JPH0614502B2 - Sintered barium titanate capacitor - Google Patents

Sintered barium titanate capacitor

Info

Publication number
JPH0614502B2
JPH0614502B2 JP2053060A JP5306090A JPH0614502B2 JP H0614502 B2 JPH0614502 B2 JP H0614502B2 JP 2053060 A JP2053060 A JP 2053060A JP 5306090 A JP5306090 A JP 5306090A JP H0614502 B2 JPH0614502 B2 JP H0614502B2
Authority
JP
Japan
Prior art keywords
capacitor
barium titanate
anode body
sintered
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2053060A
Other languages
Japanese (ja)
Other versions
JPH03254108A (en
Inventor
宏 安達
浩介 中村
和幸 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2053060A priority Critical patent/JPH0614502B2/en
Publication of JPH03254108A publication Critical patent/JPH03254108A/en
Publication of JPH0614502B2 publication Critical patent/JPH0614502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はチタン酸バリウムを誘電体として用いる小型で
大容量の焼結型チタン酸バリウムコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact and large capacity sintered barium titanate capacitor using barium titanate as a dielectric.

従来の技術 最近、チタン金属粉末を焼結した陽極体を用い、この陽
極体を水酸化バリウム水溶液中で化成処理を行い、チタ
ン酸バリウム誘電体を形成する焼結型チタン酸バリウム
コンデンサが公表され、このコンデンサの誘電率が30
0以上であり、従来のタンタルコンデンサと対比し、約
10倍の容量が得られるので、約1/8〜1/5の小型
化が可能であると注目されている。
2. Description of the Related Art Recently, a sintered barium titanate capacitor, which uses an anode body obtained by sintering titanium metal powder and performs chemical conversion treatment on this anode body in an aqueous solution of barium hydroxide to form a barium titanate dielectric, has been announced. , The dielectric constant of this capacitor is 30
Since it is 0 or more, and a capacity about 10 times that of a conventional tantalum capacitor can be obtained, it has been noted that the size can be reduced to about 1/8 to 1/5.

発明が解決しようとする課題 このコンデンサでチタン酸バリウム誘電体上に対向電極
としてタンタルコンデンサと同様に二酸化マンガンを形
成することが推考されるが、二酸化マンガンを焼付け形
成するのには硝酸マンガン水溶液中に焼結体を含浸した
後、250〜300℃の温度で熱分解して焼付ける必要
がある。このとき、誘電体皮膜が劣化してしまうので、
二酸化マンガンを焼付けした後、再び水酸化バリウム水
溶液中で電圧を印加した状態で再化成工程で皮膜を修復
する必要がある。また多孔質焼結体の細部まで硝酸マン
ガン溶液を含浸させるためには、当初稀薄溶液で含浸し
て熱分解を行い、順次濃い溶液で含浸、熱分解を行う作
業を数回繰り返し行っているので工程の回数が作業性が
悪かった。
Problems to be Solved by the Invention It is conceivable that manganese dioxide is formed as a counter electrode on a barium titanate dielectric in the same manner as in a tantalum capacitor in this capacitor. After impregnation with the sintered body, it is necessary to thermally decompose and bake at a temperature of 250 to 300 ° C. At this time, since the dielectric film deteriorates,
After baking the manganese dioxide, it is necessary to restore the film in the re-formation process while applying the voltage again in the barium hydroxide aqueous solution. Also, in order to impregnate the details of the porous sintered body with the manganese nitrate solution, the work of initially impregnating with a dilute solution and then thermally decomposing, and then impregnating with a concentrated solution and thermally decomposing several times are repeated. The workability was poor in the number of steps.

課題を解決するための手段 本発明は対向電極として、二酸化マンガンを用いずにコ
ロダイルカーボンを用いることを特徴とする。
Means for Solving the Problems The present invention is characterized by using corodyl carbon as a counter electrode without using manganese dioxide.

本発明のコンデンサは、チタン金属粉を焼結した陽極体
を水酸化バリウム水溶液が入った加圧容器中で直流電圧
を印加すると、陽極体の表面にチタン酸バリウム誘電体
皮膜が形成される。この陽極体をコロイダルカーボンの
水懸濁液中に浸漬し減圧脱泡する。脱泡した後乾燥して
から銀ペーストに浸漬、乾燥してカーボンの表面に銀電
極を形成する。
In the capacitor of the present invention, when a DC voltage is applied to an anode body obtained by sintering titanium metal powder in a pressure vessel containing a barium hydroxide aqueous solution, a barium titanate dielectric film is formed on the surface of the anode body. This anode body is immersed in an aqueous suspension of colloidal carbon and degassed under reduced pressure. After defoaming, it is dried, then immersed in a silver paste and dried to form a silver electrode on the surface of carbon.

