることを見出し、すで
に提案した。
As a result of being frugal, the present inventors used all powders of titanium hydride and aluminum as raw materials, and created an aluminum-titanium alloy porous sintered body made by mixing, pressing, and sintering these powders as an anode body. We have already found and proposed a porous material for electrolytic capacitors that meets these demands.

また、このアルミニウムーチタン合金を陽極体とした場
合、陽極酸化に最適な化成液がリン酸水浴液であること
も既に提案した、 ところで、電解コンデンサを固体化する方法としては、
一般に硝酸マンガン浴液を1b極酸化処理後の化成体に
含浸させた後、加熱して熱分解を行ない、酸化皮膜上に
二酸化マンガン(Mn02) ’c陰極層として析出さ
せる方法がとられている。この場合、熱分解温度が20
0〜250℃であシ、銅酸マンガンの含浸 熱分解プロ
セスを数回線り返す必要があるため、この処理プロセス
の間に陽極酸イヒ皮膜が熱劣化を起こし、皮膜の誘電損
失が増大してしまう場合がある。この原因については、
熱が加わると、陽極酸化皮膜と陽極金属の界面において
、酸化皮膜中の一部の酸素が陽極金属側に奪われる結果
、酸素欠陥によるドナーが生じて酸化皮膜の界面側が一
部牛導体化し、低抵抗層を形成するためであるとされて
いる。
In addition, we have already proposed that when this aluminum-titanium alloy is used as an anode body, the most suitable chemical solution for anodizing is a phosphoric acid water bath.By the way, as a method for solidifying an electrolytic capacitor,
Generally, a method is used in which a manganese nitrate bath solution is impregnated into a chemical product after 1b electrode oxidation treatment, and then heated to perform thermal decomposition, and deposit manganese dioxide (Mn02) as a cathode layer on the oxide film. . In this case, the pyrolysis temperature is 20
Impregnation with manganese cuprate at 0 to 250℃.Due to the need to repeat the pyrolysis process several times, the anodic oxide film undergoes thermal deterioration during this treatment process, increasing the dielectric loss of the film. It may be stored away. Regarding this cause,
When heat is applied, some of the oxygen in the oxide film is taken away by the anode metal at the interface between the anodic oxide film and the anode metal, and as a result, donors are generated due to oxygen defects, and the interface side of the oxide film becomes partially conductive. It is said that this is to form a low resistance layer.

このような現象は、アルミニウムーチタン合金を陽極体
として、リン酸水浴液で陽極酸化を行った場合について
も見られ、18=・1体化後の酸化皮膜の誘電損失を増
大させている。
Such a phenomenon is also observed when anodic oxidation is performed in a phosphoric acid water bath using an aluminum-titanium alloy as an anode body, increasing the dielectric loss of the oxide film after 18=.integration.

本発明の目的は、このような固体化時の熱劣化、すなわ
ち陽極酸化皮膜の誘電損失の垢・犬を防ぐ優れた製造方
法を提供することにある。
An object of the present invention is to provide an excellent manufacturing method that prevents such thermal deterioration during solidification, that is, the dielectric loss of the anodic oxide film.

本発明によれば、陽極酸化の方法を、最終化成電圧より
低い一定の電圧迄をリン酸水浴液中で行ない、その後最
終化成電圧迄を炭酸アンモニウムもしくはクエン酸アン
モニウム水浴液中で行ない、次にリン酸水浴液または前
記2釉類のアンモニウム系水浴液のうちの一つで、再度
前記最終化成電圧まで陽極酸化を行なうことにより、化
成後および固体化後の化成皮膜の誘′1損失(tanδ
f)が共に非常に小さく、固体化時の熱によって、ta
nδfの増大のない、優れたAt−Ti合合金電解コン
テササ製造方法が得られる。
According to the invention, the anodic oxidation process is carried out in a phosphoric acid water bath up to a certain voltage lower than the final formation voltage, then in an ammonium carbonate or ammonium citrate water bath up to the final formation voltage, and then The dielectric loss (tan δ
f) are both very small, and due to the heat during solidification, ta
An excellent method for manufacturing an At-Ti alloy electrolytic contesser without an increase in nδf can be obtained.

以下、本発明を実施例に従って更に詳細に説明する。Hereinafter, the present invention will be explained in more detail according to examples.

実施例 平均粒径3μmのAt粉末及び平均粒径3μmの水素化
チタン粉末を、AtとTiの原子比が54 ; 46と
なるように混合し、円柱形に圧縮成型後、真空中におい
て1070℃で2時間保持し焼成焼結を行なうことによ
って、At−Ti合金多孔質体を作製し、陽極体とした
Example At powder with an average particle size of 3 μm and titanium hydride powder with an average particle size of 3 μm were mixed so that the atomic ratio of At and Ti was 54; 46, and after compression molding into a cylinder shape, the mixture was heated at 1070°C in a vacuum. By holding for 2 hours and performing firing and sintering, an At-Ti alloy porous body was produced and used as an anode body.

