JPS60229325A - Method of producing electrolytic condenser - Google Patents

Method of producing electrolytic condenser

Info

Publication number
JPS60229325A
JPS60229325A JP8524584A JP8524584A JPS60229325A JP S60229325 A JPS60229325 A JP S60229325A JP 8524584 A JP8524584 A JP 8524584A JP 8524584 A JP8524584 A JP 8524584A JP S60229325 A JPS60229325 A JP S60229325A
Authority
JP
Japan
Prior art keywords
phosphoric acid
aqueous solution
manufacturing
increase
electrolytic condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8524584A
Other languages
Japanese (ja)
Inventor
荒井 吉夫
清水 成章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8524584A priority Critical patent/JPS60229325A/en
Publication of JPS60229325A publication Critical patent/JPS60229325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解コンデンサの製造方法lこ関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an electrolytic capacitor.

(従来技術) 従来、電解コンデンサ用の陽極体材料としてはタンタル
、ニオフ、ジルコニウム、バナジウム。
(Prior Art) Conventionally, anode body materials for electrolytic capacitors include tantalum, nioff, zirconium, and vanadium.

ハフニウム、チタン、アルミニウム等の所謂弁作用金属
が知られており、過去多くの研究者がこれらの金属の単
体あるいは合金系に対して電解コンデンサとしての基礎
特性を調べ、実用化を検討して来た。
So-called valve action metals such as hafnium, titanium, and aluminum are known, and in the past many researchers have investigated the basic characteristics of these metals alone or in their alloys as electrolytic capacitors, and have considered their practical application. Ta.

しかし、コンデンサとして実用化しうるためには、その
陽極体材料固有の酸化皮膜の漏れ電流。
However, in order to be put to practical use as a capacitor, the leakage current of the oxide film unique to the anode material is required.

誘電損失などの電気的特性が一定の水準に達していなけ
ればならず、現在実用化されている電解コンデンサは、
タンタルおよびアルミニウムを陽極体としたものだけで
ある。
Electrical properties such as dielectric loss must reach a certain level, and the electrolytic capacitors currently in practical use are
Only tantalum and aluminum anode bodies are used.

タンタルを陽極材料とするコンデンサは、漏れ電流、誘
電損失などの電気的特性が優れており、安定で極めて信
頼性が高く、かつ小型で大容量のものが得られるという
点に特徴がある。
Capacitors using tantalum as anode material have excellent electrical properties such as leakage current and dielectric loss, are stable and extremely reliable, and are characterized by being compact and having large capacity.

しかし、タンタルはここ数年の需要増大に対して供給が
追いつかず、資源が不足していることもあって材料価格
の高騰が著しく、製品価格の上昇ヲ招いている。一方、
アルミニウムを陽極材料とするコンデンサは安価である
という点lこ特徴があるが、小型大容量化がより困難な
ことのほか、電気的特性および安定性の点でタンタルを
陽極材料きするコンデンサに劣っている。
However, the supply of tantalum has not been able to keep up with the increase in demand over the past few years, and due to resource shortages, the price of the material has skyrocketed significantly, leading to an increase in product prices. on the other hand,
Capacitors using aluminum as the anode material have the advantage of being inexpensive, but in addition to being more difficult to miniaturize and increase capacity, they are inferior to capacitors using tantalum as the anode material in terms of electrical characteristics and stability. ing.

このような情況から、漏れ電流、誘電損失などの電気的
特性および安定性が優れていると共に、小型大容量化が
可能であり、かつ安価で安定供給可能な材料を陽極体と
した電解コンデンサの開発が強く望まれていた。
Under these circumstances, electrolytic capacitors whose anodes are made of materials that have excellent electrical characteristics such as leakage current and dielectric loss and stability, can be made smaller and larger in capacity, and can be inexpensively and stably supplied are being developed. Development was strongly desired.

本発明者らは1種々検討した結果原料として水素化チタ
ンとアルミニウムの粉末を使用し、これらの粉末を混合
、プレス、焼結してなるアルミニウムーチタン合金多孔
質焼結体を陽極体とした場合にこのような要望に叶う電
解コンデンサ用多孔質体の得られることを見出し、すで
に提案した。
As a result of various studies, the present inventors used titanium hydride and aluminum powder as raw materials, mixed, pressed, and sintered these powders to create an aluminum-titanium alloy porous sintered body as an anode body. In some cases, we have discovered that it is possible to obtain a porous material for electrolytic capacitors that meets these needs, and we have already proposed it.

また、このアルミニウムーチタン合金を陽極体とした場
合、陽極酸化に最適な化成液がリン酸水溶液であること
も既に提案した。
We have also already proposed that when this aluminum-titanium alloy is used as an anode body, the most suitable chemical solution for anodizing is a phosphoric acid aqueous solution.

しかしながら、このリン酸水溶液による陽極酸化には、
硝酸マンガンの熱分解によるMnO,の陽極材に代表さ
れる固体化を行うと、lθ〜20チの静電容量の減少が
起こるという欠点があった。この現象は、リン酸がA/
 −T I合金に対してエツチング性を有するため、陽
極酸化皮膜表面に10OAオーダーの微細な凹凸を生じ
、この結果硝酸マンガンの熱分解によって生じるMnO
,陰極が皮膜表面を完全ζこ被覆することができず、所
謂非固体化領域を生じるためであると考えられる。その
結果。
However, anodic oxidation using this phosphoric acid aqueous solution requires
When MnO is solidified as a typical anode material by thermal decomposition of manganese nitrate, there is a drawback that the capacitance decreases by lθ to 20°. This phenomenon is caused by phosphoric acid A/
- Since it has etching properties for T I alloys, it produces fine irregularities of the order of 10 OA on the surface of the anodic oxide film, resulting in MnO produced by thermal decomposition of manganese nitrate.
This is thought to be due to the fact that the cathode cannot completely cover the film surface, resulting in a so-called non-solidified area. the result.

信頼性テストの一つである耐湿テストを行うと、吸湿さ
れた水分が非固体化領域を覆うという過程により、靜電
容tの増大率が大きくなってしまうという問題が生じる
When a moisture resistance test, which is one of the reliability tests, is performed, a problem arises in that the rate of increase in the capacitance t increases due to the process in which absorbed moisture covers the non-solidified region.

(発明の目的) 本発明の目的は、このような固体化時の被覆率の低下と
いうリン酸水溶液による陽極酸化法の欠点を改善し、耐
湿テスト時の容量の増大を抑んた信頼性に優れたAl−
Ti合金電解コンデンサの製造方法を提供することlこ
ある。
(Objective of the Invention) The object of the present invention is to improve the shortcomings of the anodic oxidation method using a phosphoric acid aqueous solution, such as a decrease in coverage during solidification, and to improve reliability by suppressing an increase in capacity during a humidity test. Excellent Al-
The present invention provides a method for manufacturing a Ti alloy electrolytic capacitor.

(@明の構成) 本発明−こよれば、AJI−Ti合金を陽極体とする 
□電解コンデンサの陽極酸化をリン酸および乳酸アンモ
ニウムを含む水溶液によって行うこと−こより、固体化
時の静電容量の減少の少ない、すなわちMnO,陰極に
よる被覆率の大きい優ねた製造方法を得ることができる
(@Ming configuration) According to the present invention, AJI-Ti alloy is used as an anode body.
□ Anodizing the electrolytic capacitor with an aqueous solution containing phosphoric acid and ammonium lactate - thereby obtaining an excellent manufacturing method with less reduction in capacitance during solidification, that is, a greater coverage rate with MnO and the cathode. Can be done.

以下、実施例tこより本発明の内容を詳しく説明する。Hereinafter, the content of the present invention will be explained in detail from Example t.

(実施例) 平均粒径3μmのAl粉末及び平均粒径3μmの水素化
チタン粉末を、MとTi の原子比が54 : 46と
なるように混合し、円柱形に圧縮成型後。
(Example) Al powder with an average particle size of 3 μm and titanium hydride powder with an average particle size of 3 μm were mixed so that the atomic ratio of M and Ti was 54:46, and the mixture was compression molded into a cylindrical shape.

真空中において1070℃で2時間保持し焼成焼結を行
なうことによって、u−’r i合金多孔質体を作製し
、陽極体とした。次に、これらの多孔質陽極体を第1表
に示すようなリン酸−乳酸アンモニウムの6種類(試料
/161〜6)の化成液濃度で帥Vの陽極酸化を行なっ
た。
A u-'ri alloy porous body was produced by holding and sintering at 1070° C. for 2 hours in a vacuum, and used as an anode body. Next, these porous anode bodies were subjected to anodic oxidation using six types of chemical solution concentrations of phosphate-ammonium lactate (samples/161 to 6) as shown in Table 1.

また、比較のため従来方法として、リン酸水溶液−こよ
る80vの陽極酸化も合わせて行なった。
For comparison, anodic oxidation using a phosphoric acid aqueous solution at 80V was also carried out as a conventional method.

(試料高7) 次にこれらの試料について硝酸マンガン溶液の含浸、熱
分解プロセスを5回繰り返し、MnO,陰極焼付けを行
なった後、グラファイト、銀ペースト焼付け、ハンダデ
ィップ、樹脂ディップを行なって固体化した。第1表に
固体化後(樹脂ディップ後)の静電容量(120Hz 
)漏れ電流(16v印加−5分値)、および固体化時の
で童減少率を示す。
(Sample height 7) Next, these samples were impregnated with manganese nitrate solution, the thermal decomposition process was repeated five times, MnO and cathode baking were performed, and then graphite and silver paste were baked, solder dipped, and resin dipped to solidify. did. Table 1 shows the capacitance after solidification (after resin dipping) (120Hz
) Shows the leakage current (16V applied - 5 minute value) and the rate of decrease in temperature during solidification.

また、固体化後の試料について、耐湿テスト(40℃−
95%几H1000時間)を行ない、静電容量の増大に
ついて得られた結果を第1図に示す。
In addition, the sample after solidification was tested for humidity resistance (40℃-
The results obtained regarding the increase in capacitance are shown in FIG. 1.

第1表かられ乃)るように、固体化時の客層減少率がリ
ン酸−乳酸アンモニウム水溶液で陽極酸化した試料(7
に1〜6)の場合3.0〜47%と、比較例リン酸水溶
液で陽極酸化した場合(従来法)の13%(47)より
もかなり小さな愼が得られている。また、これに対応し
て第1図に示した耐湿テストでの容量増大もリン酸−乳
酸アンモニウム水溶液の場合の方が遥かに小さく、3〜
5チの増大にとどまっており、リン酸水溶液の場合の約
14優に比べて大幅に改善されていることがわかる。
As shown in Table 1, the rate of customer decline during solidification was lower than that of the sample anodized with phosphoric acid-ammonium lactate aqueous solution (7
In the case of 1 to 6), 3.0 to 47% is obtained, which is considerably smaller than the 13% (47) in the case of anodizing with a comparative example phosphoric acid aqueous solution (conventional method). Correspondingly, the increase in capacity in the humidity test shown in Figure 1 is also much smaller in the case of the phosphoric acid-ammonium lactate aqueous solution, and 3~
It can be seen that the increase is only 5%, which is a significant improvement compared to about 14% in the case of the phosphoric acid aqueous solution.

(発明の効果) 以上、実施例によって詳細lこ説明したように。(Effect of the invention) As described above in detail with reference to the embodiments.

本発明の製造方法によれば、IJ −’I’ i合金i
tmコンデンサの固体化時の静電客数の減少を著しく低
減することが可能であり、同時に耐湿での容量増大を軽
減して耐湿特性の向上をはかることが可能となる。従っ
て本発明の有用性の高いことは明らかである。
According to the manufacturing method of the present invention, IJ −'I' i alloy i
It is possible to significantly reduce the decrease in the number of electrostatic customers when the tm capacitor is solidified, and at the same time, it is possible to reduce the increase in capacity due to moisture resistance and improve the moisture resistance characteristics. Therefore, it is clear that the present invention is highly useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐湿特性を示すグラフ。 7″− Figure 1 is a graph showing moisture resistance characteristics. 7″-

Claims (1)

【特許請求の範囲】[Claims] アルミニウムとチタンからなる合金を陽極金属とし、こ
れを陽極酸化した後固体陰極半導体層、外部陰極を順次
形成する電解コンデンサの製造方法tこおいて、陽極酸
化を、リン酸および乳酸アンモニウムを含む水溶液によ
って行なうことを特徴とする電解コンデンサの製造方法
A method for manufacturing an electrolytic capacitor, in which an alloy consisting of aluminum and titanium is used as an anode metal, and after anodizing this, a solid cathode semiconductor layer and an external cathode are sequentially formed. A method of manufacturing an electrolytic capacitor, characterized in that the manufacturing method is carried out by:
JP8524584A 1984-04-27 1984-04-27 Method of producing electrolytic condenser Pending JPS60229325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8524584A JPS60229325A (en) 1984-04-27 1984-04-27 Method of producing electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8524584A JPS60229325A (en) 1984-04-27 1984-04-27 Method of producing electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS60229325A true JPS60229325A (en) 1985-11-14

Family

ID=13853176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8524584A Pending JPS60229325A (en) 1984-04-27 1984-04-27 Method of producing electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60229325A (en)

Similar Documents

Publication Publication Date Title
US3825802A (en) Solid capacitor
McLean et al. Tantalum solid electrolytic capacitors
RU2253919C2 (en) Capacitor powder
US6656245B2 (en) Niobium sintered body for capacitor and process for producing same
EP0166205A1 (en) Method of producing electrolytic capacitor with Al-Ti anode body
JPS60229325A (en) Method of producing electrolytic condenser
US4214293A (en) Electrolytic capacitors
US4277543A (en) Anode for solid electrolytic capacitor and method for making the same
JPS62188215A (en) Manufacture of electrolytic capacitor
JPS59194419A (en) Method of producing electrolytic condenser
JPS59191321A (en) Method of producing electrolytic condenser
JPS59191319A (en) Method of producing electrolytic condenser
JPS59193017A (en) Method of producing electrolytic condenser
JPS60229327A (en) Method of producing porous anode for electrolytic condenser
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JPS60229324A (en) Method of producing electrolytic condenser
JPS59191320A (en) Method of producing electrolytic condenser
JPS59191322A (en) Method of producing electrolytic condenser
JPS6257090B2 (en)
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JPS59193018A (en) Method of producing electrolytic condenser
JPS60229326A (en) Method of producing electrolytic condenser
JPS6257250B2 (en)
JPS5814521A (en) Electrolytic condenser