JPH09246104A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH09246104A
JPH09246104A JP8047180A JP4718096A JPH09246104A JP H09246104 A JPH09246104 A JP H09246104A JP 8047180 A JP8047180 A JP 8047180A JP 4718096 A JP4718096 A JP 4718096A JP H09246104 A JPH09246104 A JP H09246104A
Authority
JP
Japan
Prior art keywords
electrode body
conductive polymer
layer
oxide film
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8047180A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
博司 島田
Chiharu Hayashi
千春 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8047180A priority Critical patent/JPH09246104A/en
Publication of JPH09246104A publication Critical patent/JPH09246104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid electrolytic capacitor which enable obtaining uniformity, compactness and excellent adhesion in the case where a conductive polyelectrolyte layer is formed on a dielectric oxide film. SOLUTION: A dielectric oxide film 12 is formed on the surface of an electrode body 11, and subsequently, the electrode body 11 is immersed into a metal oxide semiconductor forming solution having a density lower than 30wt.%, thereby forming a metal oxide semiconductor layer 13 as a conductive precoated layer on the dielectric oxide film. Such forming processing is performed twice or less at most. Then, a first conductive polyelectrolyte layer 14 is formed by chemical oxidation polymerization and a second conductive polyelectrolyte layer 15 is formed on the first conductive polyelectrolyte layer 14 by electrolytic oxidation polymerization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性高分子電解
質層を固体電解質とする固体電解コンデンサの製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a solid electrolytic capacitor having a conductive polymer electrolyte layer as a solid electrolyte.

【0002】[0002]

【従来の技術】近年、電子機器の電源回路の高周波化に
伴い、すべての電子部品に対して優れた高周波特性(イ
ンピーダンス特性)が求められている。固体電解コンデ
ンサにおいても例外ではなく、これらを実現するため
に、陽極の表面状態、酸化皮膜の形成方法、電解質層の
改善、陰極の表面状態、コンデンサ素子の構造など、あ
らゆる角度から改善、検討がなされている。
2. Description of the Related Art In recent years, with the increase in frequency of power supply circuits for electronic equipment, excellent electronic characteristics (impedance characteristics) are required for all electronic components. In order to achieve these, solid electrolytic capacitors are no exception, and in order to achieve these, improvements and studies from all angles, such as the surface condition of the anode, the method of forming the oxide film, the improvement of the electrolyte layer, the surface condition of the cathode, the structure of the capacitor element, etc. Has been done.

【0003】陽極材料としてアルミニウムやタンタルを
用い、かつ電解質として無機の固体電解質である二酸化
マンガンや二酸化鉛を用いた固体電解コンデンサは、図
9(a),(b)に示すように、そのほとんどは製造工
法上の制約から、内部端子1を備え、かつ微粉末を焼結
してなる陽極体2または内部端子3を備え、かつ粗面化
により実質の表面積を大きくした陽極箔あるいは陽極板
4に、熱分解反応を利用して固体電解質5を焼き付け形
成し、その後、カーボン、導電性接着剤などにより陰極
層6を順次形成する構造を採用している。これらの固体
電解コンデンサは、その電解質の特徴から、電解液を用
いるアルミ電解コンデンサに比べて温度依存性が小さ
く、高周波領域でのレジスタンスが低いという利点を有
しているが、その反面、耐電圧が低く、かつ生産工法の
制約から生産性の面でやや不利であるという面も抱えて
いる。
As shown in FIGS. 9 (a) and 9 (b), most solid electrolytic capacitors using aluminum or tantalum as an anode material and manganese dioxide or lead dioxide which is an inorganic solid electrolyte as an electrolyte are mostly used. The anode foil or the anode plate 4 having an internal terminal 1 and an anode body 2 or an internal terminal 3 formed by sintering fine powder, and having a substantial surface area increased by roughening due to restrictions in the manufacturing method. In addition, a structure is adopted in which the solid electrolyte 5 is baked and formed by utilizing a thermal decomposition reaction, and then the cathode layer 6 is sequentially formed by carbon, a conductive adhesive, or the like. Due to the characteristics of the electrolyte, these solid electrolytic capacitors have the advantages of less temperature dependence and lower resistance in the high-frequency region than aluminum electrolytic capacitors that use an electrolytic solution, but on the other hand, they have a high withstand voltage. Is low, and it is also disadvantageous in terms of productivity due to the limitations of the production method.

【0004】さらにこの固体電解質5の低レジスタンス
化を追求したものとして、電荷移動錯体であるTCNQ
塩を利用した有機半導体コンデンサや、複素環式化合物
であるピロール、チオフェン、フランなどを重合して導
電化してなる導電性高分子を利用した機能性高分子コン
デンサが実用化されている。
In order to further reduce the resistance of the solid electrolyte 5, a charge transfer complex, TCNQ
Organic semiconductor capacitors using salts and functional polymer capacitors using conductive polymers obtained by polymerizing heterocyclic compounds such as pyrrole, thiophene, and furan to make them conductive have been put to practical use.

【0005】この中でも、導電性高分子は、その固有抵
抗が著しく低いという特徴を有するため、コンデンサの
低レジスタンス化のためには有力な固体電解質である
が、多孔質弁金属よりなる電極体の表面の誘電体酸化皮
膜に対し、均一、かつ緻密で密着性に優れた導電性高分
子電解質層を被覆形成するには、極めて大きな制約を抱
えているものである。
Among these, the conductive polymer is a solid electrolyte which is effective for lowering the resistance of the capacitor because it has a characteristic that its specific resistance is remarkably low. However, the conductive polymer has an electrode body made of a porous valve metal. In order to coat and form a conductive polymer electrolyte layer that is uniform, dense, and has excellent adhesiveness on the surface of the dielectric oxide film, there are extremely large restrictions.

【0006】また導電性高分子電解質層を、多孔質弁金
属よりなる電極体の表面に形成した誘電体酸化皮膜上に
被覆形成する場合、一般的には電解酸化重合により形成
するようにしており、そしてこの電解酸化重合の場合
は、選ばれた条件下で極めて緻密で、かつ電導性に優れ
たものを得ることができるが、誘電体酸化皮膜を構成す
る細孔の内部にまで導電性高分子電解質層を形成するこ
とは極めて困難であり、そのため、特公平4−7485
3号公報には、化学酸化重合により導電性高分子電解質
層を細孔の内部にまで形成した後、これを陽極として電
解酸化重合を行う方法が開示されている。
When the conductive polymer electrolyte layer is formed by coating on the dielectric oxide film formed on the surface of the electrode body made of a porous valve metal, it is generally formed by electrolytic oxidation polymerization. In the case of this electrolytic oxidative polymerization, it is possible to obtain an extremely dense and excellent conductive material under the selected conditions, but it is possible to obtain high conductivity even inside the pores that constitute the dielectric oxide film. It is extremely difficult to form a molecular electrolyte layer, and therefore, Japanese Patent Publication No.
Japanese Patent Publication No. 3 discloses a method in which a conductive polymer electrolyte layer is formed even inside pores by chemical oxidative polymerization and then electrolytic oxidative polymerization is performed using this as an anode.

【0007】[0007]

【発明が解決しようとする課題】化学酸化重合は、誘電
体酸化皮膜を構成する細孔の内部にまで導電性高分子電
解質層を形成するのに有利であるという特徴を有するこ
とから、上記特公平4−74853号公報においては、
化学酸化重合を電解酸化重合に先立って行うことによ
り、電解酸化重合の欠点を補うようにしているが、細孔
部からなる誘電体酸化皮膜表面は、浸漬する液体の表面
張力と誘電体酸化皮膜表面の濡れ性により大きな影響を
受けるため、細孔内部まで均一、かつ緻密で密着性に優
れた導電性高分子電解質層を被覆形成することは極めて
困難を有するものである。このため、複素環式化合物お
よびその誘導体より得られる導電性高分子電解質層は、
形成方法により多少の差異はあるが、本来密着性に乏し
く、かつ密度も形成条件に大きく左右されるもので、こ
のことが電解質そのものの低い固有抵抗とは裏腹に、実
際に得られる固体電解コンデンサの電気特性のロットバ
ラツキの一因となっていた。
The chemical oxidative polymerization has the feature that it is advantageous for forming the conductive polymer electrolyte layer even inside the pores constituting the dielectric oxide film. In Japanese Patent Publication No. 4-74853,
The chemical oxidative polymerization is carried out prior to the electrolytic oxidative polymerization to make up for the drawbacks of the electrolytic oxidative polymerization. However, the surface of the dielectric oxide film consisting of pores is the surface tension of the liquid to be immersed and the dielectric oxide film. Since the wettability of the surface is greatly affected, it is extremely difficult to form a conductive polymer electrolyte layer that is uniform, dense, and has excellent adhesiveness even inside the pores. Therefore, the conductive polymer electrolyte layer obtained from the heterocyclic compound and its derivative is
Although there are some differences depending on the forming method, the adhesiveness is inherently poor and the density greatly depends on the forming conditions. Contrary to the low specific resistance of the electrolyte itself, this is the solid electrolytic capacitor actually obtained. Was one of the causes of lot variation in the electrical characteristics.

【0008】本発明は上記従来の課題を解決するために
なされたものであり、誘電体酸化皮膜上へ導電性高分子
電解質層を形成する場合、均一、かつ緻密で密着性に優
れたものが得られる固体電解コンデンサの製造方法を提
供することを目的とするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and when forming a conductive polymer electrolyte layer on a dielectric oxide film, one which is uniform, dense and excellent in adhesion is desired. It is an object of the present invention to provide a method for manufacturing the obtained solid electrolytic capacitor.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の固体電解コンデンサの製造方法は、多孔質弁
金属よりなる電極体の表面に誘電体酸化皮膜を形成し、
次いで、30重量%より低い濃度の金属酸化物半導体層
形成用の溶液に前記電極体を浸漬することにより誘電体
酸化皮膜上に導電性プレコート層としての金属酸化物半
導体層を形成するという形成処理を多くとも2回以内施
し、その後、複素環式化合物およびその誘導体を含む溶
液に前記電極体を浸漬する工程と、複素環式化合物およ
びその誘導体の酸化電位より高い電極電位を有する酸化
剤、ドーパントを含む溶液に前記電極体を浸漬する工程
を複数回交互に繰り返して化学酸化重合により第1の導
電性高分子電解質層を形成し、さらにこの第1の導電性
高分子電解質層の上に、電解酸化重合により第2の導電
性高分子電解質層を形成するようにしたもので、この製
造方法によれば、誘電体酸化皮膜上への導電性高分子電
解質の形成も、均一、かつ緻密で密着性に優れたものが
得られるものである。
In order to achieve the above object, a method for producing a solid electrolytic capacitor of the present invention comprises forming a dielectric oxide film on the surface of an electrode body made of a porous valve metal,
Then, a forming treatment of forming a metal oxide semiconductor layer as a conductive precoat layer on the dielectric oxide film by immersing the electrode body in a solution for forming a metal oxide semiconductor layer having a concentration lower than 30% by weight. At most twice, and then immersing the electrode body in a solution containing a heterocyclic compound and its derivative, and an oxidizing agent and a dopant having an electrode potential higher than that of the heterocyclic compound and its derivative. The step of immersing the electrode body in a solution containing a is alternately repeated a plurality of times to form a first conductive polymer electrolyte layer by chemical oxidative polymerization, and further on the first conductive polymer electrolyte layer, The second conductive polymer electrolyte layer is formed by electrolytic oxidation polymerization. According to this manufacturing method, the conductive polymer electrolyte can be formed evenly on the dielectric oxide film. And in which is obtained has excellent dense and adhesion.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、多孔質弁金属よりなる電極体の表面に誘電体酸化皮
膜を形成し、次いで30重量%より低い濃度の金属酸化
物半導体層形成用の溶液に前記電極体を浸漬することに
より誘電体酸化皮膜上に導電性プレコート層としての金
属酸化物半導体層を形成するという形成処理を多くとも
2回以内施し、その後、複素環式化合物およびその誘導
体を含む溶液に前記電極体を浸漬する工程と、複素環式
化合物およびその誘導体の酸化電位より高い電極電位を
有する酸化剤、ドーパントを含む溶液に前記電極体を浸
漬する工程を複数回交互に繰り返して化学酸化重合によ
り第1の導電性高分子電解質層を形成し、さらにこの第
1の導電性高分子電解質層の上に、電解酸化重合により
第2の導電性高分子電解質層を形成するようにしたもの
であり、この製造方法によれば、誘電体酸化皮膜上に固
体電解質である第1の導電性高分子電解質層を化学酸化
重合により形成するに先立って、表面に誘電体酸化皮膜
を形成した電極体を30重量%より低い濃度の金属酸化
物半導体形成用の溶液に浸漬することにより誘電体酸化
皮膜上に導電性プレコート層としての金属酸化物半導体
層を形成するという形成処理を多くとも2回以内施し
て、誘電体酸化皮膜上に導電性プレコート層としての金
属酸化物半導体層を形成するようにしたもので、この金
属酸化物半導体層はミクロ的に見れば細かな結晶粒子が
集積したものであるが、マクロ的には多孔質弁金属より
なる電極体の表面に形成された誘電体酸化皮膜に対し、
均一、かつ緻密で、密着性に優れた接続界面を形成する
ことになるため、続いて複素環式化合物およびその誘導
体を含む溶液に電極体を浸漬する工程と、複素環式化合
物およびその誘導体より高い電極電位を有する酸化剤、
ドーパントを含む溶液に電極体を浸漬する工程を複数回
交互に繰り返して化学酸化重合を行った場合、複素環式
化合物およびその誘導体は、金属酸化物半導体層を構成
する細かな結晶粒子が集積した凹凸部によって移動が阻
止されることになり、これにより、複素環式化合物およ
びその誘導体は極めて速やかに電極体の表面に形成され
た誘電体酸化皮膜上に第1の導電性高分子電解質層を形
成することができるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises forming a dielectric oxide film on the surface of an electrode body made of a porous valve metal, and then forming a metal oxide semiconductor at a concentration lower than 30% by weight. The formation treatment of forming the metal oxide semiconductor layer as the conductive precoat layer on the dielectric oxide film by immersing the electrode body in the layer forming solution is performed at most twice, and then the heterocyclic A plurality of steps of immersing the electrode body in a solution containing a compound and its derivative, and immersing the electrode body in a solution containing an oxidizing agent and a dopant having an electrode potential higher than the oxidation potential of the heterocyclic compound and its derivative The first conductive polymer electrolyte layer is formed by chemical oxidative polymerization by repeating alternately alternately, and the second conductive polymer is formed on the first conductive polymer electrolyte layer by electrolytic oxidative polymerization. The degrading layer is formed, and according to this manufacturing method, prior to forming the first conductive polymer electrolyte layer, which is a solid electrolyte, on the dielectric oxide film by chemical oxidative polymerization, A metal oxide semiconductor layer as a conductive precoat layer is formed on the dielectric oxide film by immersing the electrode body having the dielectric oxide film formed on the surface thereof in a solution for forming a metal oxide semiconductor having a concentration lower than 30% by weight. The metal oxide semiconductor layer as a conductive pre-coat layer is formed on the dielectric oxide film by performing the forming process of forming the metal oxide semiconductor layer at most twice. If you look at it, it is a collection of fine crystal particles, but macroscopically, for the dielectric oxide film formed on the surface of the electrode body made of porous valve metal,
In order to form a connection interface that is uniform, dense, and has excellent adhesiveness, the step of subsequently immersing the electrode body in a solution containing the heterocyclic compound and its derivative, and the heterocyclic compound and its derivative An oxidizer with a high electrode potential,
When the chemical oxidative polymerization was performed by alternately repeating the step of immersing the electrode body in the solution containing the dopant a plurality of times, the heterocyclic compound and its derivative were accumulated as fine crystal particles constituting the metal oxide semiconductor layer. The uneven portions prevent the heterocyclic compound and its derivative from moving very quickly to form the first conductive polymer electrolyte layer on the dielectric oxide film formed on the surface of the electrode body. It can be formed.

【0011】このように導電性プレコート層としての金
属酸化物半導体層は、その細かな結晶粒子が集積した凹
凸部によるアンカー効果により、第1の導電性高分子電
解質層と密着性に優れた良好な接続界面を形成すること
になり、さらにこの第1の導電性高分子電解質層の上に
は、電解酸化重合により第2の導電性高分子電解質層を
形成しているため、この第2の導電性高分子電解質層は
極めて緻密で、かつ電導性に優れたものを得ることがで
き、これにより得られる固体電解コンデンサの電気特性
および信頼性は極めて安定で優れたものとなるものであ
る。
As described above, the metal oxide semiconductor layer as the conductive precoat layer has excellent adhesion to the first conductive polymer electrolyte layer due to the anchoring effect due to the irregularities in which the fine crystal particles are accumulated. Since the second conductive polymer electrolyte layer is formed on the first conductive polymer electrolyte layer by electrolytic oxidation polymerization, the second conductive polymer electrolyte layer is formed on the second conductive polymer electrolyte layer. It is possible to obtain a conductive polymer electrolyte layer that is extremely dense and has excellent electrical conductivity, and the resulting solid electrolytic capacitor will have extremely stable and excellent electrical characteristics and reliability.

【0012】請求項2に記載の発明は、30重量%より
低い濃度の金属酸化物半導体層形成用の溶液に1重量%
以下の非イオン界面活性剤を添加したものであり、この
製造方法によれば、金属酸化物半導体層形成用の溶液に
1重量%以下の非イオン界面活性剤を添加しているた
め、溶液の安定性の面で優れたものが得られるととも
に、基本的な電気性能(静電容量、損失角の正接、漏れ
電流)もさらに向上させることができるものである。
The invention according to claim 2 provides a solution for forming a metal oxide semiconductor layer having a concentration of less than 30% by weight, which is 1% by weight.
The following nonionic surfactant is added, and according to this production method, 1% by weight or less of the nonionic surfactant is added to the solution for forming the metal oxide semiconductor layer. In addition to providing excellent stability, basic electric performance (capacitance, loss tangent, leakage current) can be further improved.

【0013】以下、本発明の実施の形態について添付図
面にもとづいて説明する。図1、図2は本発明の固体電
解コンデンサの模式断面図を示したもので、11は陽極
となる多孔質弁金属なりなる電極体で、この電極体11
の表面には、陽極酸化などの手段により誘電体酸化皮膜
12を形成し、そしてこの誘電体酸化皮膜12の上には
極薄膜の導電性プレコート層としての細かな結晶粒子が
集積した金属酸化物半導体層13を形成した後、複素環
式化合物およびその誘導体の化学酸化重合により第1の
導電性高分子電解質層14を形成し、さらにこの第1の
導電性高分子電解質層14の上には電解酸化重合により
第2の導電性高分子電解質層15を形成している。そし
てこの後、第2の導電性高分子電解質層15の上に、コ
ロイダルグラファイト16、銀塗料17を順次塗布し、
その後、所定の外装18を施して固体電解コンデンサを
構成している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 are schematic cross-sectional views of the solid electrolytic capacitor of the present invention, in which 11 is an electrode body made of a porous valve metal serving as an anode.
A dielectric oxide film 12 is formed on the surface of the metal oxide film by means of anodic oxidation or the like, and a metal oxide in which fine crystal particles as an ultrathin conductive precoat layer are accumulated on the dielectric oxide film 12. After forming the semiconductor layer 13, the first conductive polymer electrolyte layer 14 is formed by chemical oxidative polymerization of the heterocyclic compound and its derivative, and further on the first conductive polymer electrolyte layer 14. The second conductive polymer electrolyte layer 15 is formed by electrolytic oxidation polymerization. Then, after this, colloidal graphite 16 and silver paint 17 are sequentially applied on the second conductive polymer electrolyte layer 15,
Then, a predetermined exterior 18 is applied to form a solid electrolytic capacitor.

【0014】次に本発明の具体的な実施の形態1,2,
3と、比較例1,2について説明する。
Next, specific embodiments 1, 2 of the present invention will be described.
3 and Comparative Examples 1 and 2 will be described.

【0015】(実施の形態1)図3に示すように、厚み
0.9mm、幅2.0mm、長さ1.3mmのタンタル粉末を
加圧成形、真空焼結して得られた陽極となる電極体21
の表面に、濃度が5重量%の燐酸水溶液中で30Vの陽
極酸化を行って誘電体酸化皮膜22を形成し、その後、
この電極体21を濃度が25重量%の硝酸マンガン水溶
液に浸漬し、250℃で熱分解を行うことにより誘電体
酸化皮膜22上に導電性プレコート層としての金属酸化
物半導体層23を形成した。この場合、熱分解作業を1
回行った後、修復化成を施したプレコート処理品、熱分
解作業を2回行った後、修復化成を施したプレコート処
理品、熱分解作業を3回行った後、修復化成を施したプ
レコート処理品、熱分解作業を4回行った後、修復化成
を施したプレコート処理品の4種類のプレコート処理品
を得た。
(Embodiment 1) As shown in FIG. 3, an anode is obtained by pressure molding and vacuum sintering tantalum powder having a thickness of 0.9 mm, a width of 2.0 mm and a length of 1.3 mm. Electrode body 21
A 30 V anodic oxidation is performed on the surface of the phosphor in an aqueous solution of phosphoric acid having a concentration of 5% by weight to form a dielectric oxide film 22.
The electrode body 21 was immersed in a 25 wt% manganese nitrate aqueous solution and thermally decomposed at 250 ° C. to form a metal oxide semiconductor layer 23 as a conductive precoat layer on the dielectric oxide film 22. In this case, 1 thermal decomposition work
Pre-coating product that has been subjected to repair formation after being subjected to heat treatment, heat-decomposition work has been performed twice, pre-coating product that has been subjected to repair formation, and heat-decomposition work has been performed three times and then pre-coating treatment to have been subjected to repair formation After the product and the thermal decomposition work were performed four times, four types of precoat-treated products were obtained, that is, a precoat-treated product subjected to restoration chemical conversion.

【0016】その後、複素環式化合物およびその誘導体
であるピロールモノマー0.7モル/lと界面活性剤よ
りなる溶液に前記プレコート処理品を浸漬する工程と、
複素環式化合物およびその誘導体の酸化電位より高い電
極電位を有する酸化剤であるペルオキソ2硫酸アンモニ
ウム0.1モル/lと、ドーパントであるナフタレンス
ルホン酸0.05モル/lを含む溶液に前記プレコート
処理品を浸漬する工程を10回交互に繰り返して化学酸
化重合により第1の導電性高分子電解質層24を形成
し、次いで複素環式化合物およびその誘導体であるピロ
ールモノマー0.25モル/lとドーパントであるナフ
タレンスルホン酸0.05モル/lを含む溶液中で電解
酸化重合を行って第2の導電性高分子電解質層25を形
成した。そしてこの後は、第2の導電性高分子電解質層
25の上に、コロイダルグラファイト26、銀塗料27
を順次塗布し、その後、所定の外装を施して固体電解コ
ンデンサを構成した。
Then, a step of immersing the precoat-treated product in a solution containing 0.7 mol / l of a heterocyclic compound and a derivative thereof, a pyrrole monomer, and a surfactant,
The precoat treatment is performed on a solution containing 0.1 mol / l of ammonium peroxodisulfate, which is an oxidant having an electrode potential higher than that of a heterocyclic compound and its derivative, and 0.05 mol / l of naphthalenesulfonic acid, which is a dopant. The step of immersing the product is alternately repeated 10 times to form the first conductive polymer electrolyte layer 24 by chemical oxidative polymerization, and then 0.25 mol / l of a heterocyclic compound and its derivative, a pyrrole monomer, and a dopant. The second conductive polymer electrolyte layer 25 was formed by performing electrolytic oxidative polymerization in a solution containing 0.05 mol / l of naphthalenesulfonic acid. After that, colloidal graphite 26 and silver paint 27 are formed on the second conductive polymer electrolyte layer 25.
Was sequentially applied, and then a predetermined exterior was applied to form a solid electrolytic capacitor.

【0017】(実施の形態2)図3に示すように、厚み
0.9mm、幅2.0mm、長さ1.3mmのタンタル粉末を
加圧成形、真空焼結して得られた陽極となる電極体21
の表面に、濃度が5重量%の燐酸水溶液中で30Vの陽
極酸化を行って誘電体酸化皮膜22を形成し、その後、
この電極体21を濃度が20重量%の硝酸マンガン水溶
液、濃度が25重量%の硝酸マンガン水溶液、濃度が3
0重量%の硝酸マンガン水溶液、濃度が35重量%の硝
酸マンガン水溶液のそれぞれに浸漬し、250℃で熱分
解をそれぞれ1回行った後、修復化成を施すことにより
誘電体酸化皮膜22上に導電性プレコート層としての金
属酸化物半導体層23を形成した4種類のプレコート処
理品を得た。
(Embodiment 2) As shown in FIG. 3, a tantalum powder having a thickness of 0.9 mm, a width of 2.0 mm and a length of 1.3 mm is pressure-molded and vacuum-sintered to obtain an anode. Electrode body 21
A 30 V anodic oxidation is performed on the surface of the phosphor in an aqueous solution of phosphoric acid having a concentration of 5% by weight to form a dielectric oxide film 22.
This electrode body 21 was prepared by using a manganese nitrate aqueous solution having a concentration of 20% by weight, a manganese nitrate aqueous solution having a concentration of 25% by weight, and a concentration of 3%.
The dielectric oxide film 22 is electrically conductive on the dielectric oxide film 22 by immersing it in a 0 wt% manganese nitrate aqueous solution and a 35 wt% manganese nitrate aqueous solution, thermally decomposing once at 250 ° C. As a result, four types of precoat-treated products having the metal oxide semiconductor layer 23 as a conductive precoat layer were obtained.

【0018】その後、複素環式化合物およびその誘導体
であるピロールモノマー0.7モル/lと界面活性剤よ
りなる溶液に前記プレコート処理品を浸漬する工程と、
複素環式化合物およびその誘導体の酸化電位より高い電
極電位を有する酸化剤であるペルオキソ2硫酸アンモニ
ウム0.1モル/lと、ドーパントであるナフタレンス
ルホン酸0.05モル/lを含む溶液に前記プレコート
処理品を浸漬する工程を10回交互に繰り返して化学酸
化重合により第1の導電性高分子電解質層24を形成
し、次いで複素環式化合物およびその誘導体であるピロ
ールモノマー0.25モル/lとドーパントであるナフ
タレンスルホン酸0.05モル/lを含む溶液中で電解
酸化重合を行って第2の導電性高分子電解質層25を形
成した。そしてこの後は、第2の導電性高分子電解質層
25の上に、コロイダルグラファイト26、銀塗料27
を順次塗布し、その後、所定の外装を施して固体電解コ
ンデンサを構成した。
Thereafter, a step of immersing the precoat-treated product in a solution containing 0.7 mol / l of a pyrrole monomer which is a heterocyclic compound and its derivative and a surfactant,
The precoat treatment is performed on a solution containing 0.1 mol / l of ammonium peroxodisulfate, which is an oxidant having an electrode potential higher than that of a heterocyclic compound and its derivative, and 0.05 mol / l of naphthalenesulfonic acid, which is a dopant. The step of immersing the product is alternately repeated 10 times to form the first conductive polymer electrolyte layer 24 by chemical oxidative polymerization, and then 0.25 mol / l of a heterocyclic compound and its derivative, a pyrrole monomer, and a dopant. The second conductive polymer electrolyte layer 25 was formed by performing electrolytic oxidative polymerization in a solution containing 0.05 mol / l of naphthalenesulfonic acid. After that, colloidal graphite 26 and silver paint 27 are formed on the second conductive polymer electrolyte layer 25.
Was sequentially applied, and then a predetermined exterior was applied to form a solid electrolytic capacitor.

【0019】(実施の形態3)図3に示すように、厚み
0.9mm、幅2.0mm、長さ1.3mmのタンタル粉末を
加圧成形、真空焼結して得られた陽極となる電極体21
の表面に、濃度が5重量%の燐酸水溶液中で30Vの陽
極酸化を行って誘電体酸化皮膜22を形成し、その後、
低発泡性のポリオキシエチレンアルキルエーテル系の非
イオン界面活性剤を0.01重量%、0.05重量%、
0.1重量%、0.5重量%、1重量%添加した濃度が
25重量%の硝酸マンガン水溶液のそれぞれに前記電極
体21を浸漬し、250℃で熱分解をそれぞれ1回行っ
た後、修復化成を施すことにより誘電体酸化皮膜22上
に導電性プレコート層としての金属酸化物半導体層23
を形成した5種類のプレコート処理品を得た。
(Embodiment 3) As shown in FIG. 3, an anode is obtained by pressure molding and vacuum sintering tantalum powder having a thickness of 0.9 mm, a width of 2.0 mm and a length of 1.3 mm. Electrode body 21
A 30 V anodic oxidation is performed on the surface of the phosphor in an aqueous solution of phosphoric acid having a concentration of 5% by weight to form a dielectric oxide film 22.
Low-foaming polyoxyethylene alkyl ether-based nonionic surfactants of 0.01% by weight, 0.05% by weight,
After the electrode body 21 was immersed in each of the manganese nitrate aqueous solutions having a concentration of 0.1% by weight, 0.5% by weight and 1% by weight added thereto, the concentration was 25% by weight, and thermal decomposition was performed once at 250 ° C., respectively. A metal oxide semiconductor layer 23 as a conductive precoat layer is formed on the dielectric oxide film 22 by performing a repair formation.
Thus, 5 types of precoat-treated products were obtained.

【0020】その後、複素環式化合物およびその誘導体
であるピロールモノマー0.7モル/lと界面活性剤よ
りなる溶液に前記プレコート処理品を浸漬する工程と、
複素環式化合物およびその誘導体の酸化電位より高い電
極電位を有する酸化剤であるペルオキソ2硫酸アンモニ
ウム0.1モル/lと、ドーパントであるナフタレンス
ルホン酸0.05モル/lを含む溶液に前記プレコート
処理品を浸漬する工程を10回交互に繰り返して化学酸
化重合により第1の導電性高分子電解質層24を形成
し、次いで複素環式化合物およびその誘導体であるピロ
ールモノマー0.25モル/lとドーパントであるナフ
タレンスルホン酸0.05モル/lを含む溶液中で電解
酸化重合を行って第2の導電性高分子電解質層25を形
成した。そしてこの後は、第2の導電性高分子電解質層
25の上に、コロイダルグラファイト26、銀塗料27
を順次塗布し、その後、所定の外装を施して固体電解コ
ンデンサを構成した。
Thereafter, a step of immersing the precoat-treated product in a solution containing 0.7 mol / l of a pyrrole monomer which is a heterocyclic compound and its derivative and a surfactant,
The precoat treatment is performed on a solution containing 0.1 mol / l of ammonium peroxodisulfate, which is an oxidant having an electrode potential higher than that of a heterocyclic compound and its derivative, and 0.05 mol / l of naphthalenesulfonic acid, which is a dopant. The step of immersing the product is alternately repeated 10 times to form the first conductive polymer electrolyte layer 24 by chemical oxidative polymerization, and then 0.25 mol / l of a heterocyclic compound and its derivative, a pyrrole monomer, and a dopant. The second conductive polymer electrolyte layer 25 was formed by performing electrolytic oxidative polymerization in a solution containing 0.05 mol / l of naphthalenesulfonic acid. After that, colloidal graphite 26 and silver paint 27 are formed on the second conductive polymer electrolyte layer 25.
Was sequentially applied, and then a predetermined exterior was applied to form a solid electrolytic capacitor.

【0021】(比較例1)図4に示すように、厚み0.
9mm、幅2.0mm、長さ1.3mmのタンタル粉末を加圧
成形、真空焼結して得られた陽極となる電極体31の表
面に、濃度が5重量%の燐酸水溶液中で30Vの陽極酸
化を行って誘電体酸化皮膜32を形成し、その後、この
電極体31を液温が250℃でかつ濃度が25重量%の
硝酸マンガン水溶液に浸漬する熱分解を4回行い、さら
にこの電極体31を液温が250℃で、かつ濃度が40
重量%の硝酸マンガン水溶液に浸漬する熱分解を4回行
うことにより、前記誘電体酸化皮膜32の上に二酸化マ
ンガンよりなる金属酸化物半導体層33を形成し、さら
にこの後、金属酸化物半導体層33の上に、コロイダル
グラファイト34、銀塗料35を順次塗布し、その後、
所定の外装を施して固体電解コンデンサを構成した。
Comparative Example 1 As shown in FIG.
On the surface of the electrode body 31 serving as an anode obtained by pressure-molding and vacuum-sintering tantalum powder having a width of 9 mm, a width of 2.0 mm, and a length of 1.3 mm, the concentration of 30 V in a phosphoric acid aqueous solution having a concentration of 5 wt% Anodization is performed to form the dielectric oxide film 32, and then the electrode body 31 is immersed in a manganese nitrate aqueous solution having a liquid temperature of 250 ° C. and a concentration of 25% by weight for four thermal decompositions. The body 31 has a liquid temperature of 250 ° C. and a concentration of 40
A metal oxide semiconductor layer 33 made of manganese dioxide is formed on the dielectric oxide film 32 by performing thermal decomposition four times by immersing in a weight% manganese nitrate aqueous solution, and thereafter, the metal oxide semiconductor layer 33 is formed. On 33, colloidal graphite 34 and silver paint 35 are sequentially applied, and then,
A solid electrolytic capacitor was formed by applying a predetermined exterior.

【0022】(比較例2)図5に示すように、厚み0.
9mm、幅2.0mm、長さ1.3mmのタンタル粉末を加圧
成形、真空焼結して得られた陽極となる電極体41の表
面に、濃度が5重量%の燐酸水溶液中で30Vの陽極酸
化を行って誘電体酸化皮膜42を形成し、その後、複素
環式化合物およびその誘導体であるピロールモノマー
0.7モル/lと界面活性剤よりなる溶液に前記電極体
41を浸漬する工程と、ペルオキソ2硫酸アンモニウム
0.1モル/lとドーパントであるナフタレンスルホン
酸0.05モル/lを含む溶液に前記電極体41を浸漬
する工程を10回繰り返して化学酸化重合により、前記
誘電体酸化皮膜42の上に導電性高分子電解質層43を
形成し、さらにこの後、導電性高分子電解質層43の上
に、コロイダルグラファイト44、銀塗料45を順次塗
布し、その後、所定の外装を施して固体電解コンデンサ
を構成した。
Comparative Example 2 As shown in FIG.
The surface of the electrode body 41 serving as an anode obtained by press-molding 9 mm, width 2.0 mm, and length 1.3 mm of tantalum powder, and vacuum-sintering the same was applied in a phosphoric acid aqueous solution having a concentration of 5% by weight at 30 V. A step of performing anodization to form a dielectric oxide film 42, and then immersing the electrode body 41 in a solution containing 0.7 mol / l of a pyrrole monomer which is a heterocyclic compound and its derivative and a surfactant; The step of immersing the electrode body 41 in a solution containing 0.1 mol / l of ammonium peroxodisulfate and 0.05 mol / l of a naphthalene sulfonic acid as a dopant is repeated 10 times to perform chemical oxidative polymerization to obtain the dielectric oxide film. A conductive polymer electrolyte layer 43 is formed on 42, and thereafter, colloidal graphite 44 and silver paint 45 are sequentially applied on the conductive polymer electrolyte layer 43, and thereafter, a predetermined amount is formed. To constitute a solid electrolytic capacitor subjected to instrumentation.

【0023】(表1)は本発明の実施の形態1と比較例
1,2により得られた固体電解コンデンサのそれぞれに
ついて基本的な電気性能(静電容量、損失角の正接、漏
れ電流)を測定した結果を示したものであり、また図6
はそれらのインピーダンスの周波数特性を示したもので
ある。
Table 1 shows the basic electrical performance (capacitance, loss tangent, leakage current) of each of the solid electrolytic capacitors obtained in Embodiment 1 of the present invention and Comparative Examples 1 and 2. The results of the measurement are shown in FIG.
Shows the frequency characteristics of those impedances.

【0024】[0024]

【表1】 [Table 1]

【0025】(表1)から明らかなように、本発明の実
施の形態1は比較例1と比べて基本的な電気性能におい
て優れており、また濃度が25重量%の硝酸マンガン水
溶液に電極体を浸漬し、250℃で熱分解を行う回数
は、2回以内の処理をした場合に、比較例2と比べて基
本的な電気性能において全く遜色がないことがわかる。
As is clear from (Table 1), the first embodiment of the present invention is superior in basic electric performance to the first comparative example, and the concentration of the electrode body in the manganese nitrate aqueous solution is 25% by weight. It can be seen that the basic electrical performance is comparable to that of Comparative Example 2 when the treatment is carried out within 2 times as to the number of times of immersing in and thermally decomposing at 250 ° C.

【0026】また図6から明らかなように、本発明の実
施の形態1における(1)(2)は比較例1,2に比べ
て導電性高分子固体電解質の低インダクタンスの効果が
明確となっているものである。
Further, as is apparent from FIG. 6, the effects of the low inductance of the conductive polymer solid electrolyte in (1) and (2) in the first embodiment of the present invention are clear as compared with Comparative Examples 1 and 2. It is what

【0027】(表2)は本発明の実施の形態2と比較例
1,2により得られた固体電解コンデンサのそれぞれに
ついて基本的な電気性能(静電容量、損失角の正接、漏
れ電流)を測定した結果を示したものであり、また図7
はそれらのインピーダンスの周波数特性を示したもので
ある。
Table 2 shows the basic electric performance (capacitance, loss tangent, leakage current) of each of the solid electrolytic capacitors obtained in Embodiment 2 of the present invention and Comparative Examples 1 and 2. The measurement results are shown in FIG.
Shows the frequency characteristics of those impedances.

【0028】[0028]

【表2】 [Table 2]

【0029】(表2)から明らかなように、本発明の実
施の形態2は比較例1と比べて基本的な電気性能におい
て優れており、また硝酸マンガン水溶液に電極体を浸漬
し、250℃で熱分解を1回行う場合における硝酸マン
ガン水溶液の濃度は、30重量%より低い濃度とした場
合に、比較例2と比べて基本的な電気性能において全く
遜色がないことがわかる。
As is clear from (Table 2), Embodiment 2 of the present invention is superior to Comparative Example 1 in basic electric performance, and the electrode body is immersed in an aqueous manganese nitrate solution at 250 ° C. It can be seen that, when the concentration of the manganese nitrate aqueous solution in the case of carrying out the thermal decomposition once in 1. is less than 30% by weight, the basic electric performance is not inferior to that of Comparative Example 2.

【0030】また図7から明らかなように、本発明の実
施の形態2における(20)(25)(30)は比較例
1,2に比べて導電性高分子固体電解質の低インダクタ
ンスの効果が明確となっているものである。
Further, as is apparent from FIG. 7, (20), (25) and (30) in the second embodiment of the present invention have the effect of lower inductance of the conductive polymer solid electrolyte as compared with Comparative Examples 1 and 2. It is clear.

【0031】(表3)は本発明の実施の形態3と比較例
1,2により得られた固体電解コンデンサのそれぞれに
ついて基本的な電気性能(静電容量、損失角の正接、漏
れ電流)を測定した結果を示したものであり、また図8
はそれらのインピーダンスの周波数特性を示したもので
ある。
Table 3 shows the basic electric performance (capacitance, loss tangent, leakage current) of each of the solid electrolytic capacitors obtained in the third embodiment of the present invention and the comparative examples 1 and 2. The measurement results are shown in FIG.
Shows the frequency characteristics of those impedances.

【0032】[0032]

【表3】 [Table 3]

【0033】(表3)から明らかなように、本発明の実
施の形態3は比較例1と比べて基本的な電気性能におい
て優れており、また濃度が25重量%の硝酸マンガン水
溶液に電極体を浸漬し、250℃で熱分解を1回行う場
合において硝酸マンガン水溶液に添加される低発泡性の
ポリオキシエチレンアルキルエーテル系の非イオン界面
活性剤の添加量は、1重量%以下の場合に、比較例2と
比べて基本的な電気性能において全く遜色がないことが
わかる。
As is clear from (Table 3), the third embodiment of the present invention is superior in basic electric performance to the first comparative example, and the manganese nitrate aqueous solution having a concentration of 25% by weight is used for the electrode body. Is added and the amount of the low-foaming polyoxyethylene alkyl ether-based nonionic surfactant added to the manganese nitrate aqueous solution when the thermal decomposition is performed once at 250 ° C. is 1% by weight or less. In comparison with Comparative Example 2, it can be seen that the basic electric performance is comparable to that of Comparative Example 2.

【0034】また図8から明らかなように、本発明の実
施の形態3における(0.01)(0.05)(0.
1)(0.5)(1)は比較例1,2に比べて導電性高
分子固体電解質の低インダクタンスの効果が明確となっ
ているものである。
Further, as is clear from FIG. 8, (0.01) (0.05) (0 ..) in the third embodiment of the present invention.
1) (0.5) (1) clearly shows the effect of the low inductance of the conductive polymer solid electrolyte as compared with Comparative Examples 1 and 2.

【0035】そしてまた導電性プレコート層としての金
属酸化物半導体層が、結晶粒子が集積した凹凸部による
アンカー効果により導電性高分子電解質層と密着性に優
れた良好な接続界面を形成することは、焼結電極体表面
および破断面の走査形電子顕微鏡(SEM)により観察
された。
Further, the metal oxide semiconductor layer as the conductive precoat layer can form a good connection interface with excellent adhesion to the conductive polymer electrolyte layer due to the anchor effect due to the uneven portion where the crystal particles are accumulated. , And the surface and the fracture surface of the sintered electrode body were observed by a scanning electron microscope (SEM).

【0036】さらに本発明の実施の形態3において確認
できたように、低い濃度の金属酸化物半導体層形成用の
溶液(硝酸マンガン水溶液)に対して添加される低発泡
性の非イオン界面活性剤はかなり微量であってもその効
果は顕著であるが、非イオン界面活性剤が高濃度になる
と、液安定性、残存による影響などが逆に懸念されるた
め、支障のない限り、非イオン界面活性剤の添加量は微
量に抑制すべきである。
Further, as confirmed in the third embodiment of the present invention, a low-foaming nonionic surfactant added to a low concentration solution for forming a metal oxide semiconductor layer (an aqueous solution of manganese nitrate). The effect is remarkable even with a very small amount, but when the concentration of the nonionic surfactant becomes high, the stability of the liquid and the effect of residual may be adversely affected. The amount of activator added should be kept to a very low level.

【0037】なお、上記本発明の実施の形態1において
は、電極体21として、タンタル粉末を加圧成形、真空
焼結したものを用いたが、これに限定されるものではな
く、多孔質弁金属で電極体を構成したものであれば、い
かなるものでも用いることができるものである。
In the first embodiment of the present invention described above, the electrode body 21 used is one in which tantalum powder is pressure-molded and vacuum-sintered, but the invention is not limited to this, and the porous valve is used. Any material can be used as long as the electrode body is made of metal.

【0038】また電極体21が浸漬される溶液として
は、本発明の実施の形態1においては、複素環式化合物
およびその誘導体であるピロールモノマーと界面活性剤
よりなるものを用いたが、複素環式化合物およびその誘
導体、ベンゼン、ナフタレンおよびその誘導体などの溶
解を高める溶媒を単一または混合した溶液を用いてもよ
いものである。
As the solution in which the electrode body 21 is dipped, in the first embodiment of the present invention, a heterocyclic compound and a derivative thereof, which is composed of a pyrrole monomer and a surfactant, is used. A single or mixed solution of a solvent that enhances the dissolution of the formula compound and its derivative, benzene, naphthalene and its derivative and the like may be used.

【0039】[0039]

【発明の効果】以上のように本発明の固体電解コンデン
サの製造方法は、多孔質弁金属よりなる電極体の表面に
誘電体酸化皮膜を形成し、次いで30重量%より低い濃
度の金属酸化物半導体層形成用の溶液に前記電極体を浸
漬することにより誘電体酸化皮膜上に導電性プレコート
層としての金属酸化物半導体層を形成するという形成処
理を多くとも2回以内施し、その後、複素環式化合物お
よびその誘導体を含む溶液に前記電極体を浸漬する工程
と、複素環式化合物およびその誘導体の酸化電位より高
い電極電位を有する酸化剤、ドーパントを含む溶液に前
記電極体を浸漬する工程を複数回交互に繰り返して化学
酸化重合により第1の導電性高分子電解質層を形成し、
さらにこの第1の導電性高分子電解質層の上に、電解酸
化重合により第2の導電性高分子電解質層を形成するよ
うにしたものであり、この製造方法によれば、誘電体酸
化皮膜上に固体電解質である第1の導電性高分子電解質
層を化学酸化重合により形成するに先立って、表面に誘
電体酸化皮膜を形成した電極体を30重量%より低い濃
度の金属酸化物半導体形成用の溶液に浸漬することによ
り誘電体酸化皮膜上に導電性プレコート層としての金属
酸化物半導体層を形成するという形成処理を多くとも2
回以内施して、誘電体酸化皮膜上に導電性プレコート層
としての金属酸化物半導体層を形成するようにしたもの
であって、この金属酸化物半導体層はミクロ的に見れば
細かな結晶粒子が集積したものであるが、マクロ的には
多孔質弁金属よりなる電極体の表面に形成された誘電体
酸化皮膜に対し、均一、かつ緻密で、密着性に優れた接
続界面を形成することになるため、続いて複素環式化合
物およびその誘導体を含む溶液に電極体を浸漬する工程
と、複素環式化合物およびその誘導体より高い電極電位
を有する酸化剤、ドーパントを含む溶液に電極体を浸漬
する工程を複数回交互に繰り返して化学酸化重合を行っ
た場合、複素環式化合物およびその誘導体は、金属酸化
物半導体層を構成する細かな結晶粒子が集積した凹凸部
によって移動が阻止されることになり、これにより、複
素環式化合物およびその誘導体は極めて速やかに電極体
の表面に形成された誘電体酸化皮膜上に第1の導電性高
分子電解質層を形成することができるものである。
As described above, according to the method for producing a solid electrolytic capacitor of the present invention, a dielectric oxide film is formed on the surface of an electrode body made of a porous valve metal, and then a metal oxide having a concentration lower than 30% by weight is formed. The metal oxide semiconductor layer as a conductive precoat layer is formed on the dielectric oxide film by immersing the electrode body in a solution for forming a semiconductor layer. A step of immersing the electrode body in a solution containing a formula compound and its derivative, and a step of immersing the electrode body in a solution containing an oxidizing agent and a dopant having an electrode potential higher than the oxidation potential of the heterocyclic compound and its derivative. By alternately repeating a plurality of times to form the first conductive polymer electrolyte layer by chemical oxidative polymerization,
Further, the second conductive polymer electrolyte layer is formed on the first conductive polymer electrolyte layer by electrolytic oxidation polymerization. According to this manufacturing method, the second conductive polymer electrolyte layer is formed on the dielectric oxide film. In order to form a first conductive polymer electrolyte layer, which is a solid electrolyte, by chemical oxidative polymerization, an electrode body having a dielectric oxide film formed on its surface is used for forming a metal oxide semiconductor at a concentration lower than 30% by weight. The formation treatment of forming a metal oxide semiconductor layer as a conductive precoat layer on the dielectric oxide film by immersing in a solution of
The metal oxide semiconductor layer as a conductive precoat layer is formed on the dielectric oxide film within the number of times, and the metal oxide semiconductor layer has fine crystal grains when viewed microscopically. Macroscopically, it is necessary to form a uniform, dense, and highly adhesive connection interface to the dielectric oxide film formed on the surface of the electrode body made of porous valve metal in macroscopic terms. Therefore, subsequently, the step of immersing the electrode body in a solution containing the heterocyclic compound and its derivative, and the step of immersing the electrode body in a solution containing an oxidant and a dopant having a higher electrode potential than the heterocyclic compound and its derivative When the chemical oxidative polymerization is repeated by repeating the process a plurality of times alternately, the heterocyclic compound and its derivative are prevented from moving due to the uneven portion where the fine crystal particles forming the metal oxide semiconductor layer are accumulated. As a result, the heterocyclic compound and its derivative can very rapidly form the first conductive polymer electrolyte layer on the dielectric oxide film formed on the surface of the electrode body. Is.

【0040】このように導電性プレコート層としての金
属酸化物半導体層は、その細かな結晶粒子が集積した凹
凸部によるアンカー効果により、第1の導電性高分子電
解質層と密着性に優れた良好な接続界面を形成すること
になり、さらにこの第1の導電性高分子電解質層の上に
は、電解酸化重合により第2の導電性高分子電解質層を
形成しているため、この第2の導電性高分子電解質層は
極めて緻密で、かつ電導性に優れたものを得ることがで
き、これにより得られる固体電解コンデンサの電気特性
および信頼性は極めて安定で優れたものとなるものであ
る。
As described above, the metal oxide semiconductor layer as the conductive precoat layer is excellent in adhesiveness with the first conductive polymer electrolyte layer due to the anchor effect due to the concavo-convex portion where the fine crystal particles are accumulated. Since the second conductive polymer electrolyte layer is formed on the first conductive polymer electrolyte layer by electrolytic oxidation polymerization, the second conductive polymer electrolyte layer is formed on the second conductive polymer electrolyte layer. It is possible to obtain a conductive polymer electrolyte layer that is extremely dense and has excellent electrical conductivity, and the resulting solid electrolytic capacitor will have extremely stable and excellent electrical characteristics and reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解コンデンサを示す模式断面図FIG. 1 is a schematic sectional view showing a solid electrolytic capacitor of the present invention.

【図2】図1のA部の拡大断面図FIG. 2 is an enlarged cross-sectional view of part A in FIG.

【図3】本発明の実施の形態1,2,3における固体電
解コンデンサを示す破断斜視図
FIG. 3 is a cutaway perspective view showing a solid electrolytic capacitor according to first, second and third embodiments of the present invention.

【図4】比較例1における固体電解コンデンサを示す破
断斜視図
FIG. 4 is a cutaway perspective view showing a solid electrolytic capacitor in Comparative Example 1.

【図5】比較例2における固体電解コンデンサを示す破
断斜視図
FIG. 5 is a cutaway perspective view showing a solid electrolytic capacitor in Comparative Example 2.

【図6】本発明の実施の形態1と比較例1,2により得
られた固体電解コンデンサのインピーダンスと測定周波
数との関係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the impedance and the measurement frequency of the solid electrolytic capacitors obtained in Embodiment 1 of the present invention and Comparative Examples 1 and 2.

【図7】本発明の実施の形態2と比較例1,2により得
られた固体電解コンデンサのインピーダンスと測定周波
数との関係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the impedance and the measurement frequency of the solid electrolytic capacitors obtained in the second embodiment of the present invention and Comparative Examples 1 and 2.

【図8】本発明の実施の形態3と比較例1,2により得
られた固体電解コンデンサのインピーダンスと測定周波
数との関係を示す特性図
FIG. 8 is a characteristic diagram showing the relationship between the impedance and the measurement frequency of the solid electrolytic capacitors obtained in the third embodiment of the present invention and Comparative Examples 1 and 2.

【図9】(a)従来の固体電解コンデンサにおける陽極
体からなるコンデンサ素子の破断斜視図 (b)従来の固体電解コンデンサにおける陽極箔または
陽極板からなるコンデンサ素子の破断斜視図
9A is a cutaway perspective view of a capacitor element made of an anode body in a conventional solid electrolytic capacitor, and FIG. 9B is a cutaway perspective view of a capacitor element made of an anode foil or an anode plate in a conventional solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

11,21 電極体 12,22 誘電体酸化皮膜 13,23 金属酸化物半導体層 14,24 第1の導電性高分子電解質層 15,25 第2の導電性高分子電解質層 11, 21 Electrode body 12, 22 Dielectric oxide film 13, 23 Metal oxide semiconductor layer 14, 24 First conductive polymer electrolyte layer 15, 25 Second conductive polymer electrolyte layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質弁金属よりなる電極体の表面に誘
電体酸化皮膜を形成し、次いで、30重量%より低い濃
度の金属酸化物半導体層形成用の溶液に前記電極体を浸
漬することにより誘電体酸化皮膜上に導電性プレコート
層としての金属酸化物半導体層を形成するという形成処
理を多くとも2回以内施し、その後、複素環式化合物お
よびその誘導体を含む溶液に前記電極体を浸漬する工程
と、複素環式化合物およびその誘導体の酸化電位より高
い電極電位を有する酸化剤、ドーパントを含む溶液に前
記電極体を浸漬する工程を複数回交互に繰り返して化学
酸化重合により第1の導電性高分子電解質層を形成し、
さらにこの第1の導電性高分子電解質層の上に、電解酸
化重合により第2の導電性高分子電解質層を形成するよ
うにした固体電解コンデンサの製造方法。
1. A dielectric oxide film is formed on the surface of an electrode body made of a porous valve metal, and then the electrode body is immersed in a solution for forming a metal oxide semiconductor layer having a concentration lower than 30% by weight. Forming treatment of forming a metal oxide semiconductor layer as a conductive precoat layer on the dielectric oxide film by at most twice, and then dipping the electrode body in a solution containing a heterocyclic compound and its derivative. And a step of immersing the electrode body in a solution containing an oxidant and a dopant having an electrode potential higher than the oxidation potential of the heterocyclic compound and its derivative, are alternately repeated a plurality of times to obtain the first conductivity by chemical oxidative polymerization. Forming a polyelectrolyte layer,
Furthermore, a method for producing a solid electrolytic capacitor, in which a second conductive polymer electrolyte layer is formed on the first conductive polymer electrolyte layer by electrolytic oxidation polymerization.
【請求項2】 30重量%より低い濃度の金属酸化物半
導体層形成用の溶液に1重量%以下の非イオン界面活性
剤を添加した請求項1記載の固体電解コンデンサの製造
方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein 1% by weight or less of a nonionic surfactant is added to a solution for forming a metal oxide semiconductor layer having a concentration lower than 30% by weight.
JP8047180A 1996-03-05 1996-03-05 Manufacture of solid electrolytic capacitor Pending JPH09246104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8047180A JPH09246104A (en) 1996-03-05 1996-03-05 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8047180A JPH09246104A (en) 1996-03-05 1996-03-05 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH09246104A true JPH09246104A (en) 1997-09-19

Family

ID=12767893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8047180A Pending JPH09246104A (en) 1996-03-05 1996-03-05 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH09246104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2009239145A (en) * 2008-03-28 2009-10-15 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2009239145A (en) * 2008-03-28 2009-10-15 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6361572B1 (en) Method of making an electrolytic capacitor having a conductive polymer formed on the inner surface of micropores of the anodes
EP0895259A2 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
JPH0745481A (en) Solid electrolytic capacitor and manufacture thereof
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000232036A (en) Manufacture of solid electrolytic capacitor
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JPH1174157A (en) Electrolytic capacitor and manufacture thereof
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JPH09213575A (en) Production of solid electrolytic capacitor
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JPH09246104A (en) Manufacture of solid electrolytic capacitor
JP3543526B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH11307396A (en) Manufacture of solid electrolytic capacitor
JP2002025862A (en) Solid electrolytic capacitor and its manufacturing method
JPH09213574A (en) Production of solid electrolytic capacitor
JPH06120086A (en) Manufacture of solid-state electrolytic capacitor
JP3669164B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JPH1070043A (en) Manufacture of solid electrolytic capacitor
JPH09213576A (en) Production of solid electrolytic capacitor
JP2000297142A (en) Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same
KR100753609B1 (en) Method of Manufacturing a Polymer Electrolytic Capacitor
JP2001237146A (en) Solid-state electrolytic capacitor and its manufacturing method