次に、これらの陽極体を05体Pxチのリン酸水浴液中
で60Vまで陽極酸化を行ない(陽極酸化1−■)、そ
の後すべて80V迄1重量係の炭酸アンモニウムもしく
はコハク酸アンモニウムヲ営む2種類の水浴沿で陽極酸
化を行々った。(陽極酸化1−■) 更に、前記の陽極酸化1−■に使用した化成液の異なる
2種類の陽極化成体の各々について、0.005体積饅
のリン酸水浴液中で80V迄再度陽極酸化金行なった。
Next, these anode bodies were anodized to 60V in a phosphoric acid bath solution of 05 bodies (anodization 1-■), and then all were anodized to 80V with 1 weight part of ammonium carbonate or ammonium succinate2. Anodizing was carried out in a water bath. (Anodization 1-■) Furthermore, each of the two types of anodized products with different chemical solutions used in the above-mentioned anodization 1-■ was anodized again to 80V in a 0.005 volume phosphoric acid bath solution. I made money.

(陽極酸化2) また比較のため、従来方法として陽物峻化1ft:最終
化成屯圧の80V迄0.5体槓饅のリン酸水浴液中で行
ない、次に0.005体積チのリン酸水浴沿中で80V
迄再度陽極酸化を行なった試料を作製した。
(Anodization 2) For comparison, as a conventional method, 1 ft of anodization was performed in a phosphoric acid bath solution of 0.5 volume of phosphoric acid to a final chemical pressure of 80 V, and then 0.005 volume of phosphoric acid was used. 80V during acid water bath
A sample was prepared by performing anodic oxidation again.

120Hzでの静厩容量はいずれの化成方法でも約6.
8μFであった。
The static capacity at 120Hz is approximately 6.
It was 8 μF.

上記3ね類の化成方法で作製した化成体を空気中、25
0℃、300℃、350℃で各々30分間熱処理した後
、30vo1.%f(2SO4中でtanaf e m
llll定評上1傅だ結果を第1図に示す。第1図中■
、■、■は各々、次の場合を示す。
The chemical product produced by the above three chemical conversion methods was placed in the air for 25 minutes.
After heat treatment at 0°C, 300°C, and 350°C for 30 minutes each, 30vol. %f(tanaf e m in 2SO4
The results are shown in Figure 1. ■ in Figure 1
, ■, and ■ respectively indicate the following cases.

■ ;従来法であるリン酸水浴教のみにょる化成の場合 ■ ;本発明のリン酸−炭酸アンモニウムにょる化成の
信金 ■ ;本発明のリン酸−クエン酸アンモニウムによる化
成の場合 第1図かられかるように、本発明にょる化成方法は、従
来法のリン酸水浴豫のみによる化成方法に比べて、化成
後のtanaf値が小さい上に、熱ストレスが加わった
時の化成皮膜負の劣化、すなわちtanafの増大が極
めて小さいことがわかる。
■ ; In the case of chemical conversion using only the conventional method of phosphoric acid water bath ■ ; In the case of chemical conversion using phosphoric acid-ammonium carbonate of the present invention ■ ; In the case of chemical conversion using phosphoric acid-ammonium citrate of the present invention From Figure 1 As can be seen, the chemical conversion method according to the present invention has a smaller tanaf value after chemical formation than the conventional chemical conversion method using only a phosphoric acid water bath, and also has less negative deterioration of the chemical conversion film when heat stress is applied. In other words, it can be seen that the increase in tanaf is extremely small.

本発1男の化成方法によって生成する酸化皮膜は、リン
酸化成による酸化皮膜よシも酸素イオンの結合状、帳が
よp強く、熱ストレス下でも下jiljl金属に対して
皮膜中の酸素を奪われにくく、界面部分が半導体化しな
いためと考えられる。次に、化成後のベレットに対し、
硝酸マンガンの含浸、熱分掛金250℃で6回くり返し
て固体化した後の特性を表に示す。(30個水隼の中央
1直) 表 表から、果隙に固体化した場合にも、やはり、本発明の
化成方法の方が従来法(リンぼ水浴准のみによる化成法
)よりもtanaf値が小さく、皮膜の熱劣化の小さい
ことが確認できる。また、tanafが小さいのに対応
して、陰−+bxI勿買のMnO2のESR(等価面列
抵抗)等を言むコンデンサとしてのtanδ(1201
1z)も本発明による場合の方が小さくなっている。漏
れ電流については、いずれの場合もほぼ同じ小さな値が
得られている。なお、陽極酸化処理で再度の陽極酸化を
行なうのは、漏れ電流をよシ小さくできるためである。
The oxide film produced by the chemical conversion method of the present inventor has a stronger bonding of oxygen ions than the oxide film produced by phosphoric acid formation, and even under heat stress, the oxygen in the film is not absorbed by the lower metal. This is thought to be because it is difficult to be taken away and the interface portion does not become a semiconductor. Next, for the beret after chemical formation,
The properties after solidification by impregnation with manganese nitrate and heating at 250° C. 6 times are shown in the table. (1st shift in the center of 30 water falcons) From the table, it can be seen that the chemical conversion method of the present invention has a higher tanaf value than the conventional method (chemical conversion method using only water bathing) even when solidified in the fruit space. It can be confirmed that the thermal deterioration of the film is small. In addition, corresponding to the small tanaf, the tanδ (1201
1z) is also smaller in the case according to the present invention. Regarding leakage current, almost the same small value was obtained in all cases. Note that the reason why the anodic oxidation is performed again in the anodic oxidation treatment is to further reduce the leakage current.

また、実施例では、2回目(再度)の陽極酸化にリン酸
水浴散(0,005vol、 % ) 1<使用した場
合について示したが、炭酸アンモニウムもしくは、クエ
ン酸アンモニウムの水浴教を用いても同様な結果の得ら
れることを確認した。
In addition, in the example, a case was shown in which phosphoric acid water bath powder (0,005 vol, %) <1 was used for the second (again) anodic oxidation, but it is also possible to use ammonium carbonate or ammonium citrate water bath powder. It was confirmed that similar results could be obtained.

以上、説明したように、本発明の装造方法によれば、硝
酸マンガンの熱分析による固体化時の熱ストレスに強く
、tanaf (皮膜の誘′屯損失)の増大のない優れ
たば化皮膜を形成することが可能であり、コンデンサ特
性の向上に笥与する所が太きい。従って本発明の有用性
の高いことは明らかである。
As explained above, according to the mounting method of the present invention, an excellent oxidized film is produced which is resistant to heat stress during solidification as determined by thermal analysis of manganese nitrate and does not increase tanaf (film induced loss). It is possible to form a capacitor, which greatly contributes to the improvement of capacitor characteristics. Therefore, it is clear that the present invention is highly useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は化成皮膜の肪電損失tanδfの熱処理温度依
存性を示す図。 第 1 図
FIG. 1 is a diagram showing the dependence of the fatty electric loss tan δf of the chemical conversion coating on the heat treatment temperature. Figure 1

Claims (1)

【特許請求の範囲】[Claims] アルミニウムとチタンからなる合金を陽極金属とし、こ
れを陽極酸化した後′PJf、解買浴赦あるいは固体陰
極半導体層、外部陰極を順次形成する電解コンデンサの
製造方法において、陽極鹸化処理全最終化成電圧より低
い一定電圧まではリン酸水溶液中で行ない、その後最終
化成電圧までを炭酸アンモニウムもしくはクエン酸アン
モニウムの水浴液中で行ない、次にリン酸水浴液または
前記2&1類のアンモニウム系水浴緻のうちの一つで再
度前記最終化成電圧迄陽極酸化を行なう陽極酸化工程を
有することを特徴とする電調コンデンサの製造方法。
In the manufacturing method of electrolytic capacitors, in which an alloy consisting of aluminum and titanium is used as the anode metal, and after anodizing it, PJf, a solid cathode semiconductor layer, and an external cathode are sequentially formed. The process is carried out in a phosphoric acid aqueous solution up to a lower constant voltage, then in a water bath solution of ammonium carbonate or ammonium citrate until the final formation voltage, and then in a phosphoric acid water bath solution or ammonium-based water bath solution of category 2 & 1 above. 1. A method for manufacturing an electric tuning capacitor, comprising an anodizing step of once again performing anodization to the final formation voltage.
JP58066423A 1983-04-15 1983-04-15 Method of producing electrolytic condenser Pending JPS59193017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066423A JPS59193017A (en) 1983-04-15 1983-04-15 Method of producing electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066423A JPS59193017A (en) 1983-04-15 1983-04-15 Method of producing electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS59193017A true JPS59193017A (en) 1984-11-01

Family

ID=13315364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066423A Pending JPS59193017A (en) 1983-04-15 1983-04-15 Method of producing electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS59193017A (en)

Similar Documents

Publication Publication Date Title
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
KR100715408B1 (en) Capacitor Powder
US20120231262A1 (en) Electrode material for aluminum electrolytic capacitor and production method therefor
WO2003042425A1 (en) Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
US3850764A (en) Method of forming a solid tantalum capacitor
EP0038149B1 (en) Improvements in porous bodies for solid electrolytic capacitors and processes for producing the same
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
US3314124A (en) Method of manufacturing solid electrolytic capacitor
JPS59193017A (en) Method of producing electrolytic condenser
JP3486113B2 (en) Method of manufacturing Ta solid electrolytic capacitor
JPH0475645B2 (en)
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JPS62188215A (en) Manufacture of electrolytic capacitor
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JP4554063B2 (en) Method for forming titanium oxide film and titanium electrolytic capacitor
JPS59191319A (en) Method of producing electrolytic condenser
JPS59115517A (en) Method of producing electrolytic condenser
JPS60229326A (en) Method of producing electrolytic condenser
JPS6410928B2 (en)
JPS60229325A (en) Method of producing electrolytic condenser
JPS59191320A (en) Method of producing electrolytic condenser
JPS60152015A (en) Method of producing electrolytic condenser
JPS59194419A (en) Method of producing electrolytic condenser
JPS59191322A (en) Method of producing electrolytic condenser