使用するチタン金属粉の粒度が細いものを用いる場合
は、必要に応じてカーボン濃度を加減し、複数回塗布を
繰返す。コロイダルカーボンは1.0μm以下のものが
望ましく、またバインダーとしてはカルボキシルメチル
セルローズ等の粘着剤を添加し、分散剤としてアルコー
ル又はアンモニア水を添加した水懸濁液を用いるとよ
い。粘着剤が少ないとコンデンサの特性が機械的、熱的
ストレスに弱くなり、また多過ぎると電気抵抗が大とな
りtan δ、インピーダンス特性が悪くなる。銀ペースト
は市販のものでよいが、バインダーとして熱硬化性より
熱可塑性のものがよい。銀ペースト塗布後は一般のコン
デンサと同様にレジンモールドやレジンディップの外装
が適用できる。
When the titanium metal powder used has a fine particle size, the carbon concentration is adjusted as necessary, and the application is repeated a plurality of times. The colloidal carbon is preferably 1.0 μm or less, and it is preferable to use an aqueous suspension prepared by adding an adhesive such as carboxymethyl cellulose as a binder and adding alcohol or ammonia water as a dispersant. If the amount of adhesive is small, the characteristics of the capacitor will be weakened by mechanical and thermal stress, and if it is too large, the electrical resistance will be large and the tan δ and impedance characteristics will be poor. The silver paste may be a commercially available one, but the binder is preferably a thermoplastic one rather than a thermosetting one. After applying the silver paste, a resin mold or resin dip exterior can be applied as in a general capacitor.

実施例 チタン金属粉末を成形後、真空中で焼結した陽極体1を
Ba(OH)水溶液(濃度0.2N)中に浸漬し、1
20℃,2気圧下で直流電圧を印加して、電流200m
A,60分流しチタン表面にBaTiOの誘電体皮膜
2を形成する。陽極体1には成形時にチタンワイヤ8を
埋設してあり、直流電圧を印加するときの給電用端子と
なり、コンデンサの陽極引出し端子9の接続線となる。
Example After molding a titanium metal powder, the anode body 1 sintered in vacuum was immersed in a Ba (OH) 2 aqueous solution (concentration 0.2 N) to
Applying DC voltage at 20 ℃ and 2 atm, current 200m
A, flow for 60 minutes and form a dielectric film 2 of BaTiO 3 on the surface of titanium. A titanium wire 8 is embedded in the anode body 1 at the time of molding, and serves as a power supply terminal when a DC voltage is applied, and serves as a connecting wire for an anode lead terminal 9 of a capacitor.

誘電体皮膜2は多孔性の陽極体1の内部まで形成され、
この陽極体1をコロイダルカーボン水懸濁液に浸漬し、
減圧下で浸漬させる。このコロイダルカーボン水懸濁液
は1μm以下のカーボン粒子(0.5重量%)を2%の
メチルセルローズ水溶液に懸濁させる。このとき分散性
を良好にするためアンモニア水を微量滴下しPH8−9
に調整する。
The dielectric film 2 is formed up to the inside of the porous anode body 1,
Immersing this anode body 1 in an aqueous suspension of colloidal carbon,
Immerse under reduced pressure. This colloidal carbon water suspension suspends carbon particles (0.5% by weight) of 1 μm or less in a 2% aqueous solution of methyl cellulose. At this time, in order to improve the dispersibility, a small amount of ammonia water is dropped and PH8-9 is added.
Adjust to.

メチルセルローズの濃度、コロイダルカーボンの濃度は
陽極体の大きさ、気孔率、気孔の大きさにより適当に調
整すればよい。
The concentration of methyl cellulose and the concentration of colloidal carbon may be appropriately adjusted depending on the size of the anode body, the porosity, and the size of the pores.

コロイダルカーボンに浸漬後、150℃,20分間乾燥
し、必要に応じて複数回の含浸・乾燥を繰返しカーボン
層3を形成する。このカーボン層3の上に銀ペースト4
を塗布乾燥し、陰極リード線7をコンデンサ素子に密着
し、はんだ5で固定する。その後コンデンサ素子全体を
液体エポキシレジンに浸漬して外装6を形成する。
After soaking in colloidal carbon, it is dried at 150 ° C. for 20 minutes, and impregnation and drying are repeated a plurality of times as necessary to form the carbon layer 3. Silver paste 4 on this carbon layer 3
Is dried, and the cathode lead wire 7 is brought into close contact with the capacitor element and fixed with solder 5. Thereafter, the entire capacitor element is dipped in a liquid epoxy resin to form the outer package 6.

以上により製作した33μF品のコンデンサと従来のコ
ンデンサとの特性を下表に示す。
The characteristics of the 33 μF capacitor manufactured as described above and the conventional capacitor are shown in the table below.

発明の効果 本発明のコンデンサは、コンデンサの対向電極としてコ
ロイダルカーボンを用いることにより、タンタルコンデ
ンサにおける二酸化マンガンの焼付工程が省略でき、か
つtan δが改善が可能となった。
Effects of the Invention In the capacitor of the present invention, by using colloidal carbon as the counter electrode of the capacitor, the manganese dioxide baking step in the tantalum capacitor can be omitted and tan δ can be improved.

従来の二酸化マンガン焼付工程と本発明のカーボン塗布
工程とを対比すると 以上に示した如く、工程が単純化され、歩留りが向上す
る。
Comparing the conventional manganese dioxide baking process with the carbon coating process of the present invention As described above, the process is simplified and the yield is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の断面図である。 1:焼結体、 2:チタン酸バリウム誘電体皮膜、 3:カーボン層、4:銀層、5:はんだ層、 6:外装レジン、7:陰極端子、 8:チタン線、9:陽極端子。 FIG. 1 is a sectional view of the present invention. 1: Sintered body, 2: Barium titanate dielectric film, 3: Carbon layer, 4: Silver layer, 5: Solder layer, 6: Exterior resin, 7: Cathode terminal, 8: Titanium wire, 9: Anode terminal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタンの金属粉末が焼結されチタン線が導
出された陽極体と、この陽極体上にチタン酸バリウム誘
電体層を形成しこの誘電体層の上に対向電極としてのコ
ロイダルカーボン層及び銀ペースト層を設けてコンデン
サ素子となし、前記のチタン線には陽極端子が接続さ
れ、コンデンサ素子には陰極端子が接続され、コンデン
サ素子を外装樹脂で外装することを特徴とする焼結型チ
タン酸バリウムコンデンサ。
1. An anode body in which a metal powder of titanium is sintered to derive a titanium wire, a barium titanate dielectric layer is formed on the anode body, and colloidal carbon as a counter electrode is formed on the dielectric layer. A layer and a silver paste layer are provided to form a capacitor element, an anode terminal is connected to the titanium wire, a cathode terminal is connected to the capacitor element, and the capacitor element is packaged with a packaging resin. Type barium titanate capacitor.
JP2053060A 1990-03-05 1990-03-05 Sintered barium titanate capacitor Expired - Fee Related JPH0614502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053060A JPH0614502B2 (en) 1990-03-05 1990-03-05 Sintered barium titanate capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053060A JPH0614502B2 (en) 1990-03-05 1990-03-05 Sintered barium titanate capacitor

Publications (2)

Publication Number Publication Date
JPH03254108A JPH03254108A (en) 1991-11-13
JPH0614502B2 true JPH0614502B2 (en) 1994-02-23

Family

ID=12932305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053060A Expired - Fee Related JPH0614502B2 (en) 1990-03-05 1990-03-05 Sintered barium titanate capacitor

Country Status (1)

Country Link
JP (1) JPH0614502B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW479262B (en) * 1999-06-09 2002-03-11 Showa Denko Kk Electrode material for capacitor and capacitor using the same
TW200302296A (en) * 2001-11-12 2003-08-01 Toho Titanium Co Ltd Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP5394709B2 (en) 2008-11-28 2014-01-22 株式会社神戸製鋼所 Super high strength steel plate with excellent hydrogen embrittlement resistance and workability
WO2012124584A1 (en) 2011-03-15 2012-09-20 三洋電機株式会社 Solid electrolytic capacitor and method of producing same

Also Published As

Publication number Publication date
JPH03254108A (en) 1991-11-13

Similar Documents

Publication Publication Date Title
US2936514A (en) Electrolytic device
TWI226072B (en) Capacitor and production method therefor
US3950842A (en) Method for making a solid electrolyte capacitor
JPH0614502B2 (en) Sintered barium titanate capacitor
EP3721462A1 (en) Solid electrolytic capacitor for use at high temperatures
JP2007180440A (en) Solid electrolytic capacitor and manufacturing method thereof
US3270254A (en) Electrical capacitors and method of making the same
JP3486113B2 (en) Method of manufacturing Ta solid electrolytic capacitor
US4214293A (en) Electrolytic capacitors
US4160284A (en) Capacitors and process for making same
JPS6334917A (en) Capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP4555190B2 (en) Manufacturing method of solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP4213996B2 (en) Manufacturing method of solid electrolytic capacitor
JPS63124511A (en) Aluminum solid electrolytic capacitor
JP3074742B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10242000A (en) Tantalum solid electrolytic capacitor element and tantalum solid electrolytic capacitor
JPS6410928B2 (en)
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH06204099A (en) Solid-state electrolytic capacitor
JP2513369B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11274009A (en) Solid electrolytic capacitor and manufacture thereof
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees