JP2000232036A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JP2000232036A
JP2000232036A JP11032508A JP3250899A JP2000232036A JP 2000232036 A JP2000232036 A JP 2000232036A JP 11032508 A JP11032508 A JP 11032508A JP 3250899 A JP3250899 A JP 3250899A JP 2000232036 A JP2000232036 A JP 2000232036A
Authority
JP
Japan
Prior art keywords
conductive polymer
monomer
electrolytic capacitor
layer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11032508A
Other languages
Japanese (ja)
Other versions
JP3478987B2 (en
Inventor
Kenji Hoshino
賢二 星野
Masanori Yoshida
雅憲 吉田
Yoshihiko Tsujikawa
義彦 辻川
Hideo Hashimoto
英雄 橋本
Masakazu Tanahashi
正和 棚橋
Toshitaka Kato
寿孝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03250899A priority Critical patent/JP3478987B2/en
Publication of JP2000232036A publication Critical patent/JP2000232036A/en
Application granted granted Critical
Publication of JP3478987B2 publication Critical patent/JP3478987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the productivity of a solid electrolytic capacitor by reducing the ESR by forming a conductive high polymer layer by dipping an anode conductor in a polymeric liquid prepared by adding a monomer to a suspension containing conductive polymer particles. SOLUTION: Chemically formed sintered pellets are obtained by chemically forming dielectric layers 2 on the surfaces of fine sintered particles 1 of tantalum which is a valve metal by using the particles 1 as anode conductors. After the pellets are dipped in a monomer solution, solid electrolyte layers 3 of a conductive macromolecular polymer are formed on the surfaces of the dielectric layers 2 in the pores of the pellets. Then conductive high polymer layers 4 composed of EDT polymer are formed on the surfaces of the electrolyte layers 3 by repeating a step of dipping the pellets carrying the electrolyte layers 3 in a suspension prepared by adding EDT to the suspension after adjustment by polymerizing, for example, ethylene dioxythiophene with EDT, a step of pulling out the pellets, and a step of making EDT polymerization. Since the high polymer layers 4 have uneven surfaces formed of conductive polymer particles, the joint surfaces of the layers 4 which come into contract with cathode conductor layers 5 formed on the layers 4 increase and the ESR is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、固体電解コンデン
サの製造方法に関し、詳細には導電性高分子層を備えて
いる固体電解コンデンサの製造方法に関する。
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor having a conductive polymer layer.

【0002】[0002]

【従来の技術】近年、固体電解コンデンサが使用される
電子機器において、集積回路の高周波化、大電流化が著
しい。これに伴い、等価直列抵抗(以下、ESRと呼
ぶ)が低く、容量が大きい固体電解コンデンサが求めら
れている。通常、固体電解コンデンサは、陽極導体、誘
電体層、固体電解質層、陰極導体層が上記の順で配置さ
れた構造をとる。
2. Description of the Related Art In recent years, in electronic equipment using a solid electrolytic capacitor, the frequency and current of an integrated circuit have been remarkably increased. Accordingly, a solid electrolytic capacitor having a low equivalent series resistance (hereinafter, referred to as ESR) and a large capacitance is required. Usually, the solid electrolytic capacitor has a structure in which an anode conductor, a dielectric layer, a solid electrolyte layer, and a cathode conductor layer are arranged in the above order.

【0003】次に、固体電解コンデンサの製造方法につ
いて説明する。まず、タンタル、アルミニウム等の皮膜
形成性弁作用金属の焼結体ペレットを陽極導体にして、
焼結体ペレットを電解質溶液中で陽極酸化して、その表
面に誘電体層を形成する。次に、誘電体層を有する焼結
体ペレットを硝酸マンガン溶液に浸漬し、焼結すること
で誘電体層の表面に二酸化マンガンの固体電解質層を形
成する。最後に、固体電解質層上に陰極導体層を形成す
ることで固体電解コンデンサは完成する。
Next, a method for manufacturing a solid electrolytic capacitor will be described. First, a sintered pellet of a film-forming valve metal such as tantalum and aluminum is used as an anode conductor,
The sintered pellet is anodized in an electrolyte solution to form a dielectric layer on its surface. Next, the sintered body pellet having the dielectric layer is immersed in a manganese nitrate solution and sintered to form a manganese dioxide solid electrolyte layer on the surface of the dielectric layer. Finally, a solid electrolytic capacitor is completed by forming a cathode conductor layer on the solid electrolyte layer.

【0004】ESRを決定する要因は、コンデンサ充放
電流の導電経路となる固体電解質層、陽極導体、陰極導
体層、陰陽極導体端子、及び誘電層が各々有する抵抗で
あり、その主要因は固体電解質であると考えられてい
た。
The factors that determine the ESR are the resistances of the solid electrolyte layer, anode conductor, cathode conductor layer, negative anode conductor terminal, and dielectric layer, which are conductive paths for charging / discharging current of the capacitor. It was thought to be an electrolyte.

【0005】上記要因を鑑みて、従来固体電解質として
利用されている二酸化マンガンは導電率0.1〜1S/
cm程度であるから、これより高い導電率を有する導電
性高分子化合物が見出された。導電性高分子化合物であ
る、例えばポリピロールで固体電解質層を形成した場
合、100S/cm程度の高導電率を有し、経時的安定
性、耐熱耐湿性を備えている、高周波特性の良好なタン
タル固体電解コンデンサが得られる(特開平2−130
906号を参照のこと)。
In view of the above factors, manganese dioxide conventionally used as a solid electrolyte has a conductivity of 0.1 to 1 S /
cm, a conductive polymer compound having a higher conductivity was found. When the solid electrolyte layer is formed of a conductive polymer compound, for example, polypyrrole, the tantalum has a high conductivity of about 100 S / cm, has stability over time, and heat and moisture resistance, and has good high-frequency characteristics. A solid electrolytic capacitor is obtained (JP-A-2-130)
906).

【0006】このような導電性高分子化合物である固体
電解質層を誘電体層の表面に形成するためには、誘電体
層は非導電性であるから化学重合を用いる。化学重合法
は、モノマー溶液と酸化剤として作用する化合物とを混
合した混合溶液に誘電体層を形成した焼結体ペレットを
浸漬する方法、あるいは誘電体層を形成した焼結体ペレ
ットにモノマー溶液を含浸させ、さらにこれを酸化剤溶
液に浸漬する方法等があり、このようにして、焼結体ペ
レットの細孔内部に形成された誘電体層の表面に導電性
高分子層が形成される。
In order to form such a solid electrolyte layer, which is a conductive polymer compound, on the surface of the dielectric layer, chemical polymerization is used because the dielectric layer is non-conductive. The chemical polymerization method is a method of immersing a sintered body pellet having a dielectric layer formed therein in a mixed solution obtained by mixing a monomer solution and a compound acting as an oxidizing agent, or a method of immersing a monomer solution in a sintered body pellet having a dielectric layer formed therein. And then immersing it in an oxidizing agent solution. In this way, a conductive polymer layer is formed on the surface of the dielectric layer formed inside the pores of the sintered pellet. .

【0007】また、前述した化学重合法により形成した
導電性高分子層を予備電極層として、電解重合を行い、
十分な量の固体電解質層を確保してもよい。この場合、
モノマーを含有する電解液中に導電性高分子層を備えて
いる焼結体ペレットを浸漬し、該導電性高分子層を電極
と接触させて陽極とし、陰極板を重合液中に取り付け、
両電極間に電圧を印加して、電解重合によって導電性高
分子層を成長させる。このような焼結体ペレットの細孔
深部の誘電体層の表面に形成された導電性高分子層は、
固体電解質層として、この後に形成される陰極導電体層
に導通する。
Further, electrolytic polymerization is performed by using the conductive polymer layer formed by the above-described chemical polymerization method as a preliminary electrode layer,
A sufficient amount of solid electrolyte layer may be secured. in this case,
A sintered body pellet having a conductive polymer layer is immersed in an electrolytic solution containing a monomer, the conductive polymer layer is brought into contact with an electrode to serve as an anode, and a cathode plate is attached in the polymer solution.
A voltage is applied between both electrodes to grow a conductive polymer layer by electrolytic polymerization. The conductive polymer layer formed on the surface of the dielectric layer deep in the pores of such a sintered pellet,
It conducts to a cathode conductor layer to be formed later as a solid electrolyte layer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
たような導電性高分子層には、以下に説明するような問
題点があった。化学重合で生成する導電性高分子層の成
長は、焼結体ペレットの表面に粒子状に生成されるポリ
マーの吸着積層に依存するので、焼結体ペレットの微細
孔空隙に浸透する重合液量が制限され、かつ、モノマー
の溶媒に対する溶解度が制限されることから、導電性高
分子層の成長速度が遅く、導電性高分子層の膜厚が不足
する場合があるので生産性に劣る。また、化学重合によ
って形成した導電性高分子の強度は充分でない。つま
り、化学重合によって導電性高分子層を形成した場合、
このようなことによって、焼結体の表面部の誘電体層が
損傷され、漏れ電流が発生し、コンデンサが劣化すると
いう問題点があった。
However, the above-mentioned conductive polymer layer has the following problems. Since the growth of the conductive polymer layer generated by chemical polymerization depends on the adsorption and lamination of the polymer generated in the form of particles on the surface of the sintered pellet, the amount of the polymer solution that penetrates into the pores of the sintered pellet Is limited, and the solubility of the monomer in the solvent is limited. Therefore, the growth rate of the conductive polymer layer is slow, and the thickness of the conductive polymer layer may be insufficient, resulting in poor productivity. Further, the strength of the conductive polymer formed by chemical polymerization is not sufficient. In other words, when the conductive polymer layer is formed by chemical polymerization,
As a result, there is a problem that the dielectric layer on the surface of the sintered body is damaged, a leakage current is generated, and the capacitor is deteriorated.

【0009】また、電解重合によって形成される導電性
高分子層は、化学重合よって形成されるものと比較し
て、高い導電率を有し強固でかつ平滑である。しかしな
がら、電解重合によって形成される導電性高分子層は強
固でかつ平滑である故、陰極導体層との密着性が悪く、
陰極導体層との接触面積の増加も図りにくいという問題
点があった。
Further, the conductive polymer layer formed by electrolytic polymerization has a higher conductivity, is stronger, and is smoother than that formed by chemical polymerization. However, since the conductive polymer layer formed by electrolytic polymerization is strong and smooth, the adhesion to the cathode conductor layer is poor,
There is a problem that it is difficult to increase the contact area with the cathode conductor layer.

【0010】さらに、上述したような導電性の高い導電
性高分子で電解質層を形成しても、固体電解コンデンサ
もERSは一定値以下にはならないという問題点があっ
た。
Further, even if the electrolyte layer is formed of a conductive polymer having high conductivity as described above, there is a problem that the ERS of the solid electrolytic capacitor does not fall below a certain value.

【0011】本発明は上記課題を鑑みてなされたもので
あり、低減されたERSを有する固体電解コンデンサを
生産性よく製造することができる固体電解コンデンサの
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a method for manufacturing a solid electrolytic capacitor capable of manufacturing a solid electrolytic capacitor having reduced ERS with high productivity.

【0012】[0012]

【課題を解決するための手段】上記課題について検討す
ると、コンデンサのESRは、導電経路におけるの誘電
体層、電解質層等の各構成部が有する抵抗の合計値に比
較して、はるかに大きいことが判明した。また、陰極導
体層は、導電性粒子を含有するサスペンション塗料を、
電解質層が形成された焼結体ペレットの表面に塗布し、
乾燥固化することで形成されるものであり、導電性粒子
は他の導電性粒子及び電解質層と接合して陰極導体層内
に導電性を発現するものであるが、固体電解質層と導電
性粒子との接合に依存する電気抵抗が極めて大きいこと
が判明した。つまり、ESRの主な要因は、これまで考
えられていたように電解質層ではなく、陰極導体層に含
まれる導電性粒子と固体電解質層との接触抵抗に起因し
ていることが判明した。
Considering the above problems, it is considered that the ESR of a capacitor is much larger than the total value of the resistance of each component such as a dielectric layer and an electrolyte layer in a conductive path. There was found. Also, the cathode conductor layer is a suspension paint containing conductive particles,
Apply to the surface of the sintered body pellet with the electrolyte layer formed,
The conductive particles are formed by drying and solidifying, and the conductive particles are bonded to other conductive particles and the electrolyte layer to develop conductivity in the cathode conductor layer. It has been found that the electric resistance depending on the junction with the metal is extremely large. That is, it has been found that the main factor of the ESR is not the electrolyte layer but the contact resistance between the conductive particles contained in the cathode conductor layer and the solid electrolyte layer, as has been considered so far.

【0013】上記課題を解決するため、固体電解質層と
陰極導体層との界面に、可塑性又は柔軟性が大きい導電
性高分子化合物からなる導電性高分子層を形成し、導電
性高分子層と陰極導体層の導電性微粒子との接合面積を
増大させた。さらに、図4に示すように、導電性高分子
層4に可塑性又は柔軟性を有する導電性微粒子8を混在
させ、導電性高分子層4の界面12に凹凸を設け、導電
性高分子層4と陰極導体層9との接合面積をさらに増大
させた。このような導電性高分子層4を設けることで、
コンデンサのESRが減少する。
In order to solve the above problems, a conductive polymer layer made of a conductive polymer compound having high plasticity or flexibility is formed at the interface between the solid electrolyte layer and the cathode conductor layer, and the conductive polymer layer is The bonding area of the cathode conductor layer with the conductive fine particles was increased. Further, as shown in FIG. 4, conductive fine particles 8 having plasticity or flexibility are mixed in the conductive polymer layer 4, and irregularities are provided at the interface 12 of the conductive polymer layer 4. And the junction area between the anode and the cathode conductor layer 9 were further increased. By providing such a conductive polymer layer 4,
The ESR of the capacitor is reduced.

【0014】次に、導電性高分子層の形成方法について
説明する。まず、モノマーとこのモノマーと等モル数程
度の酸化剤を混合して混合液を調製する。この混合液中
で、モノマーを酸化重合させ、モノマーの導電性ポリマ
ー粒子を生成させる。この混合液の導電性ポリマー粒子
の濃度が所定値を満たしている間に、かかる混合液に電
解質層が形成された焼結体ペレットを浸漬させ、その外
層部に混合液を塗布した後、溶媒を除去し、重合させる
ことで、電解質層上に導電性ポリマー粒子を内包する導
電性の導電性高分子層が形成される。
Next, a method for forming the conductive polymer layer will be described. First, a mixed solution is prepared by mixing a monomer and an oxidizing agent in an equimolar number with the monomer. In this mixture, the monomer is oxidatively polymerized to produce conductive polymer particles of the monomer. While the concentration of the conductive polymer particles in the mixture satisfies a predetermined value, the sintered body pellet having the electrolyte layer formed thereon is immersed in the mixture, and the mixture is applied to an outer layer portion thereof. Is removed and polymerized to form a conductive conductive polymer layer containing conductive polymer particles on the electrolyte layer.

【0015】詳細には、混合液は、モノマーを含有する
モノマー溶液と酸化剤を含有する酸化剤溶液とを混合
し、雰囲気温度を室温〜70℃にしてモノマーを酸化重
合させて導電性ポリマーを生成したものである。この混
合液中の導電性ポリマー粒子濃度は、図5に示すよう
に、経時的に変化するので、焼結体ペレットを含浸する
ことができる時間は、t1に限定される。従って、接合
用電解質層を形成する工程は、煩雑かつ冗長になり、生
産性に問題点があった。
More specifically, the mixed solution is obtained by mixing a monomer solution containing a monomer and an oxidizing agent solution containing an oxidizing agent, and oxidizing and polymerizing the monomer at an ambient temperature of room temperature to 70 ° C. to form a conductive polymer. It is generated. As shown in FIG. 5, the concentration of the conductive polymer particles in the mixed solution changes over time, and thus the time during which the sintered pellet can be impregnated is limited to t 1 . Therefore, the step of forming the bonding electrolyte layer is complicated and redundant, and there is a problem in productivity.

【0016】本発明の固体電解コンデンサの製造方法
は、固体電解コンデンサの導電性高分子層を生産性の高
い方法で製造するものである。具体的に、本発明の固体
電解コンデンサの製造方法は、導電性ポリマー粒子を含
有する懸濁液に導電性ポリマーの基本単位であるモノマ
ーを添加して重合液を調製する重合液調製工程と、誘電
体層が形成されている陽極導体を重合液に浸漬して、誘
電体層上に導電性ポリマー粒子を含有する導電性高分子
層を形成する導電性高分子層形成工程とを含んでいて、
導電性高分子層を固体電解質層とする固体電解コンデン
サを製造するものである。
The method of manufacturing a solid electrolytic capacitor according to the present invention is to manufacture a conductive polymer layer of a solid electrolytic capacitor by a method having high productivity. Specifically, the method for producing a solid electrolytic capacitor of the present invention is a polymerization liquid preparation step of preparing a polymerization liquid by adding a monomer that is a basic unit of a conductive polymer to a suspension containing conductive polymer particles, Immersing the anode conductor on which the dielectric layer is formed in a polymerization liquid, and forming a conductive polymer layer containing conductive polymer particles on the dielectric layer. ,
It is intended to manufacture a solid electrolytic capacitor using a conductive polymer layer as a solid electrolyte layer.

【0017】また、本発明の固体電解コンデンサの製造
方法は、誘電体層を介して電解質層が形成されている陽
極導体を、上記重合液に浸漬して、電解質層上に導電性
ポリマー粒子を含有する導電性高分子層を形成するもの
であってもよい。
Further, according to the method for manufacturing a solid electrolytic capacitor of the present invention, the anode conductor on which the electrolyte layer is formed via the dielectric layer is immersed in the above-mentioned polymerization solution to form conductive polymer particles on the electrolyte layer. A conductive polymer layer may be formed.

【0018】本発明の固体電解コンデンサの製造方法に
おいて、重合液は、モノマーを含有するモノマー溶液と
酸化作用を有する酸化剤溶液と懸濁液とが調製されたも
の、又はモノマーを含有するモノマー溶液と酸化作用を
有する懸濁液とが調製されたもののいずれかであるのが
好ましい。
In the method for producing a solid electrolytic capacitor of the present invention, the polymerization solution is prepared by preparing a monomer solution containing a monomer, an oxidizing agent solution having an oxidizing action and a suspension, or a monomer solution containing a monomer. And a suspension having an oxidizing action are preferably prepared.

【0019】さらに、本発明の固体電解コンデンサの製
造方法は、懸濁液を、モノマーを含有するモノマー溶液
と酸化剤を含有する酸化剤溶液とを混合させ、モノマー
を酸化重合反応させ、該酸化重合反応が完了するまで導
電性ポリマーを生成させたものとするのが好ましい。ま
た、−5℃ないし70℃の雰囲気温度で、上記懸濁液と
調製するのがさらに好ましい。
Further, according to the method for manufacturing a solid electrolytic capacitor of the present invention, the suspension is mixed with a monomer solution containing a monomer and an oxidizing agent solution containing an oxidizing agent, and the monomer is subjected to an oxidative polymerization reaction. It is preferable that the conductive polymer is generated until the polymerization reaction is completed. It is more preferable to prepare the above suspension at an atmosphere temperature of -5 ° C to 70 ° C.

【0020】また、本発明の固体電解コンデンサの製造
方法は、酸化剤を3価の鉄イオンの錯体とするのが好ま
しい。
In the method for producing a solid electrolytic capacitor of the present invention, it is preferable that the oxidizing agent is a complex of trivalent iron ions.

【0021】また、本発明の固体電解コンデンサの製造
の製造方法において、モノマー溶液と酸化剤溶液との混
合液中のモノマーのモル数が、酸化剤のモル数の0.1
倍ないし0.9倍であるのが好ましい。
In the method for manufacturing a solid electrolytic capacitor according to the present invention, the number of moles of the monomer in the mixture of the monomer solution and the oxidizing agent solution is 0.1% of the number of moles of the oxidizing agent.
Preferably, it is twice to 0.9 times.

【0022】さらに、本発明の固体電解コンデンサの製
造方法は、導電性高分子層を、陰極導体に密接するよう
に可塑性又は柔軟性の少なくともいずれか一方を備えて
いるものとすることで、ESRがさらに低減された固体
電解コンデンサを製造することができる。
Further, according to the method for manufacturing a solid electrolytic capacitor of the present invention, the conductive polymer layer is provided with at least one of plasticity and flexibility so as to be in close contact with the cathode conductor. Can further be manufactured.

【0023】また、本発明の固体電解コンデンサの製造
方法は、導電性高分子層に含有される上記導電性ポリマ
ー粒子の重量を、導電性高分子層の重量の30%以下と
し、さらに、導電性ポリマー粒子の寸法を、100μm
以下とするのが好ましい。
In the method for manufacturing a solid electrolytic capacitor according to the present invention, the weight of the conductive polymer particles contained in the conductive polymer layer is set to 30% or less of the weight of the conductive polymer layer. 100 μm
It is preferable to set the following.

【0024】具体的には、本発明の固体電解コンデンサ
の製造方法は、モノマーを複素環式有機化合物又は芳香
族有機化合物とするのが好ましく、さらに具体的には、
モノマーを、ピロール、ピロールの誘導体、チオフェ
ン、チオフェンの誘導体、フラン、フランの誘導体、セ
レノフェン、セレノフェンの誘導体、アニリン、アニリ
ンの誘導体、フェニレン、フェニレンの誘導体、ナフタ
レン、ナフタレンの誘導体、アントラセン、アントラセ
ンの誘導体、ピレン、ピレンの誘導体、アズレン、アズ
レンの誘導体、及び3,4−エチレンジオキシチオフェ
ンからなる群から一つ選択されたものとするのが好まし
い。
Specifically, in the method for producing a solid electrolytic capacitor of the present invention, it is preferable that the monomer is a heterocyclic organic compound or an aromatic organic compound, and more specifically,
Monomer, pyrrole, pyrrole derivative, thiophene, thiophene derivative, furan, furan derivative, selenophene, selenophene derivative, aniline, aniline derivative, phenylene, phenylene derivative, naphthalene, naphthalene derivative, anthracene, anthracene derivative , Pyrene, a derivative of pyrene, azulene, a derivative of azulene, and 3,4-ethylenedioxythiophene.

【0025】より詳細には、本発明の固体電解コンデン
サの製造方法は、モノマー溶液に含有される3,4−エ
チレンジオキシチオフェンのモル数が、酸化剤溶液に含
有されるp−トルエンスルホン酸鉄(III)のモル数の
0.05ないし0.4倍であるように、モノマー溶液と酸
化剤溶液とを混合して懸濁液を調製するのが好ましい。
More specifically, in the method for producing a solid electrolytic capacitor of the present invention, the number of moles of 3,4-ethylenedioxythiophene contained in the monomer solution is changed to the p-toluenesulfonic acid contained in the oxidant solution. Preferably, the suspension is prepared by mixing the monomer solution and the oxidizing agent solution so that the molar number is 0.05 to 0.4 times the number of moles of iron (III).

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態の固体
電解コンデンサについて説明する。本実施の形態の固体
電解コンデンサは、固体電解質層と陰極導体層との間に
導電性高分子化合物からなる導電性高分子層を備えてい
る。この導電性高分子層は、陰極導体層と密接すること
ができるように可塑性及び柔軟性の少なくとも一方を有
し、導電性ポリマー粒子によって形成された凹凸を有す
る。この導電性ポリマー粒子からなる凹凸によって、陰
極導体層と導電性高分子層とが接触する接合面が増大さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a solid electrolytic capacitor according to an embodiment of the present invention will be described. The solid electrolytic capacitor of the present embodiment includes a conductive polymer layer made of a conductive polymer compound between the solid electrolyte layer and the cathode conductor layer. The conductive polymer layer has at least one of plasticity and flexibility so that it can be in close contact with the cathode conductor layer, and has irregularities formed by the conductive polymer particles. Due to the irregularities made of the conductive polymer particles, the bonding surface where the cathode conductor layer and the conductive polymer layer are in contact with each other is increased.

【0027】次に、導電性高分子層を形成する方法につ
いて説明する。最初に導電性ポリマー粒子を含有する懸
濁液にかかる導電性ポリマーの基本単位であるモノマー
を混合して重合液を調製する。次に、誘電体層を介して
電解質が形成されている陽極導体を上記重合液に浸漬さ
せることで、電解質層上に導電性高分子層が形成され
る。この工程で利用される懸濁液は、導電性ポリマー濃
度の経時的変化がないものであり、以下に説明する検証
に基づいて得たものである。
Next, a method for forming a conductive polymer layer will be described. First, a monomer which is a basic unit of the conductive polymer in the suspension containing the conductive polymer particles is mixed to prepare a polymerization solution. Next, the conductive polymer layer is formed on the electrolyte layer by immersing the anode conductor on which the electrolyte is formed via the dielectric layer in the above-mentioned polymerization solution. The suspension used in this step had no change in the concentration of the conductive polymer with time, and was obtained based on the verification described below.

【0028】固体電解コンデンサの導電性高分子層とし
て利用することができる導電性を有する導電性高分子化
合物は、酸化剤でモノマーを脱水素反応させ、重合合成
させたものである。具体的には、ピロール、チオフェン
やその誘導体である複素環式化合物は、主に2,5位の
水素脱離を伴いながら結合して重合合成され、芳香族化
合物はパラ位で結合し重合合成される。
The conductive polymer compound having conductivity which can be used as the conductive polymer layer of the solid electrolytic capacitor is obtained by polymerizing and synthesizing a monomer by a dehydrogenation reaction with an oxidizing agent. Specifically, heterocyclic compounds such as pyrrole, thiophene, and derivatives thereof are polymerized and synthesized by bonding mainly with elimination of hydrogen at the 2,5-positions, and aromatic compounds are bonded by polymerization at the para-position. Is done.

【0029】例えば、酸化剤による酸化重合によって、
n個のピロールから合成されてなるポリピロールの重合
体高分子鎖PPy(n)の末端複素環において2位又は
5位の水素基が脱離し、さらにモノマーであるピロール
からなるPyの2位又は5位の水素基が脱離すること
で、重合体高分子鎖PPy(n)とPyとが合成され、
n+1個のピロールからなるポリピロールの重合体高分
子鎖PPy(n+1)が生成される。
For example, by oxidative polymerization using an oxidizing agent,
In the terminal heterocycle of the polymer polymer chain PPy (n) of polypyrrole synthesized from n pyrroles, the hydrogen group at the 2- or 5-position is eliminated, and the 2- or 5-position of Py composed of pyrrole as a monomer is further removed. Is eliminated, whereby polymer polymer chains PPy (n) and Py are synthesized,
A polymer polymer chain PPy (n + 1) of polypyrrole composed of n + 1 pyrroles is generated.

【0030】このような反応形態は、導電性高分子が生
成される酸化重合にも当てはまる。つまり、導電性高分
子の酸化重合反応は逐次反応であるため、重合の進行は
酸化剤量によって制限され、酸化剤が全量消費された時
点で反応は停止する。例えば、ピロールを合成する場
合、ピロールのモル数の最大2倍のモル数の酸化剤が消
費されて反応が停止する。さらに、酸化重合反応は、モ
ノマー濃度、酸化剤濃度、重合反応温度により、導電性
高分子の重合度、導電性高分子の分子量分布等を制御す
ることができる。つまり、モノマーと酸化剤との混合比
によって、導電性高分子の重合度、導電性高分子の分子
量分布等を制御することができる。
Such a mode of reaction also applies to oxidative polymerization in which a conductive polymer is formed. That is, since the oxidative polymerization reaction of the conductive polymer is a sequential reaction, the progress of the polymerization is limited by the amount of the oxidizing agent, and the reaction stops when the entire amount of the oxidizing agent is consumed. For example, when synthesizing pyrrole, up to twice the number of moles of pyrrole is consumed in the oxidizing agent to stop the reaction. Further, in the oxidative polymerization reaction, the degree of polymerization of the conductive polymer, the molecular weight distribution of the conductive polymer, and the like can be controlled by the monomer concentration, the oxidizing agent concentration, and the polymerization reaction temperature. That is, the degree of polymerization of the conductive polymer, the molecular weight distribution of the conductive polymer, and the like can be controlled by the mixing ratio of the monomer and the oxidizing agent.

【0031】具体的には、モノマーを含有するモノマー
溶液と酸化剤を含有する酸化剤溶液とを混合し、モノマ
ーを酸化重合させて導電性ポリマー粒子を含有する懸濁
液を調製する場合、モノマー溶液中のモノマーのモル数
を、酸化剤溶液中の酸化剤のモル数よりも小さくし、懸
濁中でモノマーの酸化重合を完了させることで、導電性
ポリマー粒子の組成、導電性ポリマー粒子の濃度が経時
的に変化しない懸濁液を得ることができる。懸濁液の調
製は、−5℃〜70℃の雰囲気下で行うのが好ましい。
Specifically, when a monomer solution containing a monomer is mixed with an oxidizing agent solution containing an oxidizing agent, and the monomer is oxidized and polymerized to prepare a suspension containing conductive polymer particles, By making the number of moles of the monomer in the solution smaller than the number of moles of the oxidizing agent in the oxidizing agent solution and completing the oxidative polymerization of the monomer in suspension, the composition of the conductive polymer particles, A suspension whose concentration does not change over time can be obtained. The suspension is preferably prepared in an atmosphere at -5 ° C to 70 ° C.

【0032】密栓容器中で上記懸濁液を250時間放置
しても、懸濁液の液状、導電性ポリマー粒子の沈降等が
変化することはなかった。さらに、雰囲気温度を−5℃
〜40℃の範囲で変化させ、密栓容器中で上記懸濁液を
250時間放置しても、懸濁液の液状、導電性ポリマー
粒子の沈降等が経時的に変化することはなかった。即
ち、雰囲気温度を−5℃〜40℃において、上述したよ
うに調製した懸濁液中の導電性ポリマー粒子濃度は、経
時的に変化するものではない。
Even if the suspension was left in the sealed container for 250 hours, the liquid state of the suspension, the sedimentation of the conductive polymer particles, and the like did not change. Further, the ambient temperature is set to -5 ° C.
Even when the temperature was changed in the range of 4040 ° C. and the suspension was allowed to stand in a sealed container for 250 hours, the liquid state of the suspension and the sedimentation of the conductive polymer particles did not change with time. That is, at an ambient temperature of −5 ° C. to 40 ° C., the concentration of the conductive polymer particles in the suspension prepared as described above does not change with time.

【0033】前述したように調製した懸濁液に再度モノ
マーを添加して、懸濁液中に残存している酸化剤によっ
て新たに添加したモノマーを酸化重合させるように調製
した重合液を用いて、本実施の形態の固体電解コンデン
サの導電性高分子層を形成する。モノマー溶液と酸化剤
溶液を混合させて調製した懸濁液中の導電性ポリマー濃
度及びかかる懸濁液にモノマーを再添加して調製した重
合液中の導電性ポリマー濃度を図1に示す。図に示すよ
うに、懸濁液調製完了後のポリマー粒子の濃度は、経時
的には安定している。
[0033] A monomer is added again to the suspension prepared as described above, and a polymerization solution prepared so that the newly added monomer is oxidatively polymerized by the oxidizing agent remaining in the suspension. Then, the conductive polymer layer of the solid electrolytic capacitor of the present embodiment is formed. FIG. 1 shows the concentration of the conductive polymer in the suspension prepared by mixing the monomer solution and the oxidizing agent solution, and the concentration of the conductive polymer in the polymerization solution prepared by re-adding the monomer to the suspension. As shown in the figure, the concentration of the polymer particles after completing the preparation of the suspension is stable over time.

【0034】上記実施の形態では、酸化剤が残存してい
る懸濁液、即ち酸化作用を有する懸濁液にモノマーを添
加して重合液を調製したが、本発明はこれに限定される
ものではない。例えば、酸化作用を有する酸化剤溶液と
モノマーを含有するモノマー溶液と懸濁液とを混合して
重合液を調製してもよいし、モノマーを含有するモノマ
ー溶液と酸化作用を有する懸濁液とを混合して重合液を
調製してもよい。
In the above embodiment, the polymerization solution is prepared by adding the monomer to the suspension in which the oxidizing agent remains, that is, the suspension having the oxidizing effect. However, the present invention is not limited to this. is not. For example, a polymerization solution may be prepared by mixing an oxidizing agent solution having an oxidizing action and a monomer solution and a suspension containing a monomer, or a monomer solution containing a monomer and a suspension having an oxidizing action. May be mixed to prepare a polymerization solution.

【0035】固体電解コンデンサの導電性高分子層を形
成する際には、酸化剤のモル数に対するモノマーのモル
数を1/9倍〜8/9倍となるように、モノマー溶液と
酸化剤溶液とを調製した懸濁液を用いる。詳細には、モ
ノマーのモル数を酸化剤のモル数の1/9倍とし、40
℃で24時間攪拌させて酸化重合反応させ調製した懸濁
液を用いるのがより好ましい。このように調製した懸濁
液が最も液状及びポットライフに優れているので、かか
る懸濁液を用いて固体電解コンデンサの導電性高分子層
を形成することで、固体電解コンデンサのESR及びL
C不良率を最も低減させることができる。
When forming the conductive polymer layer of the solid electrolytic capacitor, the monomer solution and the oxidizing agent solution are mixed such that the number of moles of the monomer is 1/9 to 8/9 times the number of moles of the oxidizing agent. Is used. Specifically, the number of moles of the monomer is 1/9 times the number of moles of the oxidizing agent,
It is more preferable to use a suspension prepared by stirring at 24 ° C. for 24 hours to carry out an oxidative polymerization reaction. Since the suspension thus prepared is most excellent in liquid state and pot life, by forming the conductive polymer layer of the solid electrolytic capacitor using such a suspension, the ESR and L of the solid electrolytic capacitor can be reduced.
The C defect rate can be reduced most.

【0036】上述したように、懸濁液を調製する際、酸
化剤のモル数に対するモノマーのモル数を1/9倍〜8
/9倍とするのが好ましいが、本発明はこれに限定され
るものではなく、酸化剤のモル数に対するモノマーのモ
ル数は、0.1倍〜0.9倍であればよい。また、モノマ
ーを3,4−エチレンジオキシチオフェン、酸化剤をp
−トルエンスルホン酸鉄(III)とする場合、酸化剤の
モル数に対するモノマーのモル数は、0.05倍〜0.4
倍であればよい。
As described above, when preparing the suspension, the number of moles of the monomer is 1/9 to 8 times the number of moles of the oxidizing agent.
/ 9 times is preferable, but the present invention is not limited to this, and the number of moles of the monomer may be 0.1 to 0.9 times the number of moles of the oxidizing agent. Further, the monomer is 3,4-ethylenedioxythiophene, and the oxidizing agent is p
When iron (III) toluenesulfonate is used, the number of moles of the monomer is 0.05 to 0.4 times the number of moles of the oxidizing agent.
It should just be double.

【0037】このように作製した導電性高分子層は、陰
極導体層と密接することができるように可塑性及び柔軟
性の少なくとも一方を有し、導電性ポリマー粒子によっ
て形成された凹凸を有するものである。凹凸の形態は、
フィルム状のポリマー層中に粒子状ポリマーが点在する
形状をとっており、初期に液中で重合反応させるために
添加したモノマーの酸化剤に対するモル比率に比例し
て、粒子状ポリマーの重合比率が増減される。この導電
性ポリマー粒子からなる凹凸によって、陰極導体層と導
電性高分子層とが接触する接合面が増大されるので、固
体電解コンデンサのESR及びLC不良率が低減され
る。
The conductive polymer layer thus prepared has at least one of plasticity and flexibility so that it can be in close contact with the cathode conductor layer, and has irregularities formed by conductive polymer particles. is there. The form of the irregularities is
The film-shaped polymer layer has a shape in which the particulate polymer is scattered, and the polymerization ratio of the particulate polymer is proportional to the molar ratio of the monomer added for the polymerization reaction in the liquid to the oxidizing agent in the initial stage. Is increased or decreased. Due to the irregularities formed of the conductive polymer particles, the bonding surface at which the cathode conductor layer and the conductive polymer layer are in contact with each other is increased, so that the ESR and LC failure rate of the solid electrolytic capacitor are reduced.

【0038】さらに、陰極導体層と導電性高分子層とが
接触する接合面を増大させるために、導電性高分子層に
含有される導電性ポリマー粒子の寸法を100μm以下
とするのが好ましい。導電性ポリマー粒子の重量は、導
電性高分子層の重量の30%以下であるのが、さらに好
ましい。
Further, in order to increase the bonding surface at which the cathode conductor layer and the conductive polymer layer come into contact with each other, it is preferable that the size of the conductive polymer particles contained in the conductive polymer layer be 100 μm or less. More preferably, the weight of the conductive polymer particles is 30% or less of the weight of the conductive polymer layer.

【0039】具体的には、モノマーとして、複素環式有
機化合物又は芳香族有機化合物として用いるのが好まし
い。さらに、具体的には、モノマーとして、ピロール、
ピロールの誘導体、チオフェン、チオフェンの誘導体、
フラン、フランの誘導体、セレノフェン、セレノフェン
の誘導体、アニリン、アニリンの誘導体、フェニレン、
フェニレンの誘導体、ナフタレン、ナフタレンの誘導
体、アントラセン、アントラセンの誘導体、ピレン、ピ
レンの誘導体、アズレン、アズレンの誘導体、及び3,
4−エチレンジオキシチオフェン等から選択されたもの
であるのが好ましい。さらに、酸化剤として、3価の鉄
イオンの錯体等を用いるのが好ましい。このような酸化
剤及びモノマーから形成されたポリマー粒子は、陰極導
体層と導電性高分子層とが接触する接合面を増大させる
ことができる。
Specifically, it is preferable to use a monomer as a heterocyclic organic compound or an aromatic organic compound. Further, specifically, as a monomer, pyrrole,
Pyrrole derivatives, thiophenes, thiophene derivatives,
Furan, furan derivatives, selenophene, selenophene derivatives, aniline, aniline derivatives, phenylene,
Phenylene derivatives, naphthalene, naphthalene derivatives, anthracene, anthracene derivatives, pyrene, pyrene derivatives, azulene, azulene derivatives, and 3,
It is preferably selected from 4-ethylenedioxythiophene and the like. Further, it is preferable to use a trivalent iron ion complex or the like as the oxidizing agent. The polymer particles formed from such an oxidizing agent and a monomer can increase the bonding surface where the cathode conductor layer and the conductive polymer layer come into contact.

【0040】以下、上述した方法で形成した導電性高分
子層を備えている固体電解コンデンサについて具体的に
説明する。固体電解コンデンサの陽極導体として、タン
タル、アルミニウム、チタン、ニオブ、ジルコニウム、
亜鉛等の弁作用を有する金属が用いられる。また、静電
容量を大きくするため、陽極導体は、上記金属の微粒子
からなる焼結体、又はエッチング等の拡面処理を施した
金属箔であることが好ましい。陽極導体の表面には、公
知の電気化学的な陽極酸化法によって形成された誘電体
層が形成されている。
Hereinafter, a solid electrolytic capacitor having a conductive polymer layer formed by the above-described method will be specifically described. As anode conductors for solid electrolytic capacitors, tantalum, aluminum, titanium, niobium, zirconium,
A metal having a valve action such as zinc is used. Further, in order to increase the capacitance, the anode conductor is preferably a sintered body made of fine particles of the above metal, or a metal foil that has been subjected to a surface enlargement treatment such as etching. On the surface of the anode conductor, a dielectric layer formed by a known electrochemical anodic oxidation method is formed.

【0041】さらに、誘電体層上には固体電解質層が形
成されている。固体電解質層としては、二酸化マンガン
等の導電性酸化物又は導電性高分子化合物が用いられ
る。
Further, a solid electrolyte layer is formed on the dielectric layer. As the solid electrolyte layer, a conductive oxide such as manganese dioxide or a conductive polymer compound is used.

【0042】さらに、固体電解質層上には、上記の方法
で形成された導電性高分子層を介して陰極導体層が形成
されている。通常、陰極導体層は、カーボン層と銀ペー
スト層とから構成されており、カーボン層は、銀ペース
ト層と導電性高分子層との密着性を向上させるため、銀
ペーストと導電性高分子層との間に介在している。この
陰極導体層は、導電性高分子層を形成した陽極導体をカ
ーボン微粒子が含有されたサスペンション水性液に浸漬
し、導電性高分子層上にサスペンション水性液を塗布し
た後、水分を乾燥、固化させ、カーボン層を形成し、さ
らに前記カーボン層を形成した陽極導体を、銀ペイント
液中に浸漬した後、乾燥、固化させること銀ペースト層
を形成することで完成する。なお、陰極導体層は、銀ペ
ースト層のみから形成されるものであってもよい。
Further, a cathode conductor layer is formed on the solid electrolyte layer via the conductive polymer layer formed by the above method. Usually, the cathode conductor layer is composed of a carbon layer and a silver paste layer, and the carbon layer is formed of a silver paste and a conductive polymer layer in order to improve the adhesion between the silver paste layer and the conductive polymer layer. And intervenes between them. The cathode conductor layer is formed by immersing the anode conductor on which the conductive polymer layer is formed in a suspension aqueous solution containing fine carbon particles, applying the suspension aqueous solution on the conductive polymer layer, and then drying and solidifying the water. Then, a carbon layer is formed, and the anode conductor having the carbon layer formed thereon is immersed in a silver paint solution, and then dried and solidified to form a silver paste layer. In addition, the cathode conductor layer may be formed only from the silver paste layer.

【0043】上記実施の形態の固体電解コンデンサは、
誘電体層と陰極導体層とを間に電解質と導電性高分子層
とを備えた構造であるが本発明はこれに限定されるもの
ではなく、誘電体層上に上述した方法で導電性高分子層
を形成し、この導電性高分子層上に陰極導体層を形成し
たものであってもよい。
The solid electrolytic capacitor of the above embodiment is
Although the structure has an electrolyte and a conductive polymer layer between the dielectric layer and the cathode conductor layer, the present invention is not limited to this. A molecular layer may be formed, and a cathode conductor layer may be formed on the conductive polymer layer.

【0044】[0044]

【実施例】以下に、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0045】(実施例1)実施例1として、図2及び図
3に示すタンタル電解コンデンサ17を作製した。詳細
には、固体電解質層として導電性高分子化合物であるポ
リピロールを使用し、弁金属であるタンタルの微粉末焼
結体を陽極導体とし、導電性高分子層の形成方法として
は化学酸化重合法を採用した。
Example 1 As Example 1, a tantalum electrolytic capacitor 17 shown in FIGS. 2 and 3 was manufactured. Specifically, polypyrrole, a conductive polymer compound, is used as the solid electrolyte layer, a fine powder sintered body of tantalum, which is a valve metal, is used as the anode conductor, and the conductive polymer layer is formed by a chemical oxidation polymerization method. It was adopted.

【0046】最初に、約70000μF・V/gのタン
タル微粉末を陽極引き出し用タンタルワイヤーリードと
ともに成形焼結して、寸法1.4mm×3.0mm×
3.8mmのタンタル焼結体1を形成した。次に、タン
タル焼結体1をリン酸水溶液中化成電圧30Vで化成し
て、表面に誘電体層2を形成し、洗浄、乾燥を経て化成
済焼結体ペレットとした。
First, a fine tantalum powder of about 70,000 μF · V / g was molded and sintered together with a tantalum wire lead for drawing out an anode to have dimensions of 1.4 mm × 3.0 mm ×
A 3.8 mm tantalum sintered body 1 was formed. Next, the tantalum sintered body 1 was formed in a phosphoric acid aqueous solution at a formation voltage of 30 V, a dielectric layer 2 was formed on the surface, and the formed sintered body pellets were obtained through washing and drying.

【0047】次に、イソプロピルアルコールを10vo
l%含有する水溶液中に、ピロールを0.1mol/l
となるように溶解させ、モノマー溶液を調製した。さら
に、イソプロピルアルコールを10vol%含有する水
溶液に、酸化剤として硫酸鉄(III) を0.1mol/
l、その他の添加物としてアルキルナフタレンスルホン
酸イオンのNa塩を0.05mol/lとなるように溶
解させ、酸化剤溶液を調製した。
Next, isopropyl alcohol was added to 10 vol.
0.1 mol / l pyrrole in an aqueous solution containing 1%
And a monomer solution was prepared. Further, an aqueous solution containing 10 vol% of isopropyl alcohol was added with 0.1 mol / mol of iron (III) sulfate as an oxidizing agent.
1) As another additive, a sodium salt of alkylnaphthalenesulfonate ion was dissolved at 0.05 mol / l to prepare an oxidizing agent solution.

【0048】続いて、先に作製した化成済焼結体ペレッ
トを、モノマー溶液に浸漬した後、酸化剤溶液に浸漬し
て、焼結体ペレットの空孔内部の誘電体層2の表面に導
電性高分子重合体を形成し、洗浄及び乾燥を行った。こ
の操作を30回繰り返し、適時0.1%リン酸水溶液中
で、化成電圧30Vを印加して、誘電体層2を修復する
再化成を行った。次に、約90℃の純水中で焼結体ペレ
ットを洗浄し、さらに、約120℃の雰囲気中で乾燥を
行い、十分な量の良質な固体電解質層3を誘電体層2上
に形成した。
Subsequently, the chemically-formed sintered compact pellet prepared above is immersed in a monomer solution, and then immersed in an oxidizing agent solution, so that the surface of the dielectric layer 2 inside the pores of the sintered pellet is electrically conductive. A water-soluble polymer was formed, washed and dried. This operation was repeated 30 times, and a chemical conversion voltage of 30 V was appropriately applied in a 0.1% phosphoric acid aqueous solution to perform re-chemical formation for repairing the dielectric layer 2. Next, the sintered body pellets are washed in pure water at about 90 ° C., and further dried in an atmosphere at about 120 ° C. to form a sufficient amount of a high quality solid electrolyte layer 3 on the dielectric layer 2. did.

【0049】次に、エチレンジオキシチオフェン(以
下、EDTと呼ぶ)1.0g、p−トルエンスルホン酸
鉄(III)40wt%を含有するn−ブタノール溶液9
5g、及びn−ブタノール17gを密栓容器中で混合
し、雰囲気温度40℃で24時間重合反応をさせ、懸濁
液を調製した。
Next, an n-butanol solution 9 containing 1.0 g of ethylenedioxythiophene (hereinafter referred to as EDT) and 40 wt% of iron (III) p-toluenesulfonate was prepared.
5 g and 17 g of n-butanol were mixed in a tightly-sealed container, and a polymerization reaction was performed at an ambient temperature of 40 ° C. for 24 hours to prepare a suspension.

【0050】さらに、約5℃〜15℃に冷却した懸濁液
113gに対し、EDTを8g添加し、スターラーで攪
拌して重合液を調製し再度約5〜15℃に冷却し、固体
電解質層3を形成した焼結体ペレットを重合液に3分間
浸漬させた。この重合液から焼結体ペレットを引き上げ
た後、30℃〜40℃の雰囲気中で溶媒を気化させ、ポ
リマー前駆体形成を行った。次に、80℃〜160℃の
雰囲気中で20分間、EDTポリマーの重合促進させ
た。このEDT重合工程を1〜4回繰り返した。次に、
焼結体ペレットをイソプロピルアルコール中で洗浄し、
0.1%リン酸―10%イソプロピルアルコールの水溶
液中で、化成電圧20Vを印加して、誘電体層2の再化
成を行い、さらに、40℃〜90℃の純水中で焼結体ペ
レットを洗浄し、室温〜120℃の雰囲気中で焼結体ペ
レットを乾燥させた。このようにして、EDTポリマー
からなる導電性高分子層4を形成した。
Further, 8 g of EDT was added to 113 g of the suspension cooled to about 5 ° C. to 15 ° C., and the mixture was stirred with a stirrer to prepare a polymerization solution. 3 was immersed in the polymerization liquid for 3 minutes. After pulling up the sintered body pellets from the polymerization solution, the solvent was vaporized in an atmosphere at 30 ° C. to 40 ° C. to form a polymer precursor. Next, the polymerization of the EDT polymer was promoted in an atmosphere at 80 ° C. to 160 ° C. for 20 minutes. This EDT polymerization step was repeated 1 to 4 times. next,
Washing the sintered pellet in isopropyl alcohol,
A chemical conversion voltage of 20 V is applied in an aqueous solution of 0.1% phosphoric acid-10% isopropyl alcohol to re-form the dielectric layer 2, and further, the sintered body pellet is purified in pure water at 40 ° C. to 90 ° C. Was washed, and the sintered body pellets were dried in an atmosphere at room temperature to 120 ° C. Thus, the conductive polymer layer 4 made of the EDT polymer was formed.

【0051】次に、導電性高分子層4を形成した焼結体
ペレットを、カーボン微粒子を含有する水性サスペンシ
ョン液に浸漬し、導電性高分子層4の表面に水性サスペ
ンション液を塗布し、130℃に30分間放置し、乾
燥、固化させてカーボン層9を形成した。さらにカーボ
ン層9を形成した焼結体ペレットを、同様に銀ペイント
液中に浸漬した後、145℃で1時間乾燥、固化させて
銀ペイント層10を形成した。こうして、カーボン層9
と銀ペイント層10からなる陰極導体層5が完成させ、
タンタル固体電解コンデンサ素子16を完成させた。
Next, the sintered body pellet having the conductive polymer layer 4 formed thereon is immersed in an aqueous suspension liquid containing fine carbon particles, and the surface of the conductive polymer layer 4 is coated with the aqueous suspension liquid. It was left at 30 ° C. for 30 minutes, dried and solidified to form a carbon layer 9. Furthermore, the sintered compact having the carbon layer 9 formed thereon was similarly immersed in a silver paint solution, and then dried and solidified at 145 ° C. for 1 hour to form a silver paint layer 10. Thus, the carbon layer 9
And the cathode conductor layer 5 composed of the silver paint layer 10 is completed,
The tantalum solid electrolytic capacitor element 16 was completed.

【0052】次に、導電性接着剤12を用いて陰極側を
陰極外部引出し端子13に接続し、陽極側はあらかじめ
取り付けてあったタンタルワイヤーを陽極外部引出し端
子14に溶接した。さらにコンデンサ素子16をエポキ
シ樹脂15で外装し、固体電解コンデンサ17を作製し
た。作製したコンデンサのESRをインピーダンスアナ
ライザで測定し、さらに印加電圧とし6V、30秒後の
漏れ電流(LC)を測定した。
Next, the cathode side was connected to the cathode external lead-out terminal 13 using the conductive adhesive 12, and the tantalum wire previously attached to the anode side was welded to the anode external lead-out terminal 14. Further, the capacitor element 16 was covered with an epoxy resin 15 to produce a solid electrolytic capacitor 17. The ESR of the produced capacitor was measured with an impedance analyzer, and the applied voltage was 6 V, and the leakage current (LC) after 30 seconds was measured.

【0053】(実施例2)実施例2として、以下のよう
にタンタル電解コンデンサを作製した。まず、上記実施
例1と同一の焼結体ペレットに、実施例1と同様の方法
で誘電体層を形成し、化成済焼結体ペレットを作製し
た。次に、EDT1.5g、p−トルエンスルホン酸鉄
(III)を40wt%含有するn−ブタノール溶液95
g、及びn−ブタノールを17g密栓容器中で混合し、
雰囲気温度40℃で24時間重合反応を行い懸濁液を調
製した。
(Example 2) As Example 2, a tantalum electrolytic capacitor was manufactured as follows. First, a dielectric layer was formed on the same sintered pellet as in Example 1 in the same manner as in Example 1 to produce a chemically-formed sintered pellet. Next, an n-butanol solution 95 containing 1.5 g of EDT and 40 wt% of iron (III) p-toluenesulfonate was used.
g and n-butanol in a 17 g sealed vessel,
A polymerization reaction was performed at an ambient temperature of 40 ° C. for 24 hours to prepare a suspension.

【0054】さらに、約5〜15℃に冷却した懸濁液1
13gに対し、EDTを8g添加し、スターラーで攪拌
して重合液を調製し、この重合液を再度に約5〜約15
℃に冷却し、化成済み焼結体ペレットを20分間浸漬さ
せた。その後、この焼結体ペレットを液跳ねなどが無い
ように重合液から引き上げ、約40℃の雰囲気中で約3
時間の重合反応を行い、室温雰囲気で取り出して約10
分間放置冷却して、EDTを重合させた。このEDT重
合工程を5〜10回繰り返した。次に、焼結体ペレット
をイソプロピルアルコール中で洗浄し、0.1wt%リ
ン酸を含有する10wt%イソプロピルアルコールの水
溶液中で、化成電圧20Vを、10分間印加して、誘電
体層の再化成を行い、さらに40〜90℃の純水中で洗
浄し、室温〜120℃の雰囲気中で乾燥させた。このよ
うにして、EDTポリマーからなる導電性高分子化合物
からなる電解質層を形成した。次に、カーボン層、銀ペ
イント層を実施例1と同様にして形成し、タンタル固体
電解コンデンサを作製し、ESR、LCを測定した。
Further, the suspension 1 cooled to about 5 to 15 ° C.
8 g of EDT was added to 13 g, and the mixture was stirred with a stirrer to prepare a polymerization solution.
C., and the formed sintered compact pellets were immersed for 20 minutes. Thereafter, the sintered pellets are pulled up from the polymerization solution so as not to cause liquid splashing and the like, and the pellets are placed in an atmosphere of about 40 ° C. for about 3 hours.
After a polymerization reaction for about 10 hours, take out at room temperature
After leaving to cool for minutes, the EDT was polymerized. This EDT polymerization step was repeated 5 to 10 times. Next, the sintered body pellet is washed in isopropyl alcohol, and a formation voltage of 20 V is applied in an aqueous solution of 10 wt% isopropyl alcohol containing 0.1 wt% phosphoric acid for 10 minutes to re-form the dielectric layer. , And further washed in pure water at 40 to 90 ° C, and dried in an atmosphere at room temperature to 120 ° C. Thus, an electrolyte layer made of a conductive polymer compound made of an EDT polymer was formed. Next, a carbon layer and a silver paint layer were formed in the same manner as in Example 1, a tantalum solid electrolytic capacitor was manufactured, and ESR and LC were measured.

【0055】(比較例1)比較例1として、以下のよう
にタンタル固体電解コンデンサを作製した。上記実施例
1と同一の焼結体ペレットを用いて、実施例1と同様の
方法で誘電体層を形成した。さらに、固体電解質として
ポリピロールを、焼結体ペレットの空孔内部の誘電体層
上に形成した。
(Comparative Example 1) As Comparative Example 1, a tantalum solid electrolytic capacitor was manufactured as follows. A dielectric layer was formed in the same manner as in Example 1 using the same sintered pellets as in Example 1 above. Further, polypyrrole was formed as a solid electrolyte on the dielectric layer inside the pores of the sintered pellet.

【0056】次に、EDT1mol/lと、p−トルエ
ンスルホン酸鉄(III)1mol/lを含有するn−ブ
タノール溶液とを混合した重合液中に、固体電解質層を
形成した焼結体ペレットを3分間浸漬した。続いて、焼
結体ペレットを重合液から引き上げ、室温〜40℃の雰
囲気中で15分間放置し、続いて約80℃〜160℃の
雰囲気中で20分間放置してEDTの重合形成を行っ
た。このEDT重合工程を2〜5回繰り返し、導電性高
分子層を形成した。以下実施例1と同様にカーボン層と
銀ペイント層とを形成し、陽陰極端子の取り付け、エポ
キシ外装樹脂によるモールド形成を行い、比較例1の固
体電解コンデンサを作製し、ESR、LCを測定した。
Next, the sintered pellets on which the solid electrolyte layer was formed were mixed with a polymerization solution obtained by mixing 1 mol / l of EDT and an n-butanol solution containing 1 mol / l of iron (III) p-toluenesulfonate. Immerse for 3 minutes. Subsequently, the sintered body pellets were pulled out of the polymerization liquid, and left for 15 minutes in an atmosphere at room temperature to 40 ° C., and then left for 20 minutes in an atmosphere at about 80 ° C. to 160 ° C. to perform polymerization formation of EDT. . This EDT polymerization step was repeated 2 to 5 times to form a conductive polymer layer. Thereafter, a carbon layer and a silver paint layer were formed in the same manner as in Example 1, the positive and negative electrode terminals were attached, and a mold was formed using an epoxy exterior resin. A solid electrolytic capacitor of Comparative Example 1 was produced, and ESR and LC were measured. .

【0057】(比較例2)比較例2として、以下のよう
にタンタル固体電解コンデンサを作製した。比較例2の
タンタル固体電解コンデンサの電解質層は、EDT10
g、p−トルエンスルホン酸鉄(III)95g、及びn
−ブタノール17gを混合調製し、これを重合液として
用いて形成した。それ以外の製造方法は、上記実施例2
と同じである。さらに、比較例2の固体電解コンデンサ
のESR、LCを測定した。
(Comparative Example 2) As Comparative Example 2, a tantalum solid electrolytic capacitor was manufactured as follows. The electrolyte layer of the tantalum solid electrolytic capacitor of Comparative Example 2 was EDT10
g, 95 g of iron (III) p-toluenesulfonate, and n
-17 g of butanol was mixed and prepared, and this was formed as a polymerization solution. Other manufacturing methods are described in Example 2 above.
Is the same as Further, the ESR and LC of the solid electrolytic capacitor of Comparative Example 2 were measured.

【0058】(比較例3)比較例3として、以下のよう
にタンタル固体電解コンデンサを作製した。上記実施例
1と同一の焼結体ペレットを用いて、実施例1と同様の
方法で誘電体層を形成した。さらに、固体電解質として
ポリピロールを焼結体ペレットの空孔内部の誘電体層上
に形成した。次に、EDT1mol/lとp−トルエン
スルホン酸鉄(III)1mol/lを含有するn−ブタ
ノール溶液とを混合し、約5℃で90時間攪拌しなが
ら、EDTを重合させた重合液中に、固体電解質層を形
成した焼結体ペレットを3分間浸漬させた。さらに、焼
結体ペレットを重合液から引き上げた後、室温〜40℃
の雰囲気中で15分間放置し、続いて約80〜160℃
の雰囲気中で20分間放置してEDT重合形成を行っ
た。このEDT重合工程を2〜5回繰り返し、導電性高
分子層を形成した。以下、上記実施例1と同様にカーボ
ン層と銀ペイント層とを形成し、陽陰極端子の取り付
け、エポキシ外装樹脂によるモールド形成を行い、比較
例3の固体電解コンデンサを作製し、ESR、LCを測
定した。
Comparative Example 3 As Comparative Example 3, a tantalum solid electrolytic capacitor was manufactured as follows. A dielectric layer was formed in the same manner as in Example 1 using the same sintered pellets as in Example 1 above. Furthermore, polypyrrole was formed as a solid electrolyte on the dielectric layer inside the pores of the sintered pellet. Next, 1 mol / l of EDT and an n-butanol solution containing 1 mol / l of iron (III) p-toluenesulfonate were mixed, and the mixture was stirred at about 5 ° C. for 90 hours. Then, the sintered body pellet on which the solid electrolyte layer was formed was immersed for 3 minutes. Furthermore, after pulling up the sintered compact pellets from the polymerization liquid, room temperature to 40 ° C.
For 15 minutes, followed by about 80-160 ° C
The mixture was allowed to stand for 20 minutes in the atmosphere described above to form EDT polymerization. This EDT polymerization step was repeated 2 to 5 times to form a conductive polymer layer. Thereafter, a carbon layer and a silver paint layer were formed in the same manner as in Example 1 described above, the positive and negative electrode terminals were attached, and a mold was formed using an epoxy exterior resin, to produce a solid electrolytic capacitor of Comparative Example 3, and ESR and LC were measured. It was measured.

【0059】上記実施例1、2、及び比較例1〜3の固
体電解コンデンサのESR及びLC不良率を以下の表1
に示す。
The ESR and LC defect rates of the solid electrolytic capacitors of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 1 below.
Shown in

【0060】[0060]

【表1】 [Table 1]

【0061】ESR及びLC不良率を比較すると、実施
例の固体電解コンデンサは、比較例の固体電解コンデン
サよりも優れていることは、表1から明らかである。
Comparing the ESR and the LC defect rate, it is clear from Table 1 that the solid electrolytic capacitors of the examples are superior to the solid electrolytic capacitors of the comparative examples.

【0062】[0062]

【発明の効果】以上に説明したように、本発明の電解コ
ンデンサの製造方法は、導電性ポリマー粒子を含有する
懸濁液に導電性ポリマーの基本単位であるモノマーを添
加して重合液を調製し、誘電体層が形成されている陽極
導体を重合液に浸漬して、該誘電体層上に導電性ポリマ
ー粒子を含有する導電性高分子層を形成して、この導電
性高分子層を固体電解質層とする固体電解コンデンサを
製造するものである。本発明の製造方法によれば、ES
Rの優れた電解コンデンサを生産性よく製造することが
できる。
As described above, according to the method for producing an electrolytic capacitor of the present invention, a polymerization solution is prepared by adding a monomer which is a basic unit of a conductive polymer to a suspension containing conductive polymer particles. Then, the anode conductor on which the dielectric layer is formed is immersed in a polymerization solution to form a conductive polymer layer containing conductive polymer particles on the dielectric layer. This is to manufacture a solid electrolytic capacitor having a solid electrolyte layer. According to the manufacturing method of the present invention, ES
An electrolytic capacitor having excellent R can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の固体電解コンデンサの
導電性高分子層を形成する際に用いられるモノマー溶液
と酸化剤溶液とからなる混合液中の導電性ポリマー粒子
濃度を示す。
FIG. 1 shows the concentration of conductive polymer particles in a mixture of a monomer solution and an oxidizing agent solution used when forming a conductive polymer layer of a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】 本発明の実施の形態にかかる固体電解コンデ
ンサの拡大断面図を示す。
FIG. 2 is an enlarged sectional view of the solid electrolytic capacitor according to the embodiment of the present invention.

【図3】 本発明の実施の形態にかかる固体電解コンデ
ンサの断面図を示す。
FIG. 3 is a cross-sectional view of the solid electrolytic capacitor according to the embodiment of the present invention.

【図4】 固体電解コンデンサの導電性高分子層と陰極
導体層との接合界面の拡大断面図を示す。
FIG. 4 is an enlarged cross-sectional view of a bonding interface between a conductive polymer layer and a cathode conductor layer of a solid electrolytic capacitor.

【図5】 固体電解コンデンサの導電性高分子層を形成
する際に用いられるモノマー溶液と酸化剤溶液とからな
る混合液中の導電性ポリマー粒子濃度を示す。
FIG. 5 shows the concentration of conductive polymer particles in a mixture of a monomer solution and an oxidant solution used when forming a conductive polymer layer of a solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1…陽極導体、2…誘電体層、3…電解質層、4…導電
性高分子層、5陰極導体層、9…カーボン層、10…銀
ペースト層。
DESCRIPTION OF SYMBOLS 1 ... anode conductor, 2 ... dielectric layer, 3 ... electrolyte layer, 4 ... conductive polymer layer, 5 cathode conductor layer, 9 ... carbon layer, 10 ... silver paste layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻川 義彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 橋本 英雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 棚橋 正和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 加藤 寿孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Yoshihiko Tsujikawa, 1006 Kadoma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Hideo Hashimoto 1006 Kadoma, Kadoma, Kadoma, Osaka Pref. 72) Inventor Masakazu Tanahashi 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshitaka Kato 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 弁金属からなる陽極導体、該陽極導体の
表面に形成された誘電体層、該誘電体層の表面に形成さ
れた固体電解質層、及び該固体電解質層の表面に設けら
れた陰極導体層を有する固体電解コンデンサの製造方法
において、 上記製造方法は、導電性ポリマー粒子を含有する懸濁液
に該導電性ポリマーの基本単位であるモノマーを添加し
て重合液を調製する重合液調製工程と、 上記誘電体層が形成されている上記陽極導体を上記重合
液に浸漬して、該誘電体層上に上記導電性ポリマー粒子
を含有する導電性高分子層を形成する導電性高分子層形
成工程とを含んでいて、 上記導電性高分子層を上記固体電解質層とする固体電解
コンデンサを製造することを特徴とする固体電解コンデ
ンサの製造方法。
1. An anode conductor made of a valve metal, a dielectric layer formed on a surface of the anode conductor, a solid electrolyte layer formed on a surface of the dielectric layer, and a surface provided on the surface of the solid electrolyte layer. A method for producing a solid electrolytic capacitor having a cathode conductor layer, wherein the production method comprises adding a monomer that is a basic unit of the conductive polymer to a suspension containing the conductive polymer particles to prepare a polymerization solution. A preparing step, immersing the anode conductor on which the dielectric layer is formed in the polymerization solution to form a conductive polymer layer containing the conductive polymer particles on the dielectric layer; A method for producing a solid electrolytic capacitor, comprising: a step of forming a molecular layer; and producing a solid electrolytic capacitor using the conductive polymer layer as the solid electrolyte layer.
【請求項2】 弁金属からなる陽極導体、該陽極導体の
表面に形成された誘電体層、該誘電体層の表面に形成さ
れた固体電解質層、及び該固体電解質層の表面に設けら
れた陰極導体層を有する固体電解コンデンサの製造方法
において、 導電性ポリマー粒子を含有する懸濁液に該導電性ポリマ
ーの基本単位であるモノマーを添加して重合液を調製す
る重合液調製工程と、 上記誘電体層を介して上記電解質層が形成されている上
記陽極導体を、上記重合液に浸漬して、該電解質層上に
上記導電性ポリマー粒子を含有する導電性高分子層を形
成する導電性高分子層形成工程とを含んでいることを特
徴とする固体電解コンデンサの製造方法。
2. An anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, a solid electrolyte layer formed on the surface of the dielectric layer, and a surface provided on the surface of the solid electrolyte layer. In a method for manufacturing a solid electrolytic capacitor having a cathode conductor layer, a polymerization liquid preparation step of adding a monomer that is a basic unit of the conductive polymer to a suspension containing conductive polymer particles to prepare a polymerization liquid; The anode conductor on which the electrolyte layer is formed via a dielectric layer is immersed in the polymerization solution to form a conductive polymer layer containing the conductive polymer particles on the electrolyte layer. A method for manufacturing a solid electrolytic capacitor, comprising a step of forming a polymer layer.
【請求項3】 上記重合液は、上記モノマーを含有する
モノマー溶液と酸化作用を有する酸化剤溶液と上記懸濁
液とが調製されたもの、又は上記モノマーを含有するモ
ノマー溶液と酸化作用を有する上記懸濁液とが調製され
たもののいずれかであることを特徴とする請求項1記載
の固体電解コンデンサの製造方法。
3. The polymerization liquid is prepared by preparing a monomer solution containing the monomer, an oxidizing agent solution having an oxidizing action and the suspension, or has a oxidizing action with a monomer solution containing the monomer. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein said suspension is one of prepared ones.
【請求項4】 上記重合液は、上記モノマーを含有する
モノマー溶液と酸化作用を有する酸化剤溶液と上記懸濁
液とが調製されたもの、又は上記モノマーを含有するモ
ノマー溶液と酸化作用を有する上記懸濁液とが調製され
たもののいずれかであることを特徴とする請求項2記載
の固体電解コンデンサの製造方法。
4. The polymerization liquid is prepared by preparing a monomer solution containing the monomer, an oxidizing agent solution having an oxidizing action and the suspension, or has a oxidizing action with a monomer solution containing the monomer. 3. The method for producing a solid electrolytic capacitor according to claim 2, wherein the suspension is one of prepared ones.
【請求項5】 上記懸濁液は、上記モノマーを含有する
モノマー溶液と酸化剤を含有する酸化剤溶液とを混合さ
せ、上記モノマーを酸化重合反応させ、該酸化重合反応
が完了するまで上記導電性ポリマーを生成させたもので
あることを特徴とする請求項1ないし4のいずれか一つ
に記載の固体電解コンデンサの製造方法。
5. The suspension is obtained by mixing a monomer solution containing the monomer and an oxidizing agent solution containing an oxidizing agent, and subjecting the monomer to an oxidative polymerization reaction. The method for producing a solid electrolytic capacitor according to any one of claims 1 to 4, wherein a conductive polymer is generated.
【請求項6】 上記モノマー溶液と上記酸化剤溶液との
混合液中の上記モノマーのモル数を、上記酸化剤のモル
数の0.1倍ないし0.9倍とすることを特徴とする請
求項5記載の固体電解コンデンサの製造方法。
6. The method according to claim 1, wherein the number of moles of the monomer in the mixture of the monomer solution and the oxidizing agent solution is 0.1 to 0.9 times the number of moles of the oxidizing agent. Item 6. The method for producing a solid electrolytic capacitor according to Item 5.
【請求項7】 −5℃ないし70℃の雰囲気温度で上記
懸濁液を調製することを特徴とする請求項5又は6記載
の固体電解コンデンサの製造方法。
7. The method for producing a solid electrolytic capacitor according to claim 5, wherein the suspension is prepared at an ambient temperature of −5 ° C. to 70 ° C.
【請求項8】 上記酸化剤が、3価の鉄イオンの錯体で
あることを特徴とする請求項5ないし7のいずれか一つ
に記載の固体電解コンデンサの製造方法。
8. The method according to claim 5, wherein the oxidizing agent is a complex of trivalent iron ions.
【請求項9】 上記導電性高分子層は、上記陰極導体に
密接するように可塑性又は柔軟性の少なくともいずれか
一方を備えていることを特徴とする請求項1ないし8の
いずれか一つに記載の固体電解コンデンサの製造方法。
9. The method according to claim 1, wherein the conductive polymer layer has at least one of plasticity and flexibility so as to be in close contact with the cathode conductor. The manufacturing method of the solid electrolytic capacitor described in the above.
【請求項10】 上記導電性高分子層に含有される上記
導電性ポリマー粒子の重量は、該導電性高分子層の重量
の30%以下であることを特徴とする請求項1ないし9
のいずれか一つに記載の固体電解コンデンサの製造方
法。
10. The conductive polymer layer according to claim 1, wherein the weight of the conductive polymer particles contained in the conductive polymer layer is 30% or less of the weight of the conductive polymer layer.
The method for producing a solid electrolytic capacitor according to any one of the above.
【請求項11】 上記導電性ポリマー粒子の寸法が、1
00μm以下であることを特徴とする請求項1ないし1
0のいずれか一つに記載の固体電解コンデンサの製造方
法。
11. The conductive polymer particles having a size of 1
2. The thickness is not more than 00 μm.
0. The method for manufacturing a solid electrolytic capacitor according to any one of the above items.
【請求項12】 上記モノマーが、複素環式有機化合物
又は芳香族有機化合物であることを特徴とする請求項1
ないし11のいずれか一つに記載の固体電解コンデンサ
の製造方法。
12. The method according to claim 1, wherein the monomer is a heterocyclic organic compound or an aromatic organic compound.
12. The method for manufacturing a solid electrolytic capacitor according to any one of items 11 to 11.
【請求項13】 上記モノマーが、ピロール、ピロール
の誘導体、チオフェン、チオフェンの誘導体、フラン、
フランの誘導体、セレノフェン、セレノフェンの誘導
体、アニリン、アニリンの誘導体、フェニレン、フェニ
レンの誘導体、ナフタレン、ナフタレンの誘導体、アン
トラセン、アントラセンの誘導体、ピレン、ピレンの誘
導体、アズレン、アズレンの誘導体、及び3,4−エチ
レンジオキシチオフェンからなる群から一つ選択された
ものであることを特徴とする請求項1ないし12のいず
れか一つに記載の固体電解コンデンサの製造方法。
13. The method according to claim 13, wherein the monomer is pyrrole, a derivative of pyrrole, thiophene, a derivative of thiophene, furan,
Furan derivatives, selenophene, selenophene derivatives, aniline, aniline derivatives, phenylene, phenylene derivatives, naphthalene, naphthalene derivatives, anthracene, anthracene derivatives, pyrene, pyrene derivatives, azulene, azulene derivatives, and 3,4 The method for producing a solid electrolytic capacitor according to any one of claims 1 to 12, wherein the one is selected from the group consisting of -ethylenedioxythiophene.
【請求項14】 上記モノマーが3,4−エチレンジオ
キシチオフェンであり、上記酸化剤がp−トルエンスル
ホン酸鉄(III)であることを特徴とする請求項5ない
し8のいずれか一つに記載の固体電解コンデンサの製造
方法。
14. The method according to claim 5, wherein the monomer is 3,4-ethylenedioxythiophene, and the oxidizing agent is iron (III) p-toluenesulfonate. The manufacturing method of the solid electrolytic capacitor described in the above.
【請求項15】 上記モノマー溶液に含有される3,4
−エチレンジオキシチオフェンのモル数が、上記酸化剤
溶液に含有されるp−トルエンスルホン酸鉄(III)の
モル数の0.05倍ないし0.4倍であることを特徴とす
る請求項14記載の固体電解コンデンサの製造方法。
15. The 3,4 contained in the monomer solution
The mole number of ethylenedioxythiophene is 0.05 to 0.4 times the mole number of iron (III) p-toluenesulfonate contained in the oxidizing agent solution. The manufacturing method of the solid electrolytic capacitor described in the above.
JP03250899A 1999-02-10 1999-02-10 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3478987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03250899A JP3478987B2 (en) 1999-02-10 1999-02-10 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03250899A JP3478987B2 (en) 1999-02-10 1999-02-10 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2000232036A true JP2000232036A (en) 2000-08-22
JP3478987B2 JP3478987B2 (en) 2003-12-15

Family

ID=12360938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03250899A Expired - Fee Related JP3478987B2 (en) 1999-02-10 1999-02-10 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3478987B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025862A (en) * 2000-07-12 2002-01-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2006147900A (en) * 2004-11-22 2006-06-08 Nec Tokin Corp Manufacturing method of solid electrolytic capacitor
WO2008131018A2 (en) * 2007-04-16 2008-10-30 Kemet Electronics Corporation Process for manufacturing low esr conductive polymer based solid electrolytic capacitors
US7459519B2 (en) 2003-05-22 2008-12-02 Panasonic Corporation Method for manufacturing electrically conductive macromolecules and solid state electrolytic capacitor using electrically conductive macromolecules
JP2009000561A (en) * 2008-10-02 2009-01-08 Daiichi Shokai Co Ltd Game machine
DE102008053830A1 (en) 2007-10-30 2009-05-28 Nec Tokin Corp., Sendai Solid electrolytic capacitor with improved moisture resistance properties and method of manufacturing the same
JP2011091413A (en) * 2009-10-23 2011-05-06 Avx Corp External coating for solid electrolytic capacitor
EP2396817A1 (en) * 2009-02-12 2011-12-21 Laor Consulting LLC Sintered and nanopore electric capacitor, electrochemical capacitor and battery and method of making the same
JP2012124239A (en) * 2010-12-07 2012-06-28 Tayca Corp Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2012517113A (en) * 2009-02-05 2012-07-26 ヘレウス クレビオス ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for manufacturing an electrolytic capacitor having a polymer outer layer
KR101478235B1 (en) * 2011-07-08 2014-12-31 이터널 케미칼 컴퍼니 리미티드 Electrolytic material formulation, electrolytic material composition formed therefrom and use thereof
CN105051847A (en) * 2013-04-05 2015-11-11 昭和电工株式会社 Method for manufacturing solid electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054795A1 (en) 2004-11-19 2006-05-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025862A (en) * 2000-07-12 2002-01-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US7459519B2 (en) 2003-05-22 2008-12-02 Panasonic Corporation Method for manufacturing electrically conductive macromolecules and solid state electrolytic capacitor using electrically conductive macromolecules
JP2006147900A (en) * 2004-11-22 2006-06-08 Nec Tokin Corp Manufacturing method of solid electrolytic capacitor
WO2008131018A2 (en) * 2007-04-16 2008-10-30 Kemet Electronics Corporation Process for manufacturing low esr conductive polymer based solid electrolytic capacitors
WO2008131018A3 (en) * 2007-04-16 2008-12-18 Kemet Electronics Corp Process for manufacturing low esr conductive polymer based solid electrolytic capacitors
DE102008053830A1 (en) 2007-10-30 2009-05-28 Nec Tokin Corp., Sendai Solid electrolytic capacitor with improved moisture resistance properties and method of manufacturing the same
JP4617447B2 (en) * 2008-10-02 2011-01-26 株式会社大一商会 Game machine
JP2009000561A (en) * 2008-10-02 2009-01-08 Daiichi Shokai Co Ltd Game machine
JP2012517113A (en) * 2009-02-05 2012-07-26 ヘレウス クレビオス ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for manufacturing an electrolytic capacitor having a polymer outer layer
EP2396817A1 (en) * 2009-02-12 2011-12-21 Laor Consulting LLC Sintered and nanopore electric capacitor, electrochemical capacitor and battery and method of making the same
EP2396817A4 (en) * 2009-02-12 2014-08-20 Laor Consulting Llc Sintered and nanopore electric capacitor, electrochemical capacitor and battery and method of making the same
JP2011091413A (en) * 2009-10-23 2011-05-06 Avx Corp External coating for solid electrolytic capacitor
US8125768B2 (en) * 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
JP2012124239A (en) * 2010-12-07 2012-06-28 Tayca Corp Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
KR101478235B1 (en) * 2011-07-08 2014-12-31 이터널 케미칼 컴퍼니 리미티드 Electrolytic material formulation, electrolytic material composition formed therefrom and use thereof
CN105051847A (en) * 2013-04-05 2015-11-11 昭和电工株式会社 Method for manufacturing solid electrolytic capacitor
US9640325B2 (en) 2013-04-05 2017-05-02 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3478987B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
US6154358A (en) Solid electrolytic capacitor using a conducting polymer
EP0637043B1 (en) Solid electrolytic capacitor and method for manufacturing the same
EP1915764A1 (en) Polymer based solid state capacitors and a method of manufacturing them
JP3478987B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11121281A (en) Method for manufacturing solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JPH09306788A (en) Capacitor and manufacture thereof
JP2001110685A (en) Solid electrolytic capacitor
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010161182A (en) Solid-state electrolytic capacitor and manufacturing method thereof
JP3416061B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2002008946A (en) Method of manufacturing solid electrolytic capacitor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000297142A (en) Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same
JPH09148193A (en) Manufacture of solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP3184337B2 (en) Solid electrolytic capacitors
JPH09213575A (en) Production of solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000040643A (en) Solid electrolytic capacitor and its manufacture
JPH03285321A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees