JP3991429B2 - Electrolytic capacitor and manufacturing method thereof - Google Patents

Electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP3991429B2
JP3991429B2 JP07705898A JP7705898A JP3991429B2 JP 3991429 B2 JP3991429 B2 JP 3991429B2 JP 07705898 A JP07705898 A JP 07705898A JP 7705898 A JP7705898 A JP 7705898A JP 3991429 B2 JP3991429 B2 JP 3991429B2
Authority
JP
Japan
Prior art keywords
conductive polymer
solution
porous body
valve metal
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07705898A
Other languages
Japanese (ja)
Other versions
JPH11274008A (en
Inventor
恵美子 井垣
貴裕 濱田
正和 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07705898A priority Critical patent/JP3991429B2/en
Publication of JPH11274008A publication Critical patent/JPH11274008A/en
Application granted granted Critical
Publication of JP3991429B2 publication Critical patent/JP3991429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はアルミニウムやタンタルなどの弁金属を用いた電解コンデンサおよびその製造方法に関し、特に、陰極用電解質として導電性高分子を用いた電解コンデンサおよびその製造方法に関するものである。
【0002】
【従来の技術】
従来、アルミニウムやタンタルなどの弁金属を用いた電解コンデンサは、弁金属多孔体を陽極とし、弁金属の酸化物を誘電体層とし、陰極には電解質溶液や無機固体電解質を用い、たとえばアルミニウム電解コンデンサでは有機酸を含む有機溶媒等が陰極として用いられ、タンタル電解コンデンサでは二酸化マンガン等が陰極に用いられてきた。そして、それぞれ陽極、陰極に接続するリード部を設け、外装を形成するのが一般的であった。
【0003】
回路のデジタル化に対応して電子部品の高周波応答性が要求され、電解コンデンサにおいても低抵抗化による高周波応答性の向上が要求されている。このような状況の中で、電導度の良い導電性高分子を電解コンデンサの陰極用固体電解質として用いることが検討され、開発されてきた。
【0004】
導電性高分子の形成方法は大きく分けて電解酸化重合法と化学酸化重合法とがある。前者の場合、絶縁性の酸化皮膜上に直接電解酸化重合により導電性高分子を形成することができない。そこで、酸化皮膜上に予め導電性を有するプレコート層を形成した後、該プレコート層を電極として電解酸化重合により導電性高分子を酸化皮膜上に形成する方法が提案されている。後者は、モノマーの酸化剤による化学酸化重合により直接酸化皮膜上に導電性高分子を形成する方法であり、量産性に適しているため工業的によく用いられている。
【0005】
【発明が解決しようとする課題】
電解コンデンサは、その構造上の特徴として多孔質な弁金属体の空孔表面に酸化皮膜を形成し、その酸化皮膜を誘電体層とし、酸化皮膜の内側に残った弁金属を陽極としている。従って、このコンデンサに陰極電解質を形成する場合、非常に入り組んだ多孔体の空孔表面を効率よく導電性高分子で覆う必要がある。
【0006】
電解酸化重合法により陰極電解質として導電性高分子を形成した場合、絶縁性の酸化皮膜上に導電性を有するプレコート層を予め形成する際に、プレコート層を非常に入り組んだ多孔体空孔表面の酸化皮膜上に均質に形成することが困難なため、結果として導電性高分子も多孔体表面には形成できるが空孔内部まで均質に形成できないという欠点を有していた。また、プレコート層上に導電性高分子を形成する際にも、非常に入り組んだ多孔体空孔の細部に至るまで均一に溶液を導入することが困難なため、結果として導電性高分子を多孔体表面から空孔細部まで均質に形成できないという欠点を有していた。
【0007】
一方、化学酸化重合法により陰極電解質として導電性高分子を形成した場合も、多孔体内部の空孔細部にまで溶液を導入することが困難なため、均質に導電性高分子を形成できないという欠点を有していた。
【0008】
すなわち、従来の電解酸化重合法、化学酸化重合法いずれの場合においても、コンデンサ多孔体内部の空孔細部にまで効率よく均質に導電性高分子を形成し完全に容量を引き出すことが困難であった。この課題に対し、導電性高分子を形成するに先立ち、予め誘電体酸化皮膜上に界面活性剤層を形成し、空孔細部に至るまでの溶液導入を容易化することにより、空孔内への導電性高分子の生成効率および均質性を高める方法が提案されている(特開平3―64013号公報)。しかしながら、この方法では、導電性高分子と誘電体酸化皮膜層の間に界面活性剤層が残存するため、導電性高分子の誘電体酸化皮膜との密着性が低く、形成した導電性高分子の剥離によって容量出現率が低下するという課題を内在している。
【0009】
以上のように、電解酸化重合法、化学酸化重合法いずれの場合においても、コンデンサとしては本来の容量を容易に出現することができないという課題が残されていた。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかる電解コンデンサの製造方法は、陽極が弁金属の多孔体からなり、誘電体層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性高分子である電解コンデンサの製造方法において、前記導電性高分子が、モノマーを溶液中で電解酸化重合させて成る導電性ポリマーであって、その形成方法が、前記モノマーを含む溶液中に、予め導電性を有するプレコート層を誘電体層上に形成した弁金属多孔体を浸漬し、プレコート層を電極としてモノマーを酸化重合することにより多孔体内部および表面に該導電性高分子を形成するものである電解コンデンサの製造方法において、前記導電性高分子の形成方法が、前記溶液中に弁金属多孔体を浸漬して電解酸化重合を施すに先立ち、前記溶液の溶媒蒸気あるいは該溶液と親和性を有する溶媒の蒸気に弁金属多孔体をさらすことにより、弁金属多孔体空孔内部表面を前記溶媒で湿潤することを特徴とする。これにより、多孔体空孔表面全体に効率良く導電性高分子を形成することができる。
【0015】
以上のように、弁金属多孔体の表面のみならず内部にまで効率よく均質に導電性高分子を形成することができる。かつ、この製造方法で製造した場合、界面活性剤層のような異物質を導電性高分子と誘電体酸化皮膜との間に介在させることがないので、誘電体酸化皮膜と導電性高分子との密着性が良好となる。結果として、容量出現率の高いコンデンサを効率よく製造することができる。
【0017】
【発明の実施の形態】
本発明の電解コンデンサにおいては、陽極は弁金属多孔体とされており、弁金属は、好ましくは、アルミニウム又はタンタルが使用される。弁金属多孔体には、外面に連通する多数の微細な空孔ないし細孔を有している。
【0018】
陽極の例として、例えば、アルミニウムの場合は、アルミニウム箔をエッチング処理して多数の小孔を形成した後アルミニウム箔を捲回した多孔体もしくは積層した多孔体であり、タンタルの場合は、タンタル粉末から圧縮成形後焼結して、多孔体とされている。
【0019】
誘電体層は、その金属の表面に陽極酸化により形成されたその金属の薄い酸化皮膜が利用され、多孔体の多数の微細な空孔の表面にも形成されている。
【0020】
本発明において、陰極電解質には導電性高分子材料が利用され、導電性高分子が誘電体酸化皮膜上に形成される。この導電性高分子としては特に限定されないが、好ましくは、複素環式五員環化合物またはその誘導体の導電性ポリマーが利用される。導電性ポリマーに利用可能な複素環式五員環ポリマーを例示すると、ピロール、チオフェン、3−アルキルチオフェン、イソチアナフテンなどのポリマーがある。
【0021】
モノマーからの重合においては、本発明では、電解酸化重合法および化学酸化重合法が使用される。化学酸化重合法においては、モノマーに酸化剤を反応させて導電性ポリマーにするが、個々で使用される酸化剤には、過酸化水素、その他の過酸化物の他、3価の鉄イオンなどの金属イオンが好適に使用される。
【0022】
化学酸化重合法においては、導電性ポリマーの形成は、既に誘電体層を形成した弁金属多孔体を、導電性高分子となるべきモノマーと重合用の酸化剤とを含む溶液中に、浸漬して保持することにより、モノマーが酸化剤により重合化して、弁金属多孔体誘電体上に導電性ポリマーが形成される(以後、1液化学酸化重合法と略す)。あるいは、既に誘電体層を形成した弁金属多孔体を、導電性高分子となるべきモノマーを含む溶液と、酸化重合用の酸化剤を含む溶液とに、交互に浸漬することにより、モノマーが酸化剤により重合化して、弁金属多孔体誘電体上に導電性ポリマーが形成される(以後、2液化学酸化重合法と略す)。
【0023】
電解酸化重合法においては、導電性ポリマーの形成は、既に誘電体層を形成した弁金属多孔体の誘電体皮膜上に二酸化マンガンや導電性高分子などからなるのプレコート層を形成した後、モノマーを含む溶液中に弁金属多孔体を浸漬し、該溶液中でプレコート層を電極としてモノマーを電解酸化重合化することにより、弁金属多孔体誘電体上のプレコート層上に、導電性ポリマーが形成される。
【0024】
ここでいずれの導電性高分子形成方法においても、弁金属多孔体に含浸させる溶液(1液化学酸化重合法においてはモノマーと酸化剤の混合溶液、2液化学酸化重合法においては交互に浸漬する溶液のうち先に浸漬する溶液、電解酸化重合法においてはモノマー溶液)中に弁金属多孔体を浸漬した後、溶液ごと減圧して弁金属多孔体の空孔細部にまで内部に溶液を含浸させることが好ましい。この操作を1ないし複数回繰り返し、導電性高分子を誘電体皮膜上に十分形成することにより、減圧処理を行わない従来の導電性高分子形成法に比較して、多孔体表面から空孔細部に至るまで誘電体酸化皮膜の導電性高分子による被覆率が向上する。これにより、従来法では多孔体の設計容量の7〜8割程度しか容量が引き出せないのに対し、本発明の製造方法では静電容量出現率が1割以上向上し、設計容量の9割以上の容量が引き出せる。また、従来提案されている界面活性剤層を介在させる手法の場合、初期的には9割以上の容量出現率が達成できるが、熱処理等により導電性高分子が誘電体皮膜上から剥離し、容量出現率が6〜7割程度に低下する場合がある。一方、本発明の製造方法による電解コンデンサの場合、熱処理等を行っても容量低下が比較的少なく、容量出現率を8割以上確保できる。
【0025】
また、好ましくは、該溶液の溶媒蒸気あるいは該溶液と親和性を有する溶媒の蒸気で弁金属多孔体の誘電体酸化皮膜上を湿潤させる方法も採用できる。これにより、誘電体酸化皮膜と該溶液の親和性が高まり該溶液が細孔深部にまで容易に浸透し、誘電体皮膜上全体に導電性高分子を形成することができる。この溶媒としては、たとえば反応溶液系が水溶液系であれば水が利用でき、モノマーを含む溶液を含浸させる場合には、モノマーとの親和性が高いことから有機溶媒各種を用いることができる。場合によっては、モノマー蒸気で湿潤する方法も利用できる。さらに、繰り返し導電性高分子形成操作を行う場合も、この湿潤操作を施すことにより、先に形成された導電性高分子上への該溶液の親和性が高まり、該溶液が細孔深部にまで容易に浸透し、誘電体皮膜全体に十分量の導電性高分子を容易に形成することができる。これにより、従来の導電性高分子形成法に比較して、誘電体酸化皮膜の導電性高分子による被覆率が向上し、上述の方法と同様の効果が得られ、設計容量の9割以上の容量が引き出せる。
【0026】
また、電解酸化重合法の場合に施すプレコート層の形成においても、上述の減圧含浸法および溶媒湿潤法を採用することができる。特にプレコート層が導電性高分子層である場合、上記本発明である2つの化学酸化重合法を用いて1ないし数回処理を行うことにより、多孔体表面から空孔細部に至るまでプレコート層を均質に誘電体酸化皮膜上に形成することができ、その後の電解酸化重合によるプレコート層上への導電性高分子形成により、誘電体皮膜全体に導電性高分子を容易に形成することが可能となる。これにより、プレコート層の不均質さに起因する容量出現率の低下を抑制することができ、本発明の方法により9割以上の容量出現率を安定に再現することができる。
【0027】
ここで、減圧含浸法における減圧度は、大気圧以下で溶媒が沸騰しない程度の気圧範囲であれば特に限定されるものではない。
【0028】
また湿潤に用いる溶媒の蒸気圧も特に限定されるものではないが、溶媒の表面や内部に結露しない程度に、その蒸気圧を制御することが好ましい。
【0029】
【実施例】
本例では、導電性高分子として、ポリピロールを使用し、コンデンサ多孔体の弁金属としてはタンタルを使用し、導電性高分子形成方法としては2液化学酸化重合法を採用した。
【0030】
図1および図2に本発明の実施例における電解コンデンサの製造方法の概略を示す。
【0031】
タンタル粉末をリードとともに成形焼成して1.4mm×3.0mm×3.8mmの多孔体を形成した後、タンタルの空孔表面をリン酸水溶液中にて化成電圧30Vで化成して酸化皮膜誘電体層を形成し、コンデンサ多孔体素子とした。
【0032】
モノマー溶液は、イソプロピルアルコールを10vol%含有する水溶液中に、ポリピロール形成用のモノマーとして、ピロールを0.1mol/lとなるように溶解させて、作製した。
【0033】
また酸化剤溶液は、イソプロピルアルコールを10vol%含有する水溶液に、酸化剤として硫酸鉄(III)を0.1mol/l、その他の添加物としてアルキルナフタレンスルホン酸イオンをNa塩の形で0.05mol/lとなるように溶解させ作製した。
【0034】
準備したコンデンサ素子の誘電体層上に、以下の化学酸化重合法により導電性ポリマーを形成して陰極とし、さらに外部に陰極の集電体としてのリード板を設けて電解コンデンサとし、120Hzでの静電容量を測定した。
【0035】
(1)前記コンデンサ素子を、モノマー溶液に浸漬した後、酸化剤溶液に浸漬し、コンデンサ素子多孔体表面および空孔内部の誘電体酸化皮膜上に導電性ポリマーを重合形成し、洗浄および乾燥を行った。さらに、この操作を20回繰り返し、十分量の導電性高分子をコンデンサ素子に形成した。
【0036】
(2)前記コンデンサ素子を、モノマー溶液に浸漬したのち、溶液ごと0.2気圧まで減圧処理を行った。その後、酸化剤溶液に浸漬し、コンデンサ素子多孔体表面および空孔内部の誘電体酸化皮膜上に導電性ポリマーを重合形成し、洗浄および乾燥を行った。さらに、この減圧および重合操作を20回繰り返し、十分量の導電性高分子をコンデンサ素子に形成した。
【0037】
(3)前記コンデンサ素子を、室温でエタノールの飽和蒸気圧中に2分間放置し、エタノール蒸気で多孔体表面および空孔内部表面を湿潤させた。その後、モノマー溶液に浸漬し、さらに酸化剤溶液に浸漬し、コンデンサ素子多孔体表面および空孔内部の誘電体酸化皮膜上に導電性ポリマーを重合形成し、洗浄および乾燥を行った。さらに、この湿潤および重合操作を20回繰り返し、十分量の導電性高分子をコンデンサ素子に形成した。
【0038】
(4)前記コンデンサ素子の誘電体酸化皮膜上に界面活性剤を処理するために、界面活性剤としてのアルキル燐酸エステルの水溶液中にコンデンサ素子を浸し、引き上げて乾燥した。その後、(1)と同様にして十分量の導電性高分子をコンデンサ素子に形成した。
【0039】
以上のようにして作製した電解コンデンサの120Hzにおける静電容量の値を表1に示す。
【0040】
【表1】

Figure 0003991429
【0041】
表1から明かなように、従来例(1)に比較して本発明の製造方法である(2)および(3)の方法で導電性ポリマーを形成した場合の電解コンデンサでは、容量出現率が高くなった。また、150℃1時間処理し冷却した後の静電容量も表1に併記するが、従来例(4)に比較して、本発明の製造方法である(2)および(3)の方法で導電性高分子を形成した場合、容量低下が少なく、良好な特性を維持できた。
【0042】
以上のように、本発明の製造方法によれば、導電性高分子による誘電体酸化皮膜の被覆率を容易に向上させることができ、かつ誘電体皮膜との密着性も高く維持できるので、高容量の電解コンデンサを安定に提供することができる。
【0043】
本実施例においては、2液化学酸化重合法を用いた場合の例を示したが、1液化学酸化重合法においても、また、電解酸化重合法においても同様の効果が得られた。
【0044】
本実施例においては、モノマーとしてピロールを用いた例を示したが、重合して導電性ポリマーとなるものであればその種類は限定されるものでない。
【0045】
さらに、本実施例では、溶液を減圧含浸する際の気圧を0.2気圧として効果を確認したが、気圧範囲は大気圧以下で溶液が沸騰しない範囲であれば、特に限定されるものではない。
【0046】
また、本実施例においては、湿潤処理をエタノール蒸気で行ったが、含浸させる溶液の溶媒蒸気あるいは該溶液との親和性を有する各種の溶媒蒸気で同様の効果が確認された。
【0047】
また、酸化剤溶液およびモノマー溶液にコンデンサ素子を交互に浸漬する場合、酸化剤溶液およびモノマー溶液のうちどちらに先に浸漬するかは問わない。
【0048】
また、本実施例においてはタンタル電解コンデンサについて示したが、アルミ電解コンデンサにも同様に適用できる。
【0050】
【発明の効果】
本発明によれば、溶液含浸に先立ち、溶液の溶媒蒸気あるいは該溶液と親和性を有する溶媒蒸気で予め多孔体空孔表面を湿潤させることにより、導電性高分子による誘電体酸化皮膜の被覆率を向上させ、容量出現率の高い優れた電解コンデンサを提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例における電解コンデンサの製造方法の概略を示す図
【図2】本発明の一実施例における電解コンデンサの製造方法の概略を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic capacitor using a valve metal such as aluminum or tantalum and a manufacturing method thereof, and more particularly to an electrolytic capacitor using a conductive polymer as a cathode electrolyte and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, electrolytic capacitors using valve metals such as aluminum and tantalum use a valve metal porous body as an anode, an oxide of the valve metal as a dielectric layer, and use an electrolyte solution or an inorganic solid electrolyte as a cathode. In capacitors, an organic solvent containing an organic acid or the like has been used as a cathode, and in tantalum electrolytic capacitors, manganese dioxide or the like has been used as a cathode. In general, lead portions connected to the anode and the cathode, respectively, are provided to form an exterior.
[0003]
Corresponding to the digitization of circuits, the high frequency response of electronic components is required, and the electrolytic capacitor is also required to improve the high frequency response by reducing the resistance. Under such circumstances, it has been studied and developed to use a conductive polymer having good conductivity as a solid electrolyte for a cathode of an electrolytic capacitor.
[0004]
The forming method of the conductive polymer is roughly classified into an electrolytic oxidative polymerization method and a chemical oxidative polymerization method. In the former case, the conductive polymer cannot be formed directly on the insulating oxide film by electrolytic oxidation polymerization. Therefore, a method has been proposed in which a conductive precoat layer is formed in advance on an oxide film, and then a conductive polymer is formed on the oxide film by electrolytic oxidation polymerization using the precoat layer as an electrode. The latter is a method in which a conductive polymer is directly formed on an oxide film by chemical oxidative polymerization using a monomer oxidizing agent, and is well used industrially because it is suitable for mass production.
[0005]
[Problems to be solved by the invention]
The electrolytic capacitor is characterized in that an oxide film is formed on the pore surface of a porous valve metal body as a structural feature, the oxide film is used as a dielectric layer, and the valve metal remaining inside the oxide film is used as an anode. Therefore, when the cathode electrolyte is formed on this capacitor, it is necessary to efficiently cover the pore surface of the very complicated porous body with the conductive polymer.
[0006]
When a conductive polymer is formed as a cathode electrolyte by electrolytic oxidation polymerization, when the precoat layer having conductivity is formed on the insulating oxide film in advance, Since it is difficult to form the oxide film uniformly on the oxide film, the conductive polymer can be formed on the surface of the porous body as a result, but it cannot be uniformly formed inside the pores. In addition, when forming a conductive polymer on the precoat layer, it is difficult to uniformly introduce a solution up to the details of the porous pores which are very complicated. It had the disadvantage that it could not be formed uniformly from the body surface to the pore details.
[0007]
On the other hand, even when a conductive polymer is formed as a cathode electrolyte by a chemical oxidative polymerization method, it is difficult to introduce a solution into the pores inside the porous body, so that the conductive polymer cannot be formed uniformly. Had.
[0008]
In other words, in both the conventional electrolytic oxidative polymerization method and chemical oxidative polymerization method, it is difficult to efficiently and uniformly form a conductive polymer up to the fine pores inside the capacitor porous body to fully draw out the capacity. It was. In response to this problem, prior to the formation of the conductive polymer, a surfactant layer is formed on the dielectric oxide film in advance, thereby facilitating the introduction of the solution up to the pore details. A method for improving the generation efficiency and homogeneity of the conductive polymer has been proposed (Japanese Patent Laid-Open No. 3-64013). However, in this method, since the surfactant layer remains between the conductive polymer and the dielectric oxide film layer, the adhesion of the conductive polymer to the dielectric oxide film is low, and the formed conductive polymer The problem is that the capacity appearance rate decreases due to the peeling of the substrate.
[0009]
As described above, in both cases of the electrolytic oxidation polymerization method and the chemical oxidation polymerization method, there remains a problem that the original capacity cannot easily appear as a capacitor.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, an electrolytic capacitor manufacturing method according to the present invention is characterized in that the anode is made of a porous body of a valve metal, the dielectric layer is an oxide film layer of the valve metal, and the electrolyte for the cathode is highly conductive. In the method of manufacturing an electrolytic capacitor as a molecule, the conductive polymer is a conductive polymer obtained by electrolytic oxidation polymerization of a monomer in a solution, and the formation method is performed in advance in a solution containing the monomer. The conductive polymer is formed inside and on the surface of the porous body by immersing the valve metal porous body in which the precoat layer having the property is formed on the dielectric layer and oxidatively polymerizing the monomer using the precoat layer as an electrode. in the method for manufacturing an electrolytic capacitor, the method for forming the conductive polymer prior to applying electrolytic oxidation polymerization by immersing the valve metal porous body in the solution, the solvent vapor of the solution or By exposing the valve metal porous body to the vapor of a solvent having a solution affinity, characterized by wetting the valve metal porous body voids inside surface by the solvent. Thereby, a conductive polymer can be efficiently formed on the entire porous body surface.
[0015]
As described above , the conductive polymer can be efficiently and uniformly formed not only on the surface of the valve metal porous body but also on the inside thereof. In addition, when manufactured by this manufacturing method, a foreign substance such as a surfactant layer is not interposed between the conductive polymer and the dielectric oxide film. The adhesiveness of is improved. As a result, a capacitor with a high capacity appearance rate can be manufactured efficiently.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the electrolytic capacitor of the present invention, the anode is a porous valve metal, and the valve metal is preferably aluminum or tantalum. The valve metal porous body has a large number of fine pores or pores communicating with the outer surface.
[0018]
As an example of an anode, for example, in the case of aluminum, a porous body obtained by etching an aluminum foil to form a large number of small holes and then winding the aluminum foil or a laminated porous body. In the case of tantalum, tantalum powder And then sintered after compression molding to form a porous body.
[0019]
The dielectric layer is formed on the surface of many fine pores of the porous body by utilizing a thin oxide film of the metal formed by anodizing on the surface of the metal.
[0020]
In the present invention, a conductive polymer material is used for the cathode electrolyte, and the conductive polymer is formed on the dielectric oxide film. Although it does not specifically limit as this conductive polymer, Preferably, the conductive polymer of a heterocyclic 5-membered ring compound or its derivative (s) is utilized. Examples of the heterocyclic five-membered ring polymer that can be used as the conductive polymer include polymers such as pyrrole, thiophene, 3-alkylthiophene, and isothianaphthene.
[0021]
In the polymerization from monomers, the electrolytic oxidation polymerization method and the chemical oxidation polymerization method are used in the present invention. In the chemical oxidative polymerization method, an oxidant is reacted with a monomer to form a conductive polymer. The oxidant used individually includes hydrogen peroxide, other peroxides, trivalent iron ions, etc. These metal ions are preferably used.
[0022]
In the chemical oxidative polymerization method, a conductive polymer is formed by immersing a porous valve metal body, on which a dielectric layer has already been formed, in a solution containing a monomer to be a conductive polymer and an oxidizing agent for polymerization. As a result, the monomer is polymerized by the oxidizing agent, and a conductive polymer is formed on the valve metal porous dielectric (hereinafter abbreviated as one-part chemical oxidative polymerization). Alternatively, by alternately immersing the porous valve metal body, on which the dielectric layer has already been formed, in a solution containing a monomer to be a conductive polymer and a solution containing an oxidizing agent for oxidative polymerization, the monomer is oxidized. Polymerization is performed by the agent to form a conductive polymer on the valve metal porous dielectric (hereinafter abbreviated as a two-component chemical oxidative polymerization method).
[0023]
In the electrolytic oxidation polymerization method, the conductive polymer is formed by forming a precoat layer made of manganese dioxide or a conductive polymer on the dielectric film of the valve metal porous body on which the dielectric layer has already been formed. A conductive polymer is formed on the precoat layer on the valve metal porous dielectric material by immersing the valve metal porous body in a solution containing, and subjecting the monomer to electrolytic oxidation polymerization using the precoat layer as an electrode in the solution. Is done.
[0024]
Here, in any conductive polymer forming method, a solution impregnated in the valve metal porous body (a mixed solution of a monomer and an oxidizing agent in the one-component chemical oxidative polymerization method, or alternately immersed in the two-component chemical oxidative polymerization method) After immersing the valve metal porous body in the solution to be immersed first in the solution (monomer solution in the case of electrolytic oxidation polymerization), the whole solution is decompressed and the pores of the valve metal porous body are impregnated with the solution. It is preferable. This operation is repeated one or more times, and the conductive polymer is sufficiently formed on the dielectric film, so that pores can be removed from the surface of the porous material as compared with the conventional method for forming a conductive polymer that does not perform decompression treatment. In this way, the coverage of the dielectric oxide film with the conductive polymer is improved. As a result, while the conventional method can extract only about 70 to 80% of the design capacity of the porous body, the production method of the present invention improves the capacitance appearance rate by 10% or more, and more than 90% of the design capacity. Capacity can be withdrawn. In addition, in the case of a conventionally proposed method of interposing a surfactant layer, a capacity appearance rate of 90% or more can be achieved initially, but the conductive polymer is peeled off from the dielectric film by heat treatment or the like, The capacity appearance rate may be reduced to about 60 to 70%. On the other hand, in the case of the electrolytic capacitor according to the manufacturing method of the present invention, the capacity decrease is relatively small even when heat treatment or the like is performed, and the capacity appearance rate can be secured at 80% or more.
[0025]
Preferably, a method of wetting the dielectric oxide film of the valve metal porous body with a solvent vapor of the solution or a solvent vapor having affinity with the solution can also be employed. Thereby, the affinity between the dielectric oxide film and the solution is increased, and the solution can easily penetrate into the deep pores, and a conductive polymer can be formed on the entire dielectric film. As this solvent, for example, water can be used if the reaction solution system is an aqueous solution system. When impregnating a solution containing a monomer, various organic solvents can be used because of its high affinity with the monomer. In some cases, a method of wetting with monomer vapor can also be used. Furthermore, even when conducting the conductive polymer forming operation repeatedly, by performing this wetting operation, the affinity of the solution on the previously formed conductive polymer is increased, and the solution reaches deep pores. It can easily penetrate and a sufficient amount of conductive polymer can be easily formed on the entire dielectric film. Thereby, compared with the conventional conductive polymer formation method, the coverage of the dielectric oxide film with the conductive polymer is improved, the same effect as the above-mentioned method is obtained, and 90% or more of the design capacity is obtained. Capacity can be withdrawn.
[0026]
In addition, the above-described reduced pressure impregnation method and solvent wetting method can also be employed in the formation of the precoat layer applied in the case of the electrolytic oxidation polymerization method. In particular, when the precoat layer is a conductive polymer layer, the precoat layer is formed from the surface of the porous body to the pore details by performing the treatment once or several times using the two chemical oxidative polymerization methods of the present invention. It can be uniformly formed on the dielectric oxide film, and the conductive polymer can be easily formed on the entire dielectric film by forming the conductive polymer on the precoat layer by subsequent electrolytic oxidation polymerization. Become. Thereby, the fall of the capacity appearance rate resulting from the heterogeneity of the precoat layer can be suppressed, and the capacity appearance ratio of 90% or more can be stably reproduced by the method of the present invention.
[0027]
Here, the degree of reduced pressure in the reduced pressure impregnation method is not particularly limited as long as it is an atmospheric pressure range below atmospheric pressure so that the solvent does not boil.
[0028]
Also, the vapor pressure of the solvent used for wetting is not particularly limited, but it is preferable to control the vapor pressure so that no condensation occurs on the surface or inside of the solvent.
[0029]
【Example】
In this example, polypyrrole was used as the conductive polymer, tantalum was used as the valve metal of the capacitor porous body, and a two-component chemical oxidative polymerization method was employed as the conductive polymer formation method.
[0030]
1 and 2 show an outline of a method for manufacturing an electrolytic capacitor in an embodiment of the present invention.
[0031]
A tantalum powder is molded and fired together with a lead to form a 1.4 mm × 3.0 mm × 3.8 mm porous body, and then the surface of the tantalum pore is formed in a phosphoric acid aqueous solution at a conversion voltage of 30 V to form an oxide film dielectric. A body layer was formed to obtain a capacitor porous body element.
[0032]
The monomer solution was prepared by dissolving pyrrole as a monomer for forming polypyrrole in an aqueous solution containing 10 vol% of isopropyl alcohol so as to be 0.1 mol / l.
[0033]
The oxidant solution was an aqueous solution containing 10% by volume of isopropyl alcohol, 0.1 mol / l of iron (III) sulfate as the oxidant, and 0.05 mol of alkyl naphthalene sulfonate ion in the form of Na salt as the other additive. It was prepared by dissolving to 1 / l.
[0034]
On the dielectric layer of the prepared capacitor element, a conductive polymer is formed by the following chemical oxidative polymerization method to form a cathode, and a lead plate as a cathode current collector is provided outside to form an electrolytic capacitor, at 120 Hz. Capacitