JP2773499B2 - Solid electrolytic capacitor and method of manufacturing the same - Google Patents

Solid electrolytic capacitor and method of manufacturing the same

Info

Publication number
JP2773499B2
JP2773499B2 JP3331142A JP33114291A JP2773499B2 JP 2773499 B2 JP2773499 B2 JP 2773499B2 JP 3331142 A JP3331142 A JP 3331142A JP 33114291 A JP33114291 A JP 33114291A JP 2773499 B2 JP2773499 B2 JP 2773499B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
electrolytic capacitor
dioxide
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3331142A
Other languages
Japanese (ja)
Other versions
JPH05144678A (en
Inventor
宏 安達
和幸 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi AIC Inc
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP3331142A priority Critical patent/JP2773499B2/en
Publication of JPH05144678A publication Critical patent/JPH05144678A/en
Application granted granted Critical
Publication of JP2773499B2 publication Critical patent/JP2773499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサ及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近の電子回路は高周波で動作するよう
になっている。そのためにこの電子回路に組み込むコン
デンサも周波数特性、特に容量変化率や価直列抵抗
(以下ESRという)に優れた性能が要求されている。
2. Description of the Related Art Modern electronic circuits operate at high frequencies. Its also the frequency characteristic capacitor incorporated in the electronic circuit for, in particular good performance requested to the capacity change rate and the equivalent series resistance (hereinafter referred to as ESR).

【0003】このコンデンサの一つである固体電解コン
デンサは、タンタルやアルミニウム等の弁作用金属の微
粉末を焼結した焼結体を用いる。そしてこの焼結体に電
気化学的に酸化被膜を設け、次いで二酸化マンガンから
なる固体電解質層を設ける。この固体電解質層は、二酸
化マンガン水溶液を含浸し、熱分解法で形成する。固体
電解質層を形成後、その表面にカーボン及び銀ペースト
を順次塗布して陰極層とする。
A solid electrolytic capacitor which is one of such capacitors uses a sintered body obtained by sintering fine powder of a valve metal such as tantalum or aluminum. Then, an oxide film is electrochemically provided on the sintered body, and then a solid electrolyte layer made of manganese dioxide is provided. The solid electrolyte layer is formed by impregnating an aqueous solution of manganese dioxide and using a thermal decomposition method. After forming the solid electrolyte layer, carbon and silver paste are sequentially applied to the surface to form a cathode layer.

【0004】固体電解コンデンサは固体電解質層の電導
度が大きい程、周波数特性を改善できる。
The frequency characteristics of a solid electrolytic capacitor can be improved as the conductivity of the solid electrolyte layer increases.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の固体電
解質層を形成している二酸化マンガンの電導度がほぼ
0.01〜0.05S/cm程度であり、比較的に低い値
である。そのために固体電解コンデンサの周波数特性を
改善し難い欠点がある。
However, the electric conductivity of the conventional manganese dioxide forming the solid electrolyte layer is about 0.01 to 0.05 S / cm, which is a relatively low value. Therefore, there is a disadvantage that it is difficult to improve the frequency characteristics of the solid electrolytic capacitor.

【0006】特に、ESRについては、他のコンデン
サ、例えばセラミックコンデンサやフィルムコンデン
サ、有機半導体を固体電解質とするアルミ電解コンデン
サよりも大きい欠点がある。
In particular, the ESR has a disadvantage that it is larger than other capacitors, for example, a ceramic capacitor, a film capacitor, and an aluminum electrolytic capacitor using an organic semiconductor as a solid electrolyte.

【0007】本発明の目的は、以上の欠点を改良し、周
波数特性を改善できる固体電解コンデンサ及びその製造
方法を提供するものである。
An object of the present invention is to provide a solid electrolytic capacitor capable of improving the above-mentioned drawbacks and improving the frequency characteristics, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明は、弁作用金属の微粉末からなる
焼結体に陽極酸化皮膜、固体電解質層及び陰極層を順次
設けた固体電解コンデンサにおいて、二酸化鉛/二酸化
マンガン=80〜90/20〜10の比率からなる二酸
化マンガンと二酸化鉛との混合物からなる固体電解質層
を有することを特徴とする固体電解コンデンサを提供す
るものである。
In order to achieve the above object, the invention of claim 1 is to provide an anodic oxide film, a solid electrolyte layer and a cathode layer sequentially on a sintered body made of a fine powder of a valve action metal. Lead / dioxide in solid electrolytic capacitors
An object of the present invention is to provide a solid electrolytic capacitor having a solid electrolyte layer made of a mixture of manganese dioxide and lead dioxide in a manganese ratio of 80 to 90/20 to 10 .

【0009】また、請求項2の発明は、弁作用金属の微
粉末からなる焼結体に陽極酸化皮膜、固体電解質及び
陰極層を順次形成する固体電解コンデンサの製造方法に
おいて、陽極酸化皮膜を形成後の焼結体を、硝酸マンガ
ン溶液中に浸漬して液を含浸し熱分解した後、二酸化鉛
を懸濁した硝酸マンガン溶液中に浸漬して液を含浸さ熱
分解して固体電解質層を形成することを特徴とする固体
電解コンデンサの製造方法を提供するものである。
A second aspect of the present invention is a method of manufacturing a solid electrolytic capacitor in which an anodic oxide film, a solid electrolyte layer, and a cathode layer are sequentially formed on a sintered body made of a fine powder of a valve metal. After the formation, the manganese nitrate
After impregnation pyrolyzed liquid by immersing the down solution, solid, characterized in that decompose impregnated is heat the liquid was immersed in a manganese nitrate solution were suspended lead dioxide to form a solid electrolyte layer An object of the present invention is to provide a method for manufacturing an electrolytic capacitor.

【0010】なお、二酸化鉛を懸濁した硝酸マンガン溶
液は粘度が比較的に高く含浸し難い性質を有している。
従って、最初は、二酸化鉛を懸濁しない硝酸マンガン溶
液を含浸して熱分解処理を行い二酸化マンガンのみを析
出させる方が好ましい。そして焼結体の内部の細孔に二
酸化マンガンがある程度堆積したら、二酸化鉛を懸濁し
た硝酸マンガン溶液を含浸し熱分解処理して二酸化マン
ガンと二酸化鉛との混合物を析出させる。
The manganese nitrate solution in which lead dioxide is suspended has a relatively high viscosity and is hardly impregnated.
Therefore, it is preferable to first impregnate a manganese nitrate solution in which lead dioxide is not suspended and perform a thermal decomposition treatment to precipitate only manganese dioxide. Then, when manganese dioxide is deposited to some extent in the pores inside the sintered body, a manganese nitrate solution in which lead dioxide is suspended is impregnated and thermally decomposed to precipitate a mixture of manganese dioxide and lead dioxide.

【0011】[0011]

【作用】二酸化マンガンMnO2と二酸化鉛PbO2との
含有の比率を変えた場合の固体電解質層の電導度は図2
の通りになる。すなわち、この図2から明らかな通り、
二酸化鉛の含有量が多い程、電導度が高くなり、周波数
特性を改善できる。
The electric conductivity of the solid electrolyte layer when the content ratio of manganese dioxide MnO 2 and lead dioxide PbO 2 is changed is shown in FIG.
It becomes as follows. That is, as is apparent from FIG.
The higher the content of lead dioxide, the higher the conductivity and the better the frequency characteristics.

【0012】しかし、二酸化鉛のみでは、化学的に析出
させるために付着強度が弱く、剥離し易くなる。従っ
て、必ず二酸化鉛は二酸化マンガンとの混合物として用
いる。そしてそのため比率はPbO /MnO =80
〜90/20〜10が良い。
However, only lead dioxide has a low adhesion strength due to chemical precipitation and is easily peeled. Therefore, lead dioxide is always used as a mixture with manganese dioxide. And the ratio is therefore PbO 2 / MnO 2 = 80
~ 90 / 20-10 is good.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて説明する。
先ず、タンタルの微粉末を角型に成形し、焼結して、
1.8mm×0.9mm×1.80mmの寸法で重量20mgの
焼結体を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
First, a fine powder of tantalum is formed into a square shape, sintered,
A sintered body having a size of 1.8 mm × 0.9 mm × 1.80 mm and a weight of 20 mg is formed.

【0014】次に、この焼結体を温度50℃のリン酸溶
液中に浸漬し、75Vで化成して陽極酸化皮膜を形成す
る。
Next, this sintered body is immersed in a phosphoric acid solution at a temperature of 50 ° C., and formed at 75 V to form an anodic oxide film.

【0015】陽極酸化皮膜を形成後、焼結体を20%濃
度の硝酸マンガン水溶液中に浸漬し、液を含浸後、温度
260℃の炉内に放置して熱分解する。そして熱分解後
に再化成する。
After forming the anodic oxide film, the sintered body is immersed in a 20% manganese nitrate aqueous solution, impregnated with the solution, and then left in a furnace at a temperature of 260 ° C. to be thermally decomposed. And it re-forms after thermal decomposition.

【0016】再化成後、二酸化鉛を10wt%混合して懸
濁した硝酸マンガン水溶液中に焼結体を浸漬し、上記と
同一条件で熱分解し再化成する。
After the re-formation, the sintered body is immersed in an aqueous solution of manganese nitrate in which 10% by weight of lead dioxide is mixed and suspended, and thermally decomposed and re-formed under the same conditions as described above.

【0017】この再化成後、二酸化鉛の混合量を順次3
0wt%、50wt%、70wt%及び80wt%に変えた硝酸
マンガン水溶液中に浸漬し、上記と同一の条件で熱分解
し再化成して固体電解質層を形成する。
After the re-chemical formation, the mixed amount of lead dioxide is sequentially increased to 3
It is immersed in an aqueous solution of manganese nitrate changed to 0 wt%, 50 wt%, 70 wt% and 80 wt%, thermally decomposed and reformed under the same conditions as above to form a solid electrolyte layer.

【0018】固体電解質層を形成後、コロイドカーボン
及び銀ペーストを塗布して陰極層を形成する。陰極層を
形成後、リードフレームに接続し、エポキシレジンによ
るモールド処理を行い外装を形成する。
After forming the solid electrolyte layer, colloidal carbon and silver paste are applied to form a cathode layer. After forming the cathode layer, it is connected to a lead frame and molded with an epoxy resin to form an exterior.

【0019】なお、上記実施例では、固体電解質層を形
成するのに、最初に二酸化鉛を混合しない二酸化マンガ
ン水溶液のみを含浸させたが、この処理は省いてもよ
い。すなわち、最初から二酸化鉛を混合して懸濁した二
酸化マンガン水溶液を含浸してもよい。
In the above embodiment, the solid electrolyte layer is formed by first impregnating only the manganese dioxide aqueous solution without mixing lead dioxide, but this treatment may be omitted. That is, the manganese dioxide aqueous solution in which lead dioxide is mixed and suspended may be impregnated from the beginning.

【0020】次に、上記の実施例、比較例及び従来例に
ついて、周波数を変えてESRの値を求め、図1に示し
た。
Next, the values of the ESR of the above-described embodiment, comparative example, and conventional example were obtained by changing the frequency, and the results are shown in FIG.

【0021】実施例は、上記実施例において固体電解質
層を形成する際に、最初に二酸化鉛を懸濁しない硝酸マ
ンガン水溶液を含浸し熱分解する工程を行って製造した
ものとする。
In this embodiment, when the solid electrolyte layer is formed in the above embodiment, the solid electrolyte layer is manufactured by first impregnating with an aqueous solution of manganese nitrate in which lead dioxide is not suspended and thermally decomposing.

【0022】また、比較例は、実施例において、二酸化
鉛を懸濁しない硝酸マンガン水溶液を用いて処理した
後、酢酸鉛水溶液(1mol/l)に過流酸アンモン(2mo
l/l)を混合した水溶液に浸漬しその後乾燥する工程を
6回繰り返して二酸化鉛を析出して固体電解質層を形成
する以外は、同一の方法で製造したものとする。
In the comparative example, after treating with an aqueous solution of manganese nitrate in which lead dioxide was not suspended, an aqueous solution of ammonium acetate (2 mol / l) was added to an aqueous solution of lead acetate (1 mol / l).
1 / l) is repeated. The process of immersing in a mixed aqueous solution and then drying is repeated six times to deposit lead dioxide to form a solid electrolyte layer.

【0023】そして従来例は、固体電解質層を二酸化鉛
を懸濁しない硝酸マンガン水溶液のみを用いて製造する
以外は、実施例1と同一条件とする。なお、硝酸マンガ
ン水溶液の濃度は、30%、40%、60%、70%及
び80%の5種類とし、低い濃度から順次高濃度の液を
含浸して、各々熱分解する。
In the conventional example, the same conditions as in Example 1 are used except that the solid electrolyte layer is manufactured using only a manganese nitrate aqueous solution without suspending lead dioxide. The concentration of the manganese nitrate aqueous solution is set to five types of 30%, 40%, 60%, 70% and 80%, and the solution is sequentially impregnated with a solution having a high concentration from a low concentration and thermally decomposed.

【0024】図1から明らかな通り、実施例のESRは
従来例のそれに比べて著しく低くなっていることは明ら
かである。例えば、周波数 106Hzにおいて、実施例
が0.15Ωで従来例が0.7Ωとなり、前者の方が後
者の3/14になっている。なお、比較例は0.11と
なり実施例よりも低い値になっている。
As is clear from FIG. 1, the ESR of the embodiment is clearly lower than that of the conventional example. For example, at a frequency of 10 6 Hz, the example is 0.15Ω and the conventional example is 0.7Ω, and the former is 3/14 of the latter. Note that the value of the comparative example is 0.11, which is lower than that of the example.

【0025】また、上記の実施例、比較例及び従来例に
ついて、初期特性と、ヒートサイクル後の特性と、プレ
ッシャークッカーテスト(以下PCTという)後の特性
とを求め表1に示した。
In addition, initial characteristics, characteristics after a heat cycle, and characteristics after a pressure cooker test (hereinafter, referred to as PCT) were determined for the above Examples, Comparative Examples and Conventional Examples, and are shown in Table 1.

【0026】ヒートサイクル温度−55℃〜125℃、
100サイクルの条件で行う。また、PCTは温度12
1℃、2気圧の雰囲気中に32時間放置して行う。な
お、各試料数は各々20ケとする。以下余白。
Heat cycle temperature -55 ° C to 125 ° C;
This is performed under the condition of 100 cycles. The PCT is at a temperature of 12
It is left for 32 hours in an atmosphere of 1 ° C. and 2 atm. The number of each sample is 20. Margin below.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかな通り、実施例は従来例に
比べてヒートサイクルやPCT後のtanδ や漏れ電流特
性が優れている。また、比較例に比べて初期特性及びヒ
ートサイクル、PCT後のtanδが優れている。
As is apparent from Table 1, the embodiment is superior to the conventional example in the tan δ and heat leakage characteristics after heat cycle and PCT. In addition, the initial characteristics, the heat cycle, and the tan δ after PCT are superior to those of the comparative example.

【0029】例えば、tanδ について、実施例はヒート
サイクル後に従来例の6/23、比較例の3/10そし
てPCT後に従来例の8/35、比較例4/11となっ
ている。また、漏れ電流についても、実施例は、従来例
に比べてヒートサイクル後に1/2、PCT後に2/3
となる。なお、実施例は比較例と比べて初期の tanδも
5/21と低くなっている。
For example, with respect to tan δ, the examples are 6/23 of the conventional example after the heat cycle, 3/10 of the comparative example, 8/35 of the conventional example after PCT, and 4/11 of the comparative example. Also, regarding the leakage current, the embodiment is 1 / after the heat cycle and / after PCT as compared with the conventional example.
Becomes Note that, in the example, the initial tan δ is also low at 5/21 compared to the comparative example.

【0030】[0030]

【発明の効果】以上の通り、請求項1の発明によれば、
二酸化鉛/二酸化マンガン=80〜90/20〜10の
比率からなる二酸化マンガンと二酸化鉛との混合物によ
り固体電解質層を形成しているため、固体電解質層の電
導度を高くでき、これによりESR等の周波数特性を改
善できるとともにtanδや漏れ電流特性を向上でき、
また、固体電解質層を陽極酸化皮膜から剥離し難くでき
るため、製造の際や使用中に固体電解質層が剥離してE
SRやtanδ、漏れ電流が増加するのを抑制でき、歩
留まりを増大できるとともに寿命を向上でき、全体とし
て特性を向上でき信頼性の高い固体電解コンデンサが得
られる。 また、請求項2の発明の製造方法によれば、焼
結体を硝酸マンガン溶液中に浸漬して熱分解した後、二
酸化鉛を懸濁した硝酸マンガン溶液中に浸漬し熱分解し
て固体電解質層を形成しているため、含浸性の良い硝酸
マンガン溶液により陽極酸化皮膜との密着面積の大きい
固体電解質層を形成できるとともに、二酸化マンガンと
二酸化鉛との混合物からなる部分を有する固体電解質層
を形成でき、これによりESR等の周波数特性を改善で
き、tanδや漏れ電流特性を向上できる固体電解コン
デンサが得られる。
As described above , according to the first aspect of the present invention,
Lead dioxide / manganese dioxide = 80-90 / 20-10
Of manganese dioxide and lead dioxide
Since the solid electrolyte layer is formed, the power of the solid electrolyte layer
Conductivity can be increased, thereby improving frequency characteristics such as ESR.
While improving tan δ and leakage current characteristics.
Also, the solid electrolyte layer can be hardly peeled off from the anodic oxide film.
Therefore, the solid electrolyte layer peels off during production or during use, and E
The increase in SR, tan δ, and leakage current can be suppressed.
It is possible to increase the yield and improve the life,
Characteristics can be improved and a solid electrolytic capacitor with high reliability can be obtained.
Can be Further, according to the manufacturing method of the invention of claim 2,
After immersing the aggregate in a manganese nitrate solution to thermally decompose,
Immersed in manganese nitrate solution with suspended lead oxide and thermally decomposed
Nitric acid with good impregnation
Large contact area with anodic oxide film by manganese solution
A solid electrolyte layer can be formed, and manganese dioxide and
Solid electrolyte layer having a portion composed of a mixture with lead dioxide
To improve the frequency characteristics such as ESR.
Solid electrolytic capacitor that can improve tan δ and leakage current characteristics
A densa is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】等価直列抵抗の周波数特性を示す。FIG. 1 shows a frequency characteristic of an equivalent series resistance.

【図2】MnO2とPbO2との含有比率に対する固体電
解質層の電導度のグラフを示す。
FIG. 2 shows a graph of the conductivity of the solid electrolyte layer with respect to the content ratio of MnO 2 and PbO 2 .

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 弁作用金属の微粉末からなる焼結体に陽
極酸化皮膜、固体電解質層及び陰極層を順次設けた固体
電解コンデンサにおいて、二酸化鉛/二酸化マンガン=
80〜90/20〜10の比率からなる二酸化マンガン
と二酸化鉛との混合物からなる固体電解質層を有するこ
とを特徴とする固体電解コンデンサ。
1. A solid electrolytic capacitor in which an anodic oxide film, a solid electrolyte layer and a cathode layer are sequentially provided on a sintered body made of fine powder of a valve action metal, wherein lead dioxide / manganese dioxide =
A solid electrolytic capacitor comprising a solid electrolyte layer made of a mixture of manganese dioxide and lead dioxide in a ratio of 80 to 90/20 to 10 .
【請求項2】 弁作用金属の微粉末からなる焼結体に陽
極酸化皮膜、固体電解質層及び陰極層を順次形成する固
体電解コンデンサの製造方法において、陽極酸化皮膜を
形成後の焼結体を、硝酸マンガン溶液中に浸漬して液を
含浸し熱分解した後、二酸化鉛を懸濁した硝酸マンガン
溶液中に浸漬して液を含浸し熱分解して固体電解質層を
形成することを特徴とする固体電解コンデンサの製造方
法。
2. A method for manufacturing a solid electrolytic capacitor in which an anodic oxide film, a solid electrolyte layer, and a cathode layer are sequentially formed on a sintered body made of fine powder of a valve action metal, wherein the sintered body after forming the anodic oxide film is Immersed in manganese nitrate solution
A method for producing a solid electrolytic capacitor, comprising: immersing in a manganese nitrate solution in which lead dioxide is suspended, impregnating the solution, and thermally decomposing to form a solid electrolyte layer.
JP3331142A 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same Expired - Lifetime JP2773499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331142A JP2773499B2 (en) 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331142A JP2773499B2 (en) 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05144678A JPH05144678A (en) 1993-06-11
JP2773499B2 true JP2773499B2 (en) 1998-07-09

Family

ID=18240344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331142A Expired - Lifetime JP2773499B2 (en) 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2773499B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111153A (en) * 1973-02-26 1974-10-23
JPS63160221A (en) * 1986-12-24 1988-07-04 日本ケミコン株式会社 Aluminum solid electrolytic capacitor
JPS63272024A (en) * 1987-04-30 1988-11-09 Nippon Chemicon Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH05144678A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
JPH10242004A (en) Capacitor
JP3416050B2 (en) Electrolytic capacitor and method of manufacturing the same
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JP2637207B2 (en) Solid electrolytic capacitors
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP3546661B2 (en) Capacitor and manufacturing method thereof
JPH05275293A (en) Manufacture of solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JP2731243B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09213575A (en) Production of solid electrolytic capacitor
JPH09246107A (en) Method for manufacturing solid electrolytic capacitor
KR970001382B1 (en) Impregnating solution for solid tantalium electrolytic capacitor
JPH11307396A (en) Manufacture of solid electrolytic capacitor
JP2000040642A (en) Manufacture of solid electrolytic capacitor
JP2596996B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000252169A (en) Manufacture of solid electrolytic capacitor
JP2003297687A (en) Method for producing solid electrolytic capacitor
JP2946591B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06188158A (en) Capacitor
JP2002249865A (en) Method for forming titanium oxide coating film and titanium electrolyte capacitor
JP2000040643A (en) Solid electrolytic capacitor and its manufacture
JPH09246104A (en) Manufacture of solid electrolytic capacitor