JPH05144678A - Solid electrolytic capacitor and its manufacture - Google Patents

Solid electrolytic capacitor and its manufacture

Info

Publication number
JPH05144678A
JPH05144678A JP33114291A JP33114291A JPH05144678A JP H05144678 A JPH05144678 A JP H05144678A JP 33114291 A JP33114291 A JP 33114291A JP 33114291 A JP33114291 A JP 33114291A JP H05144678 A JPH05144678 A JP H05144678A
Authority
JP
Japan
Prior art keywords
sintered body
formation
lead dioxide
solid electrolytic
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33114291A
Other languages
Japanese (ja)
Other versions
JP2773499B2 (en
Inventor
Hiroshi Adachi
宏 安達
Kazuyuki Iida
和幸 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP3331142A priority Critical patent/JP2773499B2/en
Publication of JPH05144678A publication Critical patent/JPH05144678A/en
Application granted granted Critical
Publication of JP2773499B2 publication Critical patent/JP2773499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve frequency characteristics by forming a solid electrolytic layer composed of mixture of manganese dioxide and lead dioxide. CONSTITUTION:Fine powder of tantalum is molded in a rectangular form and sintered. A sintered body is formed and dipped in a phosphoric acid solution. An anodic oxidation coating film is formed by performing formation. After the sintered body is dipped in manganese nitrate solution, thermal decomposition is performed. After the thermal decompostion, formation is again performed. After the formation is again performed, the sintered body is dipped in manganese nitrate suspension acqueous solution mixed with lead dioxide. Thermal decomposition is performed and formation is again performed. After the formation is performed, the sintered body is dipped in manganse nitrate aqueous solution mixed with lead dioxide, thermal decomposition is performed, and formation is again performed to form a solid electrolytic layer. Thereby conductivity of the electrolytic layer can be lowered, frequency characteristics of equivalent series resistance or the like can be improved, and characteristics of tandelta and leak current are enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサ及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近の電子回路は高周波で動作するよう
になっている。そのためにこの電子回路に組み込むコン
デンサも周波数特性、特に容量変化率や特価直列抵抗
(以下ESRという)に優れた性能が要求されている。
2. Description of the Related Art Modern electronic circuits are designed to operate at high frequencies. Therefore, a capacitor incorporated in this electronic circuit is also required to have excellent performance in frequency characteristics, particularly in the rate of change in capacitance and the special series resistance (hereinafter referred to as ESR).

【0003】このコンデンサの一つである固体電解コン
デンサは、タンタルやアルミニウム等の弁作用金属の微
粉末を焼結した焼結体を用いる。そしてこの焼結体に電
気化学的に酸化被膜を設け、次いで二酸化マンガンから
なる固体電解質層を設ける。この固体電解質層は、二酸
化マンガン水溶液を含浸し、熱分解法で形成する。固体
電解質層を形成後、その表面にカーボン及び銀ペースト
を順次塗布して陰極層とする。
A solid electrolytic capacitor, which is one of the capacitors, uses a sintered body obtained by sintering fine powder of a valve metal such as tantalum or aluminum. Then, an oxide film is electrochemically provided on this sintered body, and then a solid electrolyte layer made of manganese dioxide is provided. This solid electrolyte layer is formed by a thermal decomposition method by impregnating it with a manganese dioxide aqueous solution. After forming the solid electrolyte layer, carbon and silver paste are sequentially applied to the surface to form a cathode layer.

【0004】固体電解コンデンサは固体電解質層の電導
度が大きい程、周波数特性を改善できる。
In the solid electrolytic capacitor, the frequency characteristic can be improved as the electric conductivity of the solid electrolyte layer increases.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の固体電
解質層を形成している二酸化マンガンの電導度がほぼ
0.01〜0.05S/cm程度であり、比較的に低い値
である。そのために固体電解コンデンサの周波数特性を
改善し難い欠点がある。
However, the conductivity of manganese dioxide forming the conventional solid electrolyte layer is about 0.01 to 0.05 S / cm, which is a relatively low value. Therefore, it is difficult to improve the frequency characteristics of the solid electrolytic capacitor.

【0006】特に、ESRについては、他のコンデン
サ、例えばセラミックコンデンサやフィルムコンデン
サ、有機半導体を固体電解質とするアルミ電解コンデン
サよりも大きい欠点がある。
In particular, ESR has a drawback that it is larger than other capacitors such as ceramic capacitors, film capacitors, and aluminum electrolytic capacitors using an organic semiconductor as a solid electrolyte.

【0007】本発明の目的は、以上の欠点を改良し、周
波数特性を改善できる固体電解コンデンサ及びその製造
方法を提供するものである。
An object of the present invention is to provide a solid electrolytic capacitor which can improve the above-mentioned drawbacks and can improve frequency characteristics, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明は、弁作用金属の微粉末からなる
焼結体に陽極酸化皮膜、固体電解質及び陰極層を順次設
けた固体電解コンデンサにおいて、二酸化マンガンと二
酸化鉛との混合物からなる固体電解質層を有することを
特徴とする固体電解コンデンサを提供するものである。
In order to achieve the above object, the invention of claim 1 is such that a anodic oxide film, a solid electrolyte and a cathode layer are sequentially provided on a sintered body made of fine powder of valve metal. A solid electrolytic capacitor having a solid electrolyte layer made of a mixture of manganese dioxide and lead dioxide.

【0009】また、請求項2の発明は、弁作用金属の微
粉末からなる焼結体に陽極酸化皮膜、固体電解質及び陰
極層を順次形成する固体電解コンデンサの製造方法にお
いて、陽極酸化皮膜を形成後の焼結体を、二酸化鉛を懸
濁した硝酸マンガン溶液中に浸漬して液を含浸させ熱分
解して固体電解質層を形成することを特徴とする固体電
解コンデンサの製造方法を提供するものである。
Further, the invention of claim 2 is a method for manufacturing a solid electrolytic capacitor, in which a anodic oxide film, a solid electrolyte and a cathode layer are sequentially formed on a sintered body made of fine powder of valve metal, and the anodic oxide film is formed. A method for producing a solid electrolytic capacitor, characterized in that the latter sintered body is immersed in a manganese nitrate solution in which lead dioxide is suspended to impregnate the solution and thermally decompose to form a solid electrolyte layer. Is.

【0010】なお、二酸化鉛を懸濁した硝酸マンガン溶
液は粘度が比較的に高く含浸し難い性質を有している。
従って、最初は、二酸化鉛を懸濁しない硝酸マンガン溶
液を含浸して熱分解処理を行い二酸化マンガンのみを析
出させる方が好ましい。そして焼結体の内部の細孔に二
酸化マンガンがある程度堆積したら、二酸化鉛を懸濁し
た硝酸マンガン溶液を含浸し熱分解処理して二酸化マン
ガンと二酸化鉛との混合物を析出させる。
The manganese nitrate solution in which lead dioxide is suspended has a relatively high viscosity and is difficult to impregnate.
Therefore, at first, it is preferable to impregnate a manganese nitrate solution in which lead dioxide is not suspended and perform a thermal decomposition treatment to precipitate only manganese dioxide. When manganese dioxide is deposited in the pores inside the sintered body to a certain extent, a manganese nitrate solution in which lead dioxide is suspended is impregnated and subjected to thermal decomposition treatment to precipitate a mixture of manganese dioxide and lead dioxide.

【0011】[0011]

【作用】二酸化マンガンMnO2と二酸化鉛PbO2との
含有の比率を変えた場合の固体電解質層の電導度は図2
の通りになる。すなわち、この図2から明らかな通り、
二酸化鉛の含有量が多い程、電導度が高くなり、周波数
特性を改善できる。
[Function] The conductivity of the solid electrolyte layer when the content ratio of manganese dioxide MnO 2 and lead dioxide PbO 2 is changed is shown in FIG.
It becomes the street. That is, as is clear from FIG.
The higher the content of lead dioxide, the higher the electrical conductivity and the better the frequency characteristics.

【0012】しかし、二酸化鉛のみでは、化学的に析出
させるために付着強度が弱く、剥離し易くなる。従っ
て、必ず二酸化鉛は二酸化マンガンとの混合物として用
いる。そしてその好ましい比率はPbO2/MnO2=8
0〜90/20〜10程度が良い。
However, if only lead dioxide is used, it is chemically deposited, so that the adhesion strength is weak and peeling easily occurs. Therefore, always lead dioxide should be used as a mixture with manganese dioxide. And the preferable ratio is PbO 2 / MnO 2 = 8
About 0 to 90/20 to 10 is preferable.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて説明する。
先ず、タンタルの微粉末を角型に成形し、焼結して、
1.8mm×0.9mm×1.80mmの寸法で重量20mgの
焼結体を形成する。
EXAMPLES The present invention will be described below based on examples.
First, fine powder of tantalum is formed into a square shape and sintered,
A sintered body having a size of 1.8 mm × 0.9 mm × 1.80 mm and a weight of 20 mg is formed.

【0014】次に、この焼結体を温度50℃のリン酸溶
液中に浸漬し、75Vで化成して陽極酸化皮膜を形成す
る。
Next, this sintered body is dipped in a phosphoric acid solution at a temperature of 50 ° C. and formed at 75 V to form an anodized film.

【0015】陽極酸化皮膜を形成後、焼結体を20%濃
度の硝酸マンガン水溶液中に浸漬し、液を含浸後、温度
260℃の炉内に放置して熱分解する。そして熱分解後
に再化成する。
After forming the anodic oxide film, the sintered body is immersed in a 20% strength aqueous solution of manganese nitrate, impregnated with the solution, and then left in a furnace at a temperature of 260 ° C. for thermal decomposition. And it reforms after thermal decomposition.

【0016】再化成後、二酸化鉛を10wt%混合して懸
濁した硝酸マンガン水溶液中に焼結体を浸漬し、上記と
同一条件で熱分解し再化成する。
After the re-formation, the sintered body is immersed in an aqueous solution of manganese nitrate in which 10 wt% of lead dioxide is mixed and suspended, and is thermally decomposed and re-formulated under the same conditions as above.

【0017】この再化成後、二酸化鉛の混合量を順次3
0wt%、50wt%、70wt%及び80wt%に変えた硝酸
マンガン水溶液中に浸漬し、上記と同一の条件で熱分解
し再化成して固体電解質層を形成する。
After this re-formation, the mixture amount of lead dioxide was sequentially increased to 3
The solid electrolyte layer is formed by immersing in an aqueous solution of manganese nitrate changed to 0 wt%, 50 wt%, 70 wt% and 80 wt%, thermally decomposing under the same conditions as above, and reforming.

【0018】固体電解質層を形成後、コロイドカーボン
及び銀ペーストを塗布して陰極層を形成する。陰極層を
形成後、リードフレームに接続し、エポキシレジンによ
るモールド処理を行い外装を形成する。
After forming the solid electrolyte layer, colloidal carbon and silver paste are applied to form a cathode layer. After the cathode layer is formed, it is connected to a lead frame and is molded with epoxy resin to form an exterior.

【0019】なお、上記実施例では、固体電解質層を形
成するのに、最初に二酸化鉛を混合しない二酸化マンガ
ン水溶液のみを含浸させたが、この処理は省いてもよ
い。すなわち、最初から二酸化鉛を混合して懸濁した二
酸化マンガン水溶液を含浸してもよい。
In the above embodiment, the solid electrolyte layer was formed by first impregnating only the manganese dioxide aqueous solution containing no lead dioxide, but this treatment may be omitted. That is, you may impregnate the manganese dioxide aqueous solution which mixed and suspended lead dioxide from the beginning.

【0020】次に、上記の実施例、比較例及び従来例に
ついて、周波数を変えてESRの値を求め、図1に示し
た。
Next, with respect to the above-mentioned examples, comparative examples and conventional examples, the ESR value was obtained by changing the frequency and shown in FIG.

【0021】実施例は、上記実施例において固体電解質
層を形成する際に、最初に二酸化鉛を懸濁しない硝酸マ
ンガン水溶液を含浸し熱分解する工程を行って製造した
ものとする。
In the example, it is assumed that when the solid electrolyte layer is formed in the above example, a step of impregnating a manganese nitrate aqueous solution in which lead dioxide is not suspended and thermally decomposing is first performed.

【0022】また、比較例は、実施例において、二酸化
鉛を懸濁しない硝酸マンガン水溶液を用いて処理した
後、酢酸鉛水溶液(1mol/l)に過流酸アンモン(2mo
l/l)を混合した水溶液に浸漬しその後乾燥する工程を
6回繰り返して二酸化鉛を析出して固体電解質層を形成
する以外は、同一の方法で製造したものとする。
Further, in the comparative example, after treating with an aqueous solution of manganese nitrate in which lead dioxide is not suspended in the example, an aqueous solution of ammonium acetate (2 mol) is added to an aqueous solution of lead acetate (1 mol / l).
(l / l) is immersed in an aqueous solution and then dried, which is repeated 6 times to form a solid electrolyte layer by precipitating lead dioxide to produce a solid electrolyte layer.

【0023】そして従来例は、固体電解質層を二酸化鉛
を懸濁しない硝酸マンガン水溶液のみを用いて製造する
以外は、実施例1と同一条件とする。なお、硝酸マンガ
ン水溶液の濃度は、30%、40%、60%、70%及
び80%の5種類とし、低い濃度から順次高濃度の液を
含浸して、各々熱分解する。
The conditions of the conventional example are the same as those of the example 1 except that the solid electrolyte layer is produced only by using an aqueous solution of manganese nitrate in which lead dioxide is not suspended. The manganese nitrate aqueous solution has five concentrations of 30%, 40%, 60%, 70%, and 80%, and is impregnated with a high-concentration liquid sequentially from a low concentration, and each is thermally decomposed.

【0024】図1から明らかな通り、実施例のESRは
従来例のそれに比べて著しく低くなっていることは明ら
かである。例えば、周波数 106Hzにおいて、実施例
が0.15Ωで従来例が0.7Ωとなり、前者の方が後
者の3/14になっている。なお、比較例は0.11と
なり実施例よりも低い値になっている。
As is apparent from FIG. 1, it is clear that the ESR of the embodiment is significantly lower than that of the conventional example. For example, at a frequency of 10 6 Hz, the example is 0.15Ω and the conventional example is 0.7Ω, and the former is 3/14 of the latter. The comparative example is 0.11, which is a lower value than that of the example.

【0025】また、上記の実施例、比較例及び従来例に
ついて、初期特性と、ヒートサイクル後の特性と、プレ
ッシャークッカーテスト(以下PCTという)後の特性
とを求め表1に示した。
Further, with respect to the above Examples, Comparative Examples and Conventional Example, initial characteristics, characteristics after heat cycle, and characteristics after pressure cooker test (hereinafter referred to as PCT) were determined and shown in Table 1.

【0026】ヒートサイクル温度−55℃〜125℃、
100サイクルの条件で行う。また、PCTは温度12
1℃、2気圧の雰囲気中に32時間放置して行う。な
お、各試料数は各々20ケとする。以下余白。
Heat cycle temperature -55 ° C to 125 ° C,
It is performed under the condition of 100 cycles. The PCT has a temperature of 12
It is left for 32 hours in an atmosphere of 1 ° C. and 2 atm. The number of each sample is 20. The margin below.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかな通り、実施例は従来例に
比べてヒートサイクルやPCT後のtanδ や漏れ電流特
性が優れている。また、比較例に比べて初期特性及びヒ
ートサイクル、PCT後のtanδが優れている。
As is clear from Table 1, the examples are superior in tan δ and leakage current characteristics after heat cycle and PCT as compared with the conventional examples. In addition, the initial characteristics, heat cycle, and tan δ after PCT are superior to those of the comparative example.

【0029】例えば、tanδ について、実施例はヒート
サイクル後に従来例の6/23、比較例の3/10そし
てPCT後に従来例の8/35、比較例4/11となっ
ている。また、漏れ電流についても、実施例は、従来例
に比べてヒートサイクル後に1/2、PCT後に2/3
となる。なお、実施例は比較例と比べて初期の tanδも
5/21と低くなっている。
For example, regarding tan δ, the example is 6/23 of the conventional example after the heat cycle, 3/10 of the comparative example, and 8/35 of the conventional example after PCT, and the comparative example 4/11. Also, regarding the leakage current, the example is 1/2 after the heat cycle and 2/3 after the PCT as compared with the conventional example.
Becomes The initial tan δ of the example is as low as 5/21 as compared with the comparative example.

【0030】[0030]

【発明の効果】以上の通り、本発明によれば、固体電解
質層を、二酸化鉛を懸濁した硝酸マンガン溶液を用い、
二酸化マンガンと二酸化鉛との混合物により形成してい
るために、固体電解質層の電導度を低くでき、ESR等
の周波数特性を改善できるとともに、 tanδや漏れ電流
特性も向上できる固体電解コンデンサ及びその製造方法
が得られる。
As described above, according to the present invention, the solid electrolyte layer is made of a manganese nitrate solution in which lead dioxide is suspended,
Since it is made of a mixture of manganese dioxide and lead dioxide, the solid electrolyte layer can have a low electric conductivity, can improve frequency characteristics such as ESR, and can improve tan δ and leakage current characteristics, and the production thereof. A method is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】等価直列抵抗の周波数特性を示す。FIG. 1 shows a frequency characteristic of an equivalent series resistance.

【図2】MnO2とPbO2との含有比率に対する固体電
解質層の電導度のグラフを示す。
FIG. 2 is a graph showing the electrical conductivity of the solid electrolyte layer with respect to the content ratio of MnO 2 and PbO 2 .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属の微粉末からなる焼結体に陽
極酸化皮膜、固体電解質層及び陰極層を順次設けた固体
電解コンデンサにおいて、二酸化マンガンと二酸化鉛と
の混合物からなる固体電解質層を有することを特徴とす
る固体電解コンデンサ。
1. A solid electrolytic capacitor in which a anodic oxide film, a solid electrolyte layer and a cathode layer are sequentially provided on a sintered body made of a fine powder of a valve metal, and a solid electrolyte layer made of a mixture of manganese dioxide and lead dioxide. A solid electrolytic capacitor having.
【請求項2】 弁作用金属の微粉末からなる焼結体に陽
極酸化皮膜、固体電解質層及び陰極層を順次形成する固
体電解コンデンサの製造方法において、陽極酸化皮膜を
形成後の焼結体を、二酸化鉛を懸濁した硝酸マンガン溶
液中に浸漬して液を含浸し熱分解して固体電解質層を形
成することを特徴とする固体電解コンデンサの製造方
法。
2. A method for manufacturing a solid electrolytic capacitor in which an anodized film, a solid electrolyte layer and a cathode layer are sequentially formed on a sintered body made of fine powder of valve metal, and the sintered body after the anodized film is formed is used. A method for producing a solid electrolytic capacitor, which comprises immersing in a manganese nitrate solution in which lead dioxide is suspended, impregnating the solution, and thermally decomposing it to form a solid electrolyte layer.
JP3331142A 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same Expired - Lifetime JP2773499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331142A JP2773499B2 (en) 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331142A JP2773499B2 (en) 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05144678A true JPH05144678A (en) 1993-06-11
JP2773499B2 JP2773499B2 (en) 1998-07-09

Family

ID=18240344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331142A Expired - Lifetime JP2773499B2 (en) 1991-11-20 1991-11-20 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2773499B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111153A (en) * 1973-02-26 1974-10-23
JPS63160221A (en) * 1986-12-24 1988-07-04 日本ケミコン株式会社 Aluminum solid electrolytic capacitor
JPS63272024A (en) * 1987-04-30 1988-11-09 Nippon Chemicon Corp Solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111153A (en) * 1973-02-26 1974-10-23
JPS63160221A (en) * 1986-12-24 1988-07-04 日本ケミコン株式会社 Aluminum solid electrolytic capacitor
JPS63272024A (en) * 1987-04-30 1988-11-09 Nippon Chemicon Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2773499B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP2006339177A (en) Solid electrolytic capacitor and its manufacturing method
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP4555190B2 (en) Manufacturing method of solid electrolytic capacitor
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
KR970001382B1 (en) Impregnating solution for solid tantalium electrolytic capacitor
JP2946591B2 (en) Method for manufacturing solid electrolytic capacitor
JP3546661B2 (en) Capacitor and manufacturing method thereof
JPH09246107A (en) Method for manufacturing solid electrolytic capacitor
JPH0722285A (en) Production of solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0521278A (en) Solid electrolytic capacitor and its manufacture
JP2000040642A (en) Manufacture of solid electrolytic capacitor
JP3218818B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH07201656A (en) Production of solid electrolytic capacitor