JPH07153650A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH07153650A
JPH07153650A JP32109793A JP32109793A JPH07153650A JP H07153650 A JPH07153650 A JP H07153650A JP 32109793 A JP32109793 A JP 32109793A JP 32109793 A JP32109793 A JP 32109793A JP H07153650 A JPH07153650 A JP H07153650A
Authority
JP
Japan
Prior art keywords
aqueous solution
electrolytic capacitor
nitric acid
solid electrolytic
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32109793A
Other languages
Japanese (ja)
Inventor
Takashi Tomizawa
孝史 富澤
Atsushi Yamamoto
敦司 山本
Takeshi Endo
剛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP32109793A priority Critical patent/JPH07153650A/en
Publication of JPH07153650A publication Critical patent/JPH07153650A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To obtain the solid electrolytic capacitor whose leakage current characteristic is good, which improves the impregnation property of manganese nitrate and which makes a tan delta and an impedance characteristic good. CONSTITUTION:A chemical conversion treatment by at least a phosphoric acid aqueous solution is executed to an anodic sintered substance which is formed by sintering a valve-action metal powder such as tantalum, niobium or the like, and the anodic sintered substance is then cleaned with a nitric acid aqueous solution as its posttreatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関し、さらに詳しく言えば、硝酸マンガンの含
浸性が良く、損失角の正接(tanδ)およびインピー
ダンス特性を良好とし得る固体電解コンデンサの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly, to a solid electrolytic capacitor having good impregnation property with manganese nitrate and good loss tangent (tan δ) and impedance characteristics. It is about the method.

【0002】[0002]

【従来の技術】タンタル固体電解コンデンサについてそ
の製造方法を説明すると、まず、タンタル粉末に適当な
バインダーを混合して例えば所定の大きさの直方体状ま
たは円柱状に成形し、陽極リードを植設したうえで、焼
結してタンタルの焼結ペレット(陽極焼結体)を得る。
2. Description of the Related Art A method of manufacturing a tantalum solid electrolytic capacitor will be described. First, a suitable binder is mixed with tantalum powder to form a rectangular parallelepiped or a cylinder having a predetermined size, and an anode lead is implanted. Then, it is sintered to obtain a sintered pellet of tantalum (anode sintered body).

【0003】そして、同焼結ペレットに誘電体としての
酸化皮膜を形成する。通常、この酸化皮膜はリン酸水溶
液もしくは硝酸水溶液による単独化成処理、または硝酸
水溶液による化成を行なった後にリン酸水溶液による化
成を行なう二段化成処理によって形成される。
Then, an oxide film as a dielectric is formed on the sintered pellet. Usually, this oxide film is formed by a single chemical conversion treatment using a phosphoric acid aqueous solution or a nitric acid aqueous solution, or a two-step chemical conversion treatment in which chemical conversion is performed using a nitric acid aqueous solution and then phosphoric acid aqueous solution.

【0004】次に、焼結ペレットに二酸化マンガンから
なる固体電解質を形成する。すなわち、同焼結ペレット
を硝酸マンガン水溶液中に浸漬して硝酸マンガンを含浸
させ、引き上げて熱分解を行なう。硝酸マンガンの濃度
を順次高めて数回これを繰り返すとともに、熱分解工程
により損傷した酸化皮膜を修復する目的で再化成を数回
繰り返す。
Next, a solid electrolyte made of manganese dioxide is formed on the sintered pellet. That is, the same sintered pellet is immersed in an aqueous solution of manganese nitrate to impregnate it with manganese nitrate and then pulled up for thermal decomposition. The concentration of manganese nitrate is sequentially increased and this is repeated several times, and re-formation is repeated several times for the purpose of repairing the oxide film damaged by the thermal decomposition process.

【0005】しかる後、固体電解質上に陰極導電層とし
てのカーボン層および銀層を形成する。
After that, a carbon layer and a silver layer as a cathode conductive layer are formed on the solid electrolyte.

【0006】[0006]

【発明が解決しようとする課題】このようにして、コン
デンサ素子が形成されるのであるが、焼結ペレットに酸
化皮膜を形成するにあたって、リン酸水溶液での化成処
理によると漏れ電流特性は良好であるが、固体電解質形
成工程において硝酸マンガンの含浸性が十分でないた
め、損失角の正接(tanδ)およびインピーダンス
(Z)特性が悪い。
In this way, the capacitor element is formed, but when forming the oxide film on the sintered pellet, the leakage current characteristics are not good when the chemical conversion treatment with the phosphoric acid aqueous solution is performed. However, since the impregnation property of manganese nitrate is not sufficient in the solid electrolyte forming step, the loss tangent (tan δ) and the impedance (Z) characteristics are poor.

【0007】これに対して、硝酸水溶液での化成処理に
よる場合には硝酸マンガンの含浸性が良く、tanδお
よびインピーダンス(Z)特性は良好となるが、漏れ電
流特性がバラ付くという欠点が現れる。
On the other hand, in the case of chemical conversion treatment with an aqueous nitric acid solution, the impregnation property of manganese nitrate is good and the tan δ and impedance (Z) characteristics are good, but there is a drawback that the leakage current characteristics vary.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、その構成上の特徴は、タ
ンタル、ニオブなどの弁作用金属粉末を焼結してなる陽
極焼結体に、少なくともリン酸水溶液による化成処理の
後(リン酸水溶液による単独化成処理もしくは硝酸水溶
液とリン酸水溶液による二段化成処理を施した後)、同
陽極焼結体に二酸化マンガンからなる固体電解質および
陰極用導電層を順次形成してなる固体電解コンデンサの
製造方法において、陽極焼結体に上記の化成処理を施し
た後の後処理として、同陽極焼結体を硝酸水溶液にて洗
浄することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is characterized in that the anode sintering is obtained by sintering valve action metal powder such as tantalum or niobium. After a chemical conversion treatment with a phosphoric acid aqueous solution to the body (after a single chemical conversion treatment with a phosphoric acid aqueous solution or a two-step chemical conversion treatment with a nitric acid aqueous solution and a phosphoric acid aqueous solution), a solid electrolyte consisting of manganese dioxide is added to the anode sintered body. And a method of manufacturing a solid electrolytic capacitor in which a conductive layer for a cathode is sequentially formed, the anode sintered body is washed with an aqueous nitric acid solution as a post-treatment after the above chemical conversion treatment is performed on the anode sintered body. It is in.

【0009】この場合、硝酸水溶液の硝酸濃度は0.0
05〜1.0%であることが好ましい。硝酸濃度が0.
005%未満では余り効果がなく、また、1.0%以上
とすると、臭気の発生、設備の腐食などが発生し、作業
性を著しく悪化させることになる。
In this case, the nitric acid concentration of the nitric acid aqueous solution is 0.0
It is preferably from 05 to 1.0%. The nitric acid concentration is 0.
If it is less than 005%, there is little effect, and if it is 1.0% or more, odor is generated, equipment is corroded, and the workability is significantly deteriorated.

【0010】[0010]

【作用】本発明によると、漏れ電流特性が良好であるリ
ン酸水溶液による化成後に、焼結ペレットを硝酸水溶液
で洗浄することにより、硝酸マンガンとの濡れ性が向上
する。したがって、硝酸マンガンの含浸性が高まり、t
anδおよびインピーダンス(Z)特性が改善される。
According to the present invention, the wettability with manganese nitrate is improved by washing the sintered pellets with an aqueous nitric acid solution after chemical conversion with an aqueous phosphoric acid solution having good leakage current characteristics. Therefore, the impregnation property of manganese nitrate is increased, and t
The an δ and impedance (Z) characteristics are improved.

【0011】[0011]

【実施例】ペレットサイズ0.9×0.9×1.0(m
m)のタンタル焼結ペレットを用い、下記の実施例1〜
3および従来例にしたがって定格6.3V10μFのタ
ンタル固体電解コンデンサをそれぞれ100個作製し、
硝酸マンガンの含浸率、100kHz時のインピーダン
スZ(Ω)および120Hz時のtanδを測定した。
[Example] Pellet size 0.9 x 0.9 x 1.0 (m
m) using tantalum sintered pellets,
100 tantalum solid electrolytic capacitors rated at 6.3 V and 10 μF each were manufactured in accordance with No. 3 and the conventional example.
The impregnation rate of manganese nitrate, the impedance Z (Ω) at 100 kHz, and the tan δ at 120 Hz were measured.

【0012】《実施例1》まず、上記サイズのタンタル
焼結ペレットをリン酸0.1%水溶液中において定格電
圧の4倍の化成電圧を印加して酸化皮膜を形成した。そ
して、この化成後の後処理として、同タンタル焼結ペレ
ットを硝酸0.005%水溶液にて洗浄した。
Example 1 First, a tantalum sintered pellet of the above size was formed in an aqueous 0.1% phosphoric acid solution by applying a formation voltage four times the rated voltage to form an oxide film. Then, as a post-treatment after this chemical conversion, the same tantalum sintered pellet was washed with a 0.005% nitric acid aqueous solution.

【0013】次に、タンタル焼結ペレットを硝酸マンガ
ン水溶液中に浸漬して硝酸マンガンを含浸させ、引き上
げて熱分解を行ない、同タンタル焼結ペレットに二酸化
マンガンよりなる固体電解質を形成した。この場合、硝
酸マンガンの濃度を20%,40%,70%,100%
と順次高めて10回熱分解を繰り返すとともに、熱分解
工程により損傷した酸化皮膜を修復する目的でリン酸水
溶液にて再化成を5回繰り返した。
Next, the sintered tantalum pellets were immersed in an aqueous solution of manganese nitrate to impregnate manganese nitrate, and then pulled up for thermal decomposition to form solid electrolytes of manganese dioxide on the sintered pellets of tantalum. In this case, the concentration of manganese nitrate is 20%, 40%, 70%, 100%
Then, the thermal decomposition was repeated 10 times, and re-formation was repeated 5 times with an aqueous phosphoric acid solution for the purpose of repairing the oxide film damaged by the thermal decomposition step.

【0014】しかる後、この固体電解質上にカーボン層
と銀層とを順次形成し、リードフレームへの取り付けを
経て、樹脂モールド法により樹脂外装体を形成した。
Thereafter, a carbon layer and a silver layer were sequentially formed on this solid electrolyte, and after being attached to a lead frame, a resin exterior body was formed by a resin molding method.

【0015】この製品100個について硝酸マンガンの
含浸率を測定したところ、最大92.0%、最小89.
5%で、その平均値は90.5%であった。また、10
0kHz時のインピーダンスZは最大4.9Ω、最小
3.6Ωで、その平均値は4.2Ωであった。120H
z時のtanδについては最大4.7%、最小3.5%
で、その平均値は4.1%を示した。
When the impregnation rate of manganese nitrate was measured for 100 of these products, the maximum was 92.0% and the minimum was 89.
At 5%, the average value was 90.5%. Also, 10
The impedance Z at 0 kHz was a maximum of 4.9Ω and a minimum of 3.6Ω, and the average value was 4.2Ω. 120H
The maximum tan δ at z is 4.7% and the minimum is 3.5%.
The average value was 4.1%.

【0016】《実施例2》実施例1と同じく、上記サイ
ズのタンタル焼結ペレットをリン酸0.1%水溶液中に
おいて定格電圧の4倍の化成電圧を印加して酸化皮膜を
形成した。
Example 2 Similar to Example 1, an oxide film was formed by applying a chemical conversion voltage four times the rated voltage to a tantalum sintered pellet of the above size in a 0.1% phosphoric acid aqueous solution.

【0017】そして、この化成後の後処理として、この
実施例2では、同タンタル焼結ペレットを硝酸0.05
%水溶液にて洗浄した。以後は、実施例1と同様にして
固体電解質、カーボン層、銀層を順次形成し、リードフ
レームへの取り付けを経て、樹脂モールド法により樹脂
外装体を形成した。
Then, as a post-treatment after the chemical conversion, in Example 2, the same tantalum sintered pellet was treated with 0.05% nitric acid.
% Aqueous solution. After that, a solid electrolyte, a carbon layer, and a silver layer were sequentially formed in the same manner as in Example 1, and after attachment to a lead frame, a resin outer package was formed by a resin molding method.

【0018】この製品100個について硝酸マンガンの
含浸率を測定したところ、最大97.0%、最小94.
0%で、その平均値は95.5%であった。また、10
0kHz時のインピーダンスZは最大1.8Ω、最小
0.9Ωで、その平均値は1.4Ωであった。120H
z時のtanδについては最大3.0%、最小2.1%
で、その平均値は2.6%を示した。
When the impregnation rate of manganese nitrate was measured for 100 of these products, the maximum was 97.0% and the minimum was 94.
At 0%, the average value was 95.5%. Also, 10
The impedance Z at 0 kHz was 1.8Ω at maximum and 0.9Ω at minimum, and the average value was 1.4Ω. 120H
The maximum tan δ at z is 3.0% and the minimum is 2.1%
The average value was 2.6%.

【0019】《実施例3》実施例1と同じく、上記サイ
ズのタンタル焼結ペレットをリン酸0.1%水溶液中に
おいて定格電圧の4倍の化成電圧を印加して酸化皮膜を
形成した。
Example 3 Similar to Example 1, an oxide film was formed by applying a formation voltage four times the rated voltage to a tantalum sintered pellet of the above size in a 0.1% phosphoric acid aqueous solution.

【0020】そして、この化成後の後処理として、この
実施例3では、同タンタル焼結ペレットを硝酸1.0%
水溶液にて洗浄した。以後は、実施例1と同様にして固
体電解質、カーボン層、銀層を順次形成し、リードフレ
ームへの取り付けを経て、樹脂モールド法により樹脂外
装体を形成した。
Then, as a post-treatment after the chemical conversion, in Example 3, the same tantalum sintered pellets were treated with 1.0% nitric acid.
It was washed with an aqueous solution. After that, a solid electrolyte, a carbon layer, and a silver layer were sequentially formed in the same manner as in Example 1, and after attachment to a lead frame, a resin outer package was formed by a resin molding method.

【0021】この製品100個について硝酸マンガンの
含浸率を測定したところ、最大98.0%、最小94.
5%で、その平均値は96.0%であった。また、10
0kHz時のインピーダンスZは最大1.7Ω、最小
0.9Ωで、その平均値は1.3Ωであった。120H
z時のtanδについては最大2.8%、最小2.0%
で、その平均値は2.4%を示した。
When the impregnation rate of manganese nitrate was measured for 100 of these products, the maximum was 98.0% and the minimum was 94.
At 5%, the average value was 96.0%. Also, 10
The impedance Z at 0 kHz was 1.7Ω at maximum and 0.9Ω at minimum, and the average value was 1.3Ω. 120H
About tan δ at z, maximum 2.8%, minimum 2.0%
The average value was 2.4%.

【0022】〈従来例〉実施例1と同じく、上記サイズ
のタンタル焼結ペレットをリン酸0.1%水溶液中にお
いて定格電圧の4倍の化成電圧を印加して酸化皮膜を形
成した。
<Prior art example> As in Example 1, an oxide film was formed by applying a formation voltage four times the rated voltage to a tantalum sintered pellet of the above size in a 0.1% phosphoric acid aqueous solution.

【0023】しかしながら、この従来例では化成後の硝
酸水溶液での洗浄工程を省いて、以後実施例1と同様に
して固体電解質、カーボン層、銀層を順次形成し、リー
ドフレームへの取り付けを経て、樹脂モールド法により
樹脂外装体を形成した。
However, in this conventional example, the washing step with nitric acid aqueous solution after chemical conversion is omitted, and thereafter, the solid electrolyte, the carbon layer, and the silver layer are sequentially formed in the same manner as in Example 1, and after attachment to the lead frame. A resin outer package was formed by the resin molding method.

【0024】この製品100個について硝酸マンガンの
含浸率を測定したところ、最大90.5%、最小87.
5%で、その平均値は89.0%であった。また、10
0kHz時のインピーダンスZは最大5.7Ω、最小
3.8Ωで、その平均値は5.0Ωであった。120H
z時のtanδについては最大5.0%、最小3.5%
で、その平均値は4.4%を示した。
When the impregnation rate of manganese nitrate was measured for 100 of these products, the maximum was 90.5% and the minimum was 87.
At 5%, the average value was 89.0%. Also, 10
The impedance Z at 0 kHz was a maximum of 5.7Ω and a minimum of 3.8Ω, and the average value was 5.0Ω. 120H
The maximum tan δ at z is 5.0% and the minimum is 3.5%
The average value was 4.4%.

【0025】なお、比較を容易にするため、図1に上記
実施例1〜3と従来例の測定結果をグラフに示す。上記
実施例はタンタルについてのものであるが、本発明はこ
れに限定されるものでなく、他の弁作用金属であっても
良い。
In order to facilitate the comparison, FIG. 1 is a graph showing the measurement results of Examples 1 to 3 and the conventional example. Although the above-mentioned embodiment is for tantalum, the present invention is not limited to this, and other valve action metals may be used.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
タンタル、ニオブなどの弁作用金属粉末を焼結してなる
陽極焼結体に、少なくともリン酸水溶液による化成処理
を施した後、その後処理として同陽極焼結体を硝酸水溶
液にて洗浄するようにしたことにより、漏れ電流特性が
良好であるとともに、硝酸マンガンの含浸性が改善さ
れ、これに伴ってtanδおよびインピーダンス特性が
良好とされた固体電解コンデンサが得られる。
As described above, according to the present invention,
After subjecting the anode sintered body obtained by sintering valve metal powder such as tantalum or niobium to at least a chemical conversion treatment with a phosphoric acid aqueous solution, as a subsequent treatment, the anode sintered body should be washed with a nitric acid aqueous solution. By doing so, a solid electrolytic capacitor having a good leakage current characteristic and an improved manganese nitrate impregnation property, and a good tan δ and impedance characteristic can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例と従来例の特性を対比的に示したグラ
フ。
FIG. 1 is a graph showing characteristics of an example and a conventional example for comparison.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タンタル、ニオブなどの弁作用金属粉末
を焼結してなる陽極焼結体に、少なくともリン酸水溶液
による化成処理を施した後、同陽極焼結体に二酸化マン
ガンからなる固体電解質および陰極用導電層を順次形成
してなる固体電解コンデンサの製造方法において、上記
陽極焼結体に上記の化成処理を施した後の後処理とし
て、同陽極焼結体を硝酸水溶液にて洗浄することを特徴
とする固体電解コンデンサの製造方法。
1. A solid electrolyte made of manganese dioxide after subjecting an anode sintered body obtained by sintering valve action metal powder such as tantalum or niobium to at least a chemical conversion treatment with an aqueous phosphoric acid solution. And a method for manufacturing a solid electrolytic capacitor in which a conductive layer for a cathode is sequentially formed, the anode sintered body is washed with an aqueous nitric acid solution as a post-treatment after the above chemical conversion treatment is applied to the anode sintered body. A method of manufacturing a solid electrolytic capacitor, comprising:
【請求項2】 上記硝酸水溶液の硝酸濃度は0.005
〜1.0%であることを特徴とする請求項1に記載の固
体電解コンデンサの製造方法。
2. The nitric acid concentration of the nitric acid aqueous solution is 0.005.
Is 1.0% or less, The manufacturing method of the solid electrolytic capacitor of Claim 1 characterized by the above-mentioned.
JP32109793A 1993-11-26 1993-11-26 Manufacture of solid electrolytic capacitor Withdrawn JPH07153650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32109793A JPH07153650A (en) 1993-11-26 1993-11-26 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32109793A JPH07153650A (en) 1993-11-26 1993-11-26 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH07153650A true JPH07153650A (en) 1995-06-16

Family

ID=18128790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32109793A Withdrawn JPH07153650A (en) 1993-11-26 1993-11-26 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH07153650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420043B1 (en) 1996-11-07 2002-07-16 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6616728B2 (en) 1998-05-04 2003-09-09 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US7729103B2 (en) 2007-03-20 2010-06-01 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420043B1 (en) 1996-11-07 2002-07-16 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6616728B2 (en) 1998-05-04 2003-09-09 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6896715B2 (en) 1998-05-04 2005-05-24 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US7729103B2 (en) 2007-03-20 2010-06-01 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of producing the same

Similar Documents

Publication Publication Date Title
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
CA2360789C (en) Niobium capacitor and method of manufacture thereof
JP4263795B2 (en) Capacitor
JPH07153650A (en) Manufacture of solid electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP3486113B2 (en) Method of manufacturing Ta solid electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JP4401195B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP2513369B2 (en) Method for manufacturing solid electrolytic capacitor
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003297684A (en) Solid electrolytic capacitor and its producing method
JP2738186B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62185307A (en) Solid electrolytic capacitor
JP2003109850A (en) Method for manufacturing solid electrolytic capacitor
JPH10321475A (en) Manufacture of solid electrolytic capacitor
JPH10154639A (en) Method for manufacturing solid capacitor
JP2000012392A (en) Manufacture of solid electrolytic capacitor
JP2005109247A (en) Solid electrolytic capacitor and its manufacturing method
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130