JPS59191321A - Method of producing electrolytic condenser - Google Patents

Method of producing electrolytic condenser

Info

Publication number
JPS59191321A
JPS59191321A JP6583883A JP6583883A JPS59191321A JP S59191321 A JPS59191321 A JP S59191321A JP 6583883 A JP6583883 A JP 6583883A JP 6583883 A JP6583883 A JP 6583883A JP S59191321 A JPS59191321 A JP S59191321A
Authority
JP
Japan
Prior art keywords
phosphoric acid
ammonium
capacitance
aqueous solution
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6583883A
Other languages
Japanese (ja)
Other versions
JPS6410928B2 (en
Inventor
清水 成章
荒井 吉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6583883A priority Critical patent/JPS59191321A/en
Publication of JPS59191321A publication Critical patent/JPS59191321A/en
Publication of JPS6410928B2 publication Critical patent/JPS6410928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電解コンデンサの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrolytic capacitor.

従来、電解コンデンサ用の陽極体材料としては、タンタ
ル、ニオブ、ジルコニウム、バナジウム、ハフニウム、
チタン、アルミニウム等の所謂弁作用金属が知られてお
り、過去多くの研究者がこれらの金属の単体あるいは合
金系に対して電解コンデンサとしての基礎特性を調べ、
実用化を検討して来た。
Traditionally, anode body materials for electrolytic capacitors include tantalum, niobium, zirconium, vanadium, hafnium,
So-called valve action metals such as titanium and aluminum are known, and in the past many researchers have investigated the basic characteristics of these metals alone or in their alloys as electrolytic capacitors.
We have been considering practical application.

しかし、コンデンサとして実用化しつるためには、その
陽極体材料固有の酸化皮膜の漏れ電流、誘電損失などの
電気的特性が一定の水準に達していなければならず、現
在実用化されている電解コンデンサは、タンタルおよび
アルミニウムを陽極体としたものだけである。
However, in order to be put to practical use as a capacitor, the electrical characteristics such as leakage current and dielectric loss of the oxide film unique to the anode material must reach a certain level. Only those using tantalum and aluminum as anode bodies.

タンタルを陽極材料とするコンデンサは、漏れ電流、誘
電損失などの電気的特性が優れており、安定で極めて信
頼性が高く、かつ小型で大容量のものが得られるという
点に特徴がある。
Capacitors using tantalum as anode material have excellent electrical properties such as leakage current and dielectric loss, are stable and extremely reliable, and are characterized by being compact and having large capacity.

しかし、タンタルはここ数年の需要増大に対して供給が
追いつかず、資源が不足していることもあって材料価格
の高騰が著しく、製品価格の上昇を招いている。一方、
アルミニウムを陽極材料とするコンデンサは安価である
という点に特徴があるが、小型大容量化がより困難なこ
とのほか、電気的特性および安定性の点でタンタルを陽
極材料とするコンデンサに劣っている。
However, the supply of tantalum has not been able to keep up with the increasing demand over the past few years, and due in part to resource shortages, the price of the material has skyrocketed, leading to an increase in product prices. on the other hand,
Capacitors using aluminum as the anode material are characterized by being inexpensive, but in addition to being more difficult to miniaturize and increase capacity, they are inferior to capacitors using tantalum as the anode material in terms of electrical characteristics and stability. There is.

このような情況から、漏れ電流、誘電損失などの電気的
特性および安定性が優れていると共に、小型大容量化が
可能であり、かつ安価で安定供給可能な材料を陽極体と
した電解コンデンサの開発が強く望まれていた。
Under these circumstances, electrolytic capacitors whose anodes are made of materials that have excellent electrical characteristics such as leakage current and dielectric loss and stability, can be made smaller and larger in capacity, and can be inexpensively and stably supplied are being developed. Development was strongly desired.

本発明者らは、種々検討した結果原料として水素化チタ
ンとアルミニウムの粉末を使用し、これらの粉末を混合
、プレス、焼結してなるアルミニウムーチタン合金多孔
質焼結体を陽極体とした場合にこのような要望に叶う電
解コンデンサ用多孔質体の得られることを見出し、すで
に提案した。
As a result of various studies, the present inventors used titanium hydride and aluminum powder as raw materials, mixed, pressed, and sintered these powders to create an aluminum-titanium alloy porous sintered body as an anode body. In some cases, we have discovered that it is possible to obtain a porous material for electrolytic capacitors that meets these needs, and we have already proposed it.

また、このアルミニウムーチタン合金を陽極体とした場
合、陽極酸化に最適な化成液がリン酸水溶液であること
も既に提案した。
We have also already proposed that when this aluminum-titanium alloy is used as an anode body, the most suitable chemical solution for anodizing is a phosphoric acid aqueous solution.

しかし、本発明者らは、リン酸水溶液によるAJ −T
 i  合金多孔質体の陽極酸化について、更に詳細に
検討を続けた結果、一つの問題点を見出した。それは、
固体化後(Agペースト後)樹脂外装を施すと静電容量
が減少することである。この容量減少は、減少率として
最高10係を越える場合もある。この現象は、MnO,
陰極が、化成皮膜表面を完全に密着して被覆していない
ために起こると考えられる。
However, the present inventors discovered that AJ-T using phosphoric acid aqueous solution
As a result of further detailed study of the anodic oxidation of porous alloy bodies, we discovered one problem. it is,
If a resin coating is applied after solidification (after Ag paste), the capacitance decreases. This capacity reduction may exceed a maximum rate of 10 times. This phenomenon is caused by MnO,
This is thought to occur because the cathode does not completely adhere to the surface of the chemical conversion coating.

銀ペースト処理後の時点では多孔質体内部が外気に通じ
ているためにペレット内部に外部湿気による吸着水が存
在してこれが電極の力)わりとなって、MnO2が完全
に密着して被覆してない化成皮膜部(非固体化領域と称
する)分の容量も検出している。一方樹脂外装したもの
は、Agペースト時点に比べると外気と遮断された状態
であり、しかも樹脂の熱硬化時(100℃以上)にペレ
ット内部の吸着水がとんでしまい、MnO,によって完
全に密着、被覆された部分(固体化領域と称する)の容
量だけしか検出されなくなる。従って、樹脂外装後の静
電容量とAgペースト後の静電容量との比がほぼMnO
,の被覆率に対応すると考えられる。
After the silver paste treatment, the inside of the porous body is open to the outside air, so there is adsorbed water inside the pellet due to external moisture, which acts as an electrode force, and the MnO2 is completely adhered and coated. The capacitance of the unconverted chemical coating area (referred to as the non-solidified area) is also detected. On the other hand, those coated with resin are isolated from the outside air compared to when Ag paste is applied, and the adsorbed water inside the pellets disappears when the resin is thermally cured (over 100°C), resulting in complete adhesion due to MnO. , only the volume of the covered portion (referred to as the solidified region) will be detected. Therefore, the ratio of the capacitance after resin coating to the capacitance after Ag paste is almost MnO.
It is thought that this corresponds to the coverage rate of .

樹脂外装時の容量減少、すなわちMnO,の被覆率の低
下は、CV値の減少につながり、実質上好ましいことで
はない。特に容量減少率が10%を越える場合には影響
が大きい。
A decrease in capacity during resin packaging, that is, a decrease in MnO coverage, leads to a decrease in CV value, which is not substantially desirable. The influence is particularly large when the capacity reduction rate exceeds 10%.

本発明の目的は、このような静電容量の目減りを−防ぎ
、粉末のC■を有効利用できる製造方法を提供すること
にある。
An object of the present invention is to provide a manufacturing method that can prevent such loss of capacitance and make effective use of powder C.

本発明の製造方法によれば、Al−Ti合金からなる多
孔質陽極体に対し陽極酸化処理を最終化成電圧より低い
一定電圧までをリン酸水溶液中で行ない、その後最終化
成電圧までを乳酸アンモニウムもしくはホウ酸アンモニ
ウムの水溶液中で行なり)、次にリン酸水溶液または前
記2種類のアンモニウム系水溶液のうちの一つで再度前
記最終化成電圧まで陽極酸化を行なうことにより、樹脂
外装時の容量減少率を小さくすることが可能となる。
According to the manufacturing method of the present invention, a porous anode body made of an Al-Ti alloy is anodized in a phosphoric acid aqueous solution up to a constant voltage lower than the final formation voltage, and then the porous anode body made of an Al-Ti alloy is anodized with ammonium lactate or (conducted in an aqueous solution of ammonium borate), and then anodized again to the final formation voltage in a phosphoric acid aqueous solution or one of the above two types of ammonium-based aqueous solutions. It becomes possible to make it smaller.

以下、本発明を実施例に従って詳細に説明する。Hereinafter, the present invention will be explained in detail according to examples.

実施例 平均粒径3μmのAl・粉末及び平均粒径3μmの水素
化チタン粉末を、AIとTiの原子比が54=46とな
るように混合し、円柱形に圧縮成型後、真空中において
1070℃で2時間保持し焼成焼結を行なうことによっ
て、Al−Ti合金多孔質体を作製し、陽極体とした。
Example Al powder with an average particle size of 3 μm and titanium hydride powder with an average particle size of 3 μm were mixed so that the atomic ratio of AI and Ti was 54 = 46, and after compression molding into a cylinder shape, it was heated to 1070 mm in a vacuum. A porous Al-Ti alloy body was produced by holding at a temperature of 2 hours and sintering, and used as an anode body.

次に、これらの陽極体を0.5体積チのリン酸水溶液中
で60 Vまで陽極酸化を行ない(陽極酸化1−■)、
その後すべてSOV迄1体積チの乳酸アンモニウムまた
は、1重量%のコハク酸アンモニウムを含む2種類の水
溶液で別々に陽極酸化を行なった。(陽極酸化1−■) 更に、前記の陽極酸化1−■に使用した化成液の異なる
2種類の陽極化成体の各々について、0.005体積チ
のリン酸水溶液中で80V迄再度陽極酸化を行なった。
Next, these anode bodies were anodized to 60 V in 0.5 volume of phosphoric acid aqueous solution (anodization 1-■),
Thereafter, anodization was performed separately with two types of aqueous solutions containing 1 volume of ammonium lactate or 1% by weight of ammonium succinate up to SOV. (Anodization 1-■) Furthermore, each of the two types of anodized products with different chemical solutions used in the above-mentioned anodization 1-■ was anodized again to 80V in a 0.005 volume H phosphoric acid aqueous solution. I did it.

(陽極酸化2) また比較のため、従来方法として陽極酸化1を最終化成
電圧の80V迄0.5体積チのリン酸水溶液中で行ない
、欠番こ0.005体積チのリン酸水溶液中で80v迄
再度陽極酸化を行なった試料を作製した。
(Anodization 2) For comparison, as a conventional method, anodization 1 was performed in a phosphoric acid aqueous solution of 0.5 volume H to the final formation voltage of 80 V. A sample was prepared by performing anodic oxidation again.

上記3種類の化成方法で得た80Vf化成体に対し、硝
酸マンガンの含浸、熱分解を6回くり返し。
Impregnation with manganese nitrate and thermal decomposition were repeated 6 times for the 80Vf chemical products obtained by the above three types of chemical conversion methods.

た後、グラファイト、Agペースト焼付けを行なった。After that, graphite and Ag paste were baked.

Agペースト焼付後の静電容量は3種類の化成水準共約
6.5 fiF (120H2)であった。(各3゜p
の平均値) 続いて、半田ディツプの後樹脂ディップを行なって外装
仕上げをした。使用した樹脂は熱硬化性の二液性エポキ
シ樹脂である。樹脂外装後の120H2での静電容量と
、そのAgペースト後の静電容量に対する変化率(減少
率)を表に示す。また、17i+し電流(LC) ニツ
イテGt 20.8 V (16Vw X 1.3 )
の印加電圧で85°C−16Hrのエージングを行なっ
た後の値(中央値)を表中に示す。(16■評価−5分
値) (以 下 余 白p 表かられかるように、本発明の陽極酸化処理方法によれ
ば、Agペースト後の静電容量に対する樹脂外装後の容
量減少率が、従来のリン酸水溶液のみによる化成方法に
比べて著しく小さくなっており(減少率%以下)、最終
的に大きな静電容量値が得られている。また、漏れ電流
値も本発明の陽極酸化処理によるものの方が小さな値を
示している。なお、陽極酸化2を行なうのは、漏れ電流
値をより小さくすることができるからである。
The capacitance after baking the Ag paste was approximately 6.5 fiF (120H2) for all three types of chemical formation levels. (3゜p each
(average value) Next, after solder dipping, resin dipping was performed to finish the exterior. The resin used was a thermosetting two-component epoxy resin. The table shows the capacitance at 120H2 after resin packaging and the rate of change (reduction rate) with respect to the capacitance after Ag paste. Also, 17i + current (LC) 20.8 V (16Vw x 1.3)
The values (median values) after aging at 85° C. for 16 hours at an applied voltage of 1 are shown in the table. (16 ■Evaluation - 5 minute value) (As can be seen from the table below, according to the anodizing treatment method of the present invention, the capacity reduction rate after resin coating with respect to the capacitance after Ag paste is Compared to the conventional chemical conversion method using only an aqueous phosphoric acid solution, the capacitance is significantly smaller (reduction rate % or less), and a large capacitance value is finally obtained.Furthermore, the leakage current value is also reduced by the anodizing treatment of the present invention. The reason why the anodic oxidation 2 is performed is that the leakage current value can be made smaller.

また、この実施例では、陽極酸化2にリン酸水溶°液(
0゜005 VO,E % )を使用した場合について
示したが、乳酸アンモニウムもしくはホウ酸アンモニウ
ムの水溶液を使用しても同様な効果の得られることを確
認した。
In addition, in this example, a phosphoric acid aqueous solution (
Although the case where 0°005 VO,E%) was used was shown, it was confirmed that similar effects could be obtained using an aqueous solution of ammonium lactate or ammonium borate.

以上説明したように、本発明の′製造方法は、静電容量
の実質的な目減りを防ぎ、原料粉末のCv値を有効利用
できるという意味において、その有効性の高いことは明
らかである。
As explained above, it is clear that the manufacturing method of the present invention is highly effective in the sense that it can prevent substantial loss of capacitance and effectively utilize the Cv value of the raw material powder.

Claims (1)

【特許請求の範囲】[Claims] アルミニウムとチタンからなる合金を陽極金属とし、こ
れを陽極酸化した後電解質溶液あるいは固体陰極半導体
層、外部陰極を順次形成する電解コンデンサの製造方法
において、陽極酸化処理を最終化成電圧より低い一定電
圧まではリン酸水溶液中で行ない、その後最終化成電圧
才でを乳酸アンモニウムもしくはホウ酸アンモニウムの
水溶液中で行ない、次にリン酸水溶液または前記2種類
のアンモニウム系水溶液のうちの一つで再度前記最終化
成電圧迄陽極酸化を行なう陽極酸化工程を有することを
特徴とする電解コンデンサの製造方法。
In an electrolytic capacitor manufacturing method in which an alloy consisting of aluminum and titanium is used as the anode metal and is anodized, an electrolyte solution or a solid cathode semiconductor layer and an external cathode are sequentially formed. is carried out in an aqueous phosphoric acid solution, followed by a final chemical reaction in an aqueous solution of ammonium lactate or ammonium borate, and then again in an aqueous phosphoric acid solution or one of the two ammonium-based solutions. 1. A method for manufacturing an electrolytic capacitor, comprising an anodizing step of performing anodic oxidation up to a voltage.
JP6583883A 1983-04-14 1983-04-14 Method of producing electrolytic condenser Granted JPS59191321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6583883A JPS59191321A (en) 1983-04-14 1983-04-14 Method of producing electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6583883A JPS59191321A (en) 1983-04-14 1983-04-14 Method of producing electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS59191321A true JPS59191321A (en) 1984-10-30
JPS6410928B2 JPS6410928B2 (en) 1989-02-22

Family

ID=13298550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6583883A Granted JPS59191321A (en) 1983-04-14 1983-04-14 Method of producing electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS59191321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621606U (en) * 1992-06-12 1994-03-22 本田工業株式会社 Electric stethoscope for esophagus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621606U (en) * 1992-06-12 1994-03-22 本田工業株式会社 Electric stethoscope for esophagus

Also Published As

Publication number Publication date
JPS6410928B2 (en) 1989-02-22

Similar Documents

Publication Publication Date Title
JP4703400B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
JP4508945B2 (en) Solid electrolytic capacitor and manufacturing method thereof
TWI493581B (en) Electrode material for electrolytic capacitor and its manufacturing method
JP4553771B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4553770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPS59191321A (en) Method of producing electrolytic condenser
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP2007180440A (en) Solid electrolytic capacitor and manufacturing method thereof
JPS62188215A (en) Manufacture of electrolytic capacitor
US4214293A (en) Electrolytic capacitors
US3649880A (en) Solid electrolytic capacitor having a titanium-zirconium alloy electrode
JPS59191319A (en) Method of producing electrolytic condenser
JP2637207B2 (en) Solid electrolytic capacitors
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JPS59194419A (en) Method of producing electrolytic condenser
JP4554063B2 (en) Method for forming titanium oxide film and titanium electrolytic capacitor
EP4310873A1 (en) Electrode material for aluminum electrolytic capacitors and method for producing same
JPS60229325A (en) Method of producing electrolytic condenser
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JPH0614502B2 (en) Sintered barium titanate capacitor
JPS59193017A (en) Method of producing electrolytic condenser
JPS59191322A (en) Method of producing electrolytic condenser
JPS60229324A (en) Method of producing electrolytic condenser
JPS60229326A (en) Method of producing electrolytic condenser