JPH10275746A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH10275746A
JPH10275746A JP9474197A JP9474197A JPH10275746A JP H10275746 A JPH10275746 A JP H10275746A JP 9474197 A JP9474197 A JP 9474197A JP 9474197 A JP9474197 A JP 9474197A JP H10275746 A JPH10275746 A JP H10275746A
Authority
JP
Japan
Prior art keywords
sintered body
binder
electrolytic capacitor
solution
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9474197A
Other languages
Japanese (ja)
Other versions
JP4002634B2 (en
Inventor
Takahiro Narita
敬弘 成田
Kazuhiko Ishiuchi
和彦 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP09474197A priority Critical patent/JP4002634B2/en
Publication of JPH10275746A publication Critical patent/JPH10275746A/en
Application granted granted Critical
Publication of JP4002634B2 publication Critical patent/JP4002634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing solid-state electrolytic capacitors wherein equivalent series resistance is reduced while tan δcharacteristics is improved. SOLUTION: A solid-state electrolytic capacitor 12 is manufactured by sintering powder of valve action metal mixed with binder to form a sintered body 1, and sequentially forming an oxide coat 4 and a cathode layer on the sintered body 1. The powder of valve action metal mixed with granular binder of particle size 50 μm or smaller is used to form the sintered body 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解コンデンサ
の製造方法に関する。
The present invention relates to a method for manufacturing a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】タンタル固体電解コンデンサ等の固体電
解コンデンサには、例えば、タンタルやアルミニウム等
の弁作用金属の微粉末に、カンファやアクリル系樹脂等
を有機溶剤と混合したバインダーを添加して混合し、そ
の後、有機溶剤を揮発して除去した粉末を用いる。そし
てこの粉末を、予じめタンタル等の弁作用金属からなる
陽極用リード線の一端を埋め込んで、プレス加圧成型す
る。成型後、真空中で高温度で加熱して焼結し、焼結体
を形成する。次に、この焼結体に酸化皮膜、二酸化マン
ガン又はポリピロールやポリアニリン等の有機導電性高
分子からなる固体電解質層、グラファイト層及び銀層を
順次形成してコンデンサ素子を形成する。
2. Description of the Related Art A solid electrolytic capacitor such as a tantalum solid electrolytic capacitor is mixed by adding a binder obtained by mixing camphor, an acrylic resin or the like with an organic solvent to fine powder of a valve metal such as tantalum or aluminum. Thereafter, a powder obtained by volatilizing and removing the organic solvent is used. Then, this powder is previously press-molded by embedding one end of an anode lead wire made of a valve metal such as tantalum. After molding, it is heated at a high temperature in a vacuum and sintered to form a sintered body. Next, an oxide film, a solid electrolyte layer made of manganese dioxide or an organic conductive polymer such as polypyrrole or polyaniline, a graphite layer and a silver layer are sequentially formed on the sintered body to form a capacitor element.

【0003】[0003]

【発明が解決しようとする課題】しかし、タンタル等の
微粉末と、カンファやアクリル系樹脂等を溶剤と混合し
たバインダーとを混合した粉末を用いて焼結体を形成す
る従来の方法では、空孔形状が微細化するため溶液を含
浸し難くなり、酸化皮膜や、二酸化マンガン等の固体電
解質層を形成し難くなる。その結果、固体電解コンデン
サの等価直列抵抗を低下し難く、かつ、tanδ特性を向
上し難い欠点がある。
However, in a conventional method of forming a sintered body using a powder obtained by mixing a fine powder such as tantalum and a binder obtained by mixing camphor, an acrylic resin or the like with a solvent, the conventional method is not used. Since the pore shape becomes fine, it becomes difficult to impregnate the solution, and it becomes difficult to form an oxide film or a solid electrolyte layer such as manganese dioxide. As a result, there are disadvantages that the equivalent series resistance of the solid electrolytic capacitor is hardly reduced and the tan δ characteristic is hardly improved.

【0004】本発明は、以上の欠点を改良し、等価直列
抵抗を低下でき、tanδ特性を向上できる固体電解コン
デンサの製造方法を提供することを課題とするものであ
る。
It is an object of the present invention to provide a method of manufacturing a solid electrolytic capacitor which can improve the above-mentioned drawbacks, reduce the equivalent series resistance, and improve the tan δ characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、バインダーを混合した弁作用金属の粉
末を焼結して焼結体を形成し、この焼結体に酸化皮膜及
び陰極層を順次形成する固体電解コンデンサの製造方法
において、粒径が50μm以下の顆粒状のバインダーを
混合した弁作用金属の粉末を用いて焼結体を形成するこ
とを特徴とする固体電解コンデンサの製造方法を提供す
るものである。
In order to solve the above-mentioned problems, the present invention sinters a valve metal powder mixed with a binder to form a sintered body, and forms an oxide film on the sintered body. And a method for manufacturing a solid electrolytic capacitor in which a cathode layer is sequentially formed, wherein a sintered body is formed using a valve action metal powder mixed with a granular binder having a particle size of 50 μm or less. Is provided.

【0006】本発明によれば、粒径が50μm以下の顆
粒状のバインダーを混合した弁作用金属の粉末を用いて
焼結体を形成しているが、焼結時にバインダーが除去さ
れるため、バインダーの跡が空孔として残り、溶液を含
浸し易い焼結体が得られる。従って、焼結体に酸化皮膜
や固体電解質層を形成し易くなる。そして固体電解コン
デンサの等価直列抵抗やtanδ特性を改善できる。
According to the present invention, a sintered body is formed by using a valve metal powder mixed with a granular binder having a particle size of 50 μm or less, but the binder is removed during sintering. Traces of the binder remain as pores, and a sintered body easily impregnated with the solution is obtained. Therefore, it becomes easy to form an oxide film and a solid electrolyte layer on the sintered body. And the equivalent series resistance and tan δ characteristics of the solid electrolytic capacitor can be improved.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図1
に基づいて説明する。先ず、タンタルやアルミニウム、
ニオブ等の弁作用金属の微粉末に、カンファやアクリル
系樹脂等を有機溶剤で溶かしたバインダーを添加し、混
合する。混合した後、加熱して有機溶剤を揮発して除去
する。有機溶剤を除去後、粒径が50μm以下の顆粒状
のバインダーを添加して混合する。この場合、有機溶剤
を除去した後、顆粒状バインダーを混合するのは、有機
溶剤が残っていると、混合した顆粒状バインダーが溶け
て顆粒状の形態を維持できず、焼結体に顆粒状バインダ
ーによる空孔を形成できなくなるためである。顆粒状バ
インダーとしては、例えば、ポリビニルアルコールやポ
リビニルブチラール、ポリ酢酸ビニル、ポリエチレンカ
ーボネイト、メタクリル酸メチル、ポリエチレン系樹
脂、ポリエステル系樹脂、メタクリル系樹脂等を用い
る。なお、このバインダーの粒径は、50μm以下であ
るが、好ましくは5〜50μmとする方がよい。すなわ
ち、顆粒状バインダーの粒径が5μmより小さい場合に
は、焼結後に空孔ができても、陰極層を形成し難く、ta
nδ特性等を改善し難い。また、顆粒状バインダーの粒
径が50μmより大きい場合には、圧縮成型時の粉末量
が同一製品の範囲で一定であるから、この顆粒状バイン
ダーを除去した後に形成される空孔は大きくなるが、そ
れ以外の空孔は逆に小さくなる。従って、同様にtanδ
特性等を改善し難くなる。顆粒状バインダーを添加し
て、混合するには、例えば、容器回転型や容器固定型、
容器振動型、気流・重力型等の装置を用いる。この混合
の際、顆粒状バインダーの混合量は好ましくは1〜10
wt%にする。すなわち、このバインダーの混合量が1wt
%より少ないと、tanδ特性等を改善する効果が低くな
る。また、混合量が10wt%より多いと、焼結の際に除
去した顆粒状バインダーの後に形成される空孔が多くは
なるが、この空孔以外の空孔が少なくなるため、結果的
にtanδ特性等を改善し難くなる。
FIG. 1 is a block diagram showing an embodiment of the present invention.
It will be described based on. First, tantalum and aluminum,
A binder in which camphor, an acrylic resin, or the like is dissolved in an organic solvent is added to fine powder of a valve action metal such as niobium and mixed. After mixing, the mixture is heated to volatilize and remove the organic solvent. After removing the organic solvent, a granular binder having a particle size of 50 μm or less is added and mixed. In this case, after removing the organic solvent, mixing the granular binder is because if the organic solvent remains, the mixed granular binder is dissolved and the granular form cannot be maintained, and the granular This is because voids cannot be formed by the binder. As the granular binder, for example, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetate, polyethylene carbonate, methyl methacrylate, a polyethylene resin, a polyester resin, a methacrylic resin, and the like are used. The particle size of the binder is 50 μm or less, and preferably 5 to 50 μm. That is, when the particle size of the granular binder is smaller than 5 μm, even if pores are formed after sintering, it is difficult to form a cathode layer,
It is difficult to improve nδ characteristics and the like. Further, when the particle size of the granular binder is larger than 50 μm, the amount of powder at the time of compression molding is constant within the same product range, so that the pores formed after removing the granular binder become large. On the contrary, the other holes become smaller. Therefore, similarly, tanδ
It is difficult to improve characteristics and the like. To add and mix the granular binder, for example, container rotation type or container fixed type,
Use a container vibration type, air flow / gravity type, or other device. During this mixing, the mixing amount of the granular binder is preferably 1 to 10
wt%. That is, the mixing amount of this binder is 1 wt.
%, The effect of improving the tan δ characteristics and the like decreases. If the mixing amount is more than 10% by weight, pores formed after the granular binder removed at the time of sintering increase, but the number of pores other than the pores decreases. It is difficult to improve characteristics and the like.

【0008】次に、顆粒状バインダーを混合した後の弁
作用金属の粉末を、タンタル等の弁作用金属からなる陽
極用リード線を引き出した状態にして、円筒形や角形等
の形状にプレス等で圧縮成型する。
Next, the powder of the valve metal after mixing the granular binder is pressed into a cylindrical or square shape by pressing an anode lead wire made of a valve metal such as tantalum. And compression molded.

【0009】圧縮成型後、真空中等の雰囲気中において
高温度で焼結して焼結体1を形成する。焼結後、陽極用
リード線2の根本に、テフロンやシリコーンゴム、シリ
コーン樹脂等からなる円板状の絶縁板3を配置する。
After the compression molding, the sintered body 1 is formed by sintering at a high temperature in an atmosphere such as a vacuum. After sintering, a disk-shaped insulating plate 3 made of Teflon, silicone rubber, silicone resin or the like is arranged at the root of the anode lead wire 2.

【0010】そしてこの焼結体1を硝酸やリン酸等の化
成液中に浸漬して陽極化成し、厚さ200オングストロ
ーム〜6000オングストローム程度の酸化皮膜4を形
成する。
Then, the sintered body 1 is immersed in a chemical solution such as nitric acid or phosphoric acid and anodized to form an oxide film 4 having a thickness of about 200 Å to 6000 Å.

【0011】酸化皮膜4を形成後、二酸化マンガンや有
機導電性高分子からなる固体電解質層5を形成する。こ
の固体電解質層5を形成するには、陽極用リード線2の
引き出し面側を上にして焼結体1を硝酸マンガン溶液中
等に、液面が陽極用リード線2の引き出し面のわずかに
上であって絶縁板3を越えない程度に浸漬する。これに
より、液を焼結体1に付着し含浸する。含浸後、溶液の
種類に応じた処理を行ない、固体電解質層5を形成す
る。
After forming the oxide film 4, a solid electrolyte layer 5 made of manganese dioxide or an organic conductive polymer is formed. In order to form the solid electrolyte layer 5, the sintered body 1 is placed in a manganese nitrate solution or the like with the lead surface side of the anode lead wire 2 facing upward. And soak it so as not to exceed the insulating plate 3. Thereby, the liquid adheres to and impregnates the sintered body 1. After the impregnation, a treatment according to the type of the solution is performed to form the solid electrolyte layer 5.

【0012】すなわち、溶液が硝酸マンガン溶液であれ
ば、焼結体1を硝酸マンガン溶液中に浸漬して液を含浸
した後、加熱分解し、さらに再化成処理する。そして硝
酸マンガン溶液の濃度を順次高くして、これらの含浸、
加熱分解及び再化成処理の工程を繰り返し行ない、所定
の厚さの二酸化マンガンからなる固体電解質層5を形成
する。
That is, if the solution is a manganese nitrate solution, the sintered body 1 is immersed in the manganese nitrate solution to impregnate the solution, then thermally decomposed, and further subjected to re-chemical treatment. And by increasing the concentration of the manganese nitrate solution sequentially, these impregnations,
The steps of thermal decomposition and re-chemical treatment are repeated to form a solid electrolyte layer 5 of manganese dioxide having a predetermined thickness.

【0013】また、有機導電性高分子からなる固体電解
質層5を形成するには次の各種の方法により行なう。す
なわち、第1の方法は、有機導電性高分子の溶液中に焼
結体1を浸漬する。浸漬後、アルコール等の有機溶剤で
洗浄する。洗浄後、乾燥して溶媒を蒸発させる。そして
必要に応じてこの浸漬から乾燥までの工程を繰り返して
行ない、所定の厚さに形成する。また、第2の方法は、
脱ドープした高分子の溶液中に焼結体1を浸漬する。浸
漬後、洗浄し、乾燥する。そしてこの浸漬から乾燥まで
の工程を必要に応じて所定回数繰り返して行ない、所定
の厚さの脱ドープした高分子の膜を形成する。この膜を
形成後、焼結体1をドーピング溶液中に数10分〜数時
間浸漬して接触し、高分子の膜をドーピングして導電性
を付与し、有機導電性高分子の膜を形成する。さらに、
第3の方法は、アニリンやピロール、チオフェン等のモ
ノマーにドーピングイオンを含む溶液中に焼結体1を浸
漬する。次に、酸化剤の溶液中に焼結体1を浸漬して化
学重合反応させて、有機導電性高分子の膜を形成する。
そして第4の方法は、ドーピングイオンを含まないアニ
リンやピロール等のモノマーの溶液中に焼結体1を浸漬
する。次に、酸化剤の溶液中に焼結体1を浸漬して化学
重合反応させ、高分子の膜を形成する。高分子の膜を形
成後、焼結体1をドーピング溶液中に浸漬して接触し、
導電性を付与して有機導電性高分子の膜を形成する。な
お、ドーパントは、解離定数がナフタレンスルホン酸又
はその誘導体とほぼ同一か又はより小さく、かつドーパ
ントの陰イオンがナフタレンスルホン酸又はその誘導体
の陰イオンよりも小さい物質とする。このようなドーパ
ントとしては、例えば、スルホイソフタル酸やスルホコ
ハク酸、メタンスルホン酸、フェノールスルホン酸、ス
ルホサリチル酸、ベンゼンスルホン酸、ベンゼンジスル
ホン酸、アルキルベンゼンスルホン酸及びその誘導体、
カンファースルホン酸、スルホ酢酸、スルホアニリン、
ジフェノールスルホン酸等の酸又はこれらの酸の塩を用
いる。また、ドーピング溶液は、例えばドーパントある
いはドーパントと酸化剤とを有機溶媒に溶解した組成に
する。液中のドーパントや酸化剤の濃度は0.01〜1
mol/lの範囲が好ましい。そして有機溶媒は、例え
ば、ケトン類やエステル類、アルコール類、芳香族炭化
水素類、ニトリル酸、セルソルブ類、含チッ素化合物等
を用いる。さらに、酸化剤の溶液は、酸化剤だけではな
く、他にドーパントを加えた溶液や、酸化剤とドーパン
トとの塩の溶液を用いてもよい。そして酸化剤には、第
2の鉄塩や過硫酸塩、バナジン酸塩等の水素基準電極に
対して0.8V以上の酸化電位を有する塩を用いる。と
ころで、タンタル粉末により素子を形成した場合には、
タンタル粉末のCV値が大きくなり体積当りの静電容量
が大きくなるほど、素子内部に液が含浸し難くなる。従
って、特性の良好な導電性高分子の膜を形成するために
は、導電性高分子の溶液等に濃度の高いものを用いる必
要がある。そして高分子のなかでポリアニリンは、溶媒
への溶解度が大きく、比較的高濃度の溶液を調製でき、
適当な物質である。
The formation of the solid electrolyte layer 5 made of an organic conductive polymer is performed by the following various methods. That is, in the first method, the sintered body 1 is immersed in a solution of the organic conductive polymer. After immersion, it is washed with an organic solvent such as alcohol. After washing, dry and evaporate the solvent. If necessary, the steps from immersion to drying are repeated to form a predetermined thickness. The second method is
The sintered body 1 is immersed in a solution of the undoped polymer. After immersion, wash and dry. The process from immersion to drying is repeated a predetermined number of times as necessary, to form a undoped polymer film having a predetermined thickness. After forming this film, the sintered body 1 is immersed in a doping solution for several tens of minutes to several hours to come into contact with it, doping the polymer film to impart conductivity, and forming an organic conductive polymer film. I do. further,
In the third method, the sintered body 1 is immersed in a solution containing doping ions in a monomer such as aniline, pyrrole, or thiophene. Next, the sintered body 1 is immersed in a solution of an oxidizing agent to cause a chemical polymerization reaction, thereby forming a film of an organic conductive polymer.
In the fourth method, the sintered body 1 is immersed in a solution of a monomer such as aniline or pyrrole containing no doping ions. Next, the sintered body 1 is immersed in a solution of an oxidizing agent to cause a chemical polymerization reaction, thereby forming a polymer film. After the formation of the polymer film, the sintered body 1 is immersed in the doping solution and brought into contact with
A film of an organic conductive polymer is formed by imparting conductivity. Note that the dopant is a substance having a dissociation constant substantially equal to or smaller than that of naphthalenesulfonic acid or a derivative thereof, and an anion of the dopant smaller than that of naphthalenesulfonic acid or a derivative thereof. Examples of such a dopant include, for example, sulfoisophthalic acid and sulfosuccinic acid, methanesulfonic acid, phenolsulfonic acid, sulfosalicylic acid, benzenesulfonic acid, benzenedisulfonic acid, alkylbenzenesulfonic acid and derivatives thereof,
Camphorsulfonic acid, sulfoacetic acid, sulfoaniline,
Acids such as diphenolsulfonic acid or salts of these acids are used. The doping solution has, for example, a composition in which a dopant or a dopant and an oxidizing agent are dissolved in an organic solvent. The concentration of the dopant or oxidizing agent in the solution is 0.01 to 1
A range of mol / l is preferred. As the organic solvent, for example, ketones, esters, alcohols, aromatic hydrocarbons, nitrile acid, cellosolves, nitrogen-containing compounds, and the like are used. Further, as the solution of the oxidizing agent, not only the oxidizing agent but also a solution to which a dopant is added or a solution of a salt of the oxidizing agent and the dopant may be used. As the oxidizing agent, a salt having an oxidation potential of 0.8 V or more with respect to the hydrogen reference electrode, such as a second iron salt, a persulfate, or a vanadate is used. By the way, when the element is formed of tantalum powder,
As the CV value of the tantalum powder increases and the capacitance per volume increases, it becomes more difficult for the liquid to be impregnated inside the element. Therefore, in order to form a conductive polymer film having good characteristics, it is necessary to use a conductive polymer solution or the like having a high concentration. And among the polymers, polyaniline has a high solubility in the solvent and can prepare a relatively high concentration solution,
It is a suitable substance.

【0014】固体電解質層5を形成後、カーボンペース
トを塗布してカーボン層6を形成する。また、カーボン
層6の表面には銀ペーストを塗布して銀層7を形成す
る。そして固体電解質層5、カーボン層6及び銀層7を
陰極層として用いる。
After forming the solid electrolyte layer 5, a carbon paste is applied to form a carbon layer 6. A silver paste is applied to the surface of the carbon layer 6 to form a silver layer 7. Then, the solid electrolyte layer 5, the carbon layer 6, and the silver layer 7 are used as a cathode layer.

【0015】銀層7を形成後、この銀層7に銀導電性ペ
ースト8により陰極端子9を接続するとともに、陽極用
リード線2に陽極端子10を抵抗溶接等する。そして樹
脂モールド法や樹脂ディップ法等により外装11を形成
する。外装11を形成後、エージング処理し、さらに陰
極端子9と陽極端子10とを外装11の表面に沿って折
り曲げて、固体電解コンデンサ12を形成する。
After the silver layer 7 is formed, a cathode terminal 9 is connected to the silver layer 7 by a silver conductive paste 8, and an anode terminal 10 is resistance-welded to the anode lead wire 2. Then, the exterior 11 is formed by a resin molding method, a resin dipping method, or the like. After the exterior 11 is formed, aging treatment is performed, and the cathode terminal 9 and the anode terminal 10 are bent along the surface of the exterior 11 to form the solid electrolytic capacitor 12.

【0016】[0016]

【実施例】次に、本発明の実施例について説明する。先
ず、タンタルの微粉末に、メタクリル系樹脂を有機溶剤
で溶かしたバインダーを混合する。そして混合した後、
加熱して有機溶剤を除去する。有機溶剤を除去後、顆粒
状のバインダーとして、メタクリル系樹脂である粒径が
5〜50μmのポリメチルメタクリレートを1〜10wt
%混合する。次に、この顆粒状のバインダーを混合した
タンタル粉末を、タンタル製の陽極用リード線を引き出
した状態にして、角形にプレス圧縮成型する。圧縮成型
後、真空中で2000℃程度の温度で焼結し、1.10
mm×1.80mm×1.45mm角の焼結体を形成する。焼
結体を形成後、陽極用リード線の根本にテフロン製の円
板状の絶縁板を配置する。次に、焼結体を硝酸溶液中に
浸漬して陽極酸化処理して、酸化皮膜を形成する。酸化
皮膜を形成後、硝酸マンガン溶液中に焼結体を浸漬して
液を含浸し、その後、熱分解し、再化成する。そしてこ
の含浸から再化成までの工程を数回繰り返して行ない、
二酸化マンガンからなる固体電解質層を形成する。固体
電解質層を形成後、カーボンペースト及び銀ペーストを
順次塗布して、カーボン層及び銀層を形成し、固体電解
質層とあわせて陰極層とする。陰極層を形成後、銀層に
導電性接着剤により陰極端子を接続するとともに、陽極
用リード線に陽極端子を抵抗溶接する。この後、トラン
スファーモールド法により外装を形成する。外装を形成
後、エージング処理等を行い、図1に示す構造の定格1
0V、33μFのタンタル固体電解コンデンサとする。
Next, an embodiment of the present invention will be described. First, a binder obtained by dissolving a methacrylic resin with an organic solvent is mixed with fine tantalum powder. And after mixing,
Heat to remove organic solvent. After removing the organic solvent, 1 to 10 wt% of polymethyl methacrylate having a particle size of 5 to 50 μm, which is a methacrylic resin, as a granular binder.
% Mix. Next, the tantalum powder mixed with the granular binder is press-compressed into a square shape with the tantalum anode lead wire pulled out. After compression molding, sintering at a temperature of about 2000 ° C. in vacuum,
A sintered body of mm × 1.80 mm × 1.45 mm square is formed. After forming the sintered body, a disk-shaped insulating plate made of Teflon is arranged at the root of the anode lead wire. Next, the sintered body is immersed in a nitric acid solution and anodized to form an oxide film. After forming the oxide film, the sintered body is immersed in a manganese nitrate solution to impregnate the liquid, and then thermally decomposed and re-chemically formed. The process from impregnation to re-chemical conversion is repeated several times,
A solid electrolyte layer made of manganese dioxide is formed. After forming the solid electrolyte layer, a carbon paste and a silver paste are sequentially applied to form a carbon layer and a silver layer, and the cathode layer is formed together with the solid electrolyte layer. After forming the cathode layer, the cathode terminal is connected to the silver layer with a conductive adhesive, and the anode terminal is resistance-welded to the anode lead wire. Thereafter, an exterior is formed by a transfer molding method. After the exterior is formed, it is subjected to aging treatment and the like, and the structure shown in FIG.
A tantalum solid electrolytic capacitor of 0 V, 33 μF is used.

【0017】次に、上記実施例と、従来例及び比較例と
につき、100KHzの交流電圧を印加したときの等価
直列抵抗と、120Hzの交流電圧を印加したときのta
nδを測定し、その結果を表1に示した。
Next, for the above embodiment, the conventional example, and the comparative example, the equivalent series resistance when an AC voltage of 100 KHz is applied, and the ta when an AC voltage of 120 Hz is applied.
nδ was measured, and the results are shown in Table 1.

【0018】なお、従来例と比較例の製造条件は次の通
りとする。 従来例:実施例において、顆粒状バインダーを混合しな
いタンタル粉末を用いて焼結体を形成する以外は同一条
件とする。 比較例:実施例において、顆粒状バインダーの粒径を1
00μmとする以外は同一の条件とする。
The manufacturing conditions of the conventional example and the comparative example are as follows. Conventional example: Same conditions as in the example except that a sintered body is formed using tantalum powder not mixed with a granular binder. Comparative Example: In Example, the particle size of the granular binder was 1
The conditions are the same except that the thickness is set to 00 μm.

【0019】[0019]

【表1】 [Table 1]

【0020】この表1から明らかな通り、実施例1〜実
施例12は、従来例に比較して等価直列抵抗が40〜約
91.1%にそしてtanδが50〜約97.7%に各々
低下している。また、比較例1〜比較例4と比べても等
価直列抵抗が約31.0〜87.2%にそしてtanδが
約42.2〜92.3%に低下している。
As apparent from Table 1, Examples 1 to 12 each have an equivalent series resistance of 40 to about 91.1% and a tan δ of 50 to about 97.7% as compared with the conventional example. Is declining. Also, as compared with Comparative Examples 1 to 4, the equivalent series resistance is reduced to about 31.0 to 87.2% and the tan δ is reduced to about 42.2 to 92.3%.

【0021】[0021]

【発明の効果】以上の通り、本発明の製造方法によれ
ば、粒径が50μm以下の顆粒状のバインダーを混合し
た弁作用金属の粉末を用いて焼結体を形成しているた
め、等価直列抵抗を低下でき、tanδ特性を向上できる
固体電解コンデンサが得られる。
As described above, according to the production method of the present invention, since the sintered body is formed using the powder of the valve action metal mixed with the granular binder having a particle size of 50 μm or less, the equivalent A solid electrolytic capacitor that can reduce series resistance and improve tan δ characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の断面図を示す。FIG. 1 shows a sectional view of an embodiment of the present invention.

【符号の説明】 1…焼結体、 4…酸化皮膜、 5…固体電解質層、
6…カーボン層、7…銀層、 12…固体電解コンデン
サ。
[Explanation of Symbols] 1 ... sintered body, 4 ... oxide film, 5 ... solid electrolyte layer,
6 ... carbon layer, 7 ... silver layer, 12 ... solid electrolytic capacitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バインダーを混合した弁作用金属の粉末
を焼結して焼結体を形成し、この焼結体に酸化皮膜及び
陰極層を順次形成する固体電解コンデンサの製造方法に
おいて、粒径が50μm以下の顆粒状のバインダーを混
合した弁作用金属の粉末を用いて焼結体を形成すること
を特徴とする固体電解コンデンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor, comprising sintering a valve metal powder mixed with a binder to form a sintered body, and sequentially forming an oxide film and a cathode layer on the sintered body. A method for producing a solid electrolytic capacitor, characterized in that a sintered body is formed using a valve action metal powder mixed with a granular binder having a particle size of 50 μm or less.
JP09474197A 1997-03-28 1997-03-28 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4002634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09474197A JP4002634B2 (en) 1997-03-28 1997-03-28 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09474197A JP4002634B2 (en) 1997-03-28 1997-03-28 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH10275746A true JPH10275746A (en) 1998-10-13
JP4002634B2 JP4002634B2 (en) 2007-11-07

Family

ID=14118554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09474197A Expired - Fee Related JP4002634B2 (en) 1997-03-28 1997-03-28 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4002634B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103693A (en) * 2005-10-05 2007-04-19 Nichicon Corp Element for solid electrolytic capacitor and its manufacturing method
US7713466B2 (en) 2003-04-28 2010-05-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
CN102576606A (en) * 2009-07-30 2012-07-11 凯米特电子公司 Solid electrolytic capacitors with improved esr stability
JP5474538B2 (en) * 2007-06-04 2014-04-16 三井金属鉱業株式会社 Manufacturing method of electronic component firing jig

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713466B2 (en) 2003-04-28 2010-05-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP2007103693A (en) * 2005-10-05 2007-04-19 Nichicon Corp Element for solid electrolytic capacitor and its manufacturing method
JP5474538B2 (en) * 2007-06-04 2014-04-16 三井金属鉱業株式会社 Manufacturing method of electronic component firing jig
CN102576606A (en) * 2009-07-30 2012-07-11 凯米特电子公司 Solid electrolytic capacitors with improved esr stability
JP2013501359A (en) * 2009-07-30 2013-01-10 ケメット エレクトロニクス コーポレーション Solid electrolytic capacitor with improved ESR stability
JP2014150271A (en) * 2009-07-30 2014-08-21 Kemet Electronics Corp Solid electrolytic capacitors with improved esr stability
US8840685B2 (en) 2009-07-30 2014-09-23 Kemet Electronics Corporation Solid electrolytical capacitors with improved ESR stability

Also Published As

Publication number Publication date
JP4002634B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP5884068B2 (en) Manufacturing method of solid electrolytic capacitor
JP5551529B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH1154374A (en) Electrolytic capacitor and its manufacture
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP3515938B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH11150041A (en) Manufacture of solid electrolytic capacitor
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JP2694670B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP3991429B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH0682591B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1050561A (en) Solid state electrolytic capacitor
JP2000252169A (en) Manufacture of solid electrolytic capacitor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP2005109248A (en) Method of manufacturing solid electrolytic capacitor
JP3365211B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5116130B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000091163A (en) Manufacture of solid electrolytic capacitor
JPH11135366A (en) Solid electrolytic capacitor
JP2003297687A (en) Method for producing solid electrolytic capacitor
JPH1126315A (en) Manufacture of solid electrolytic capacitor
JP2000003832A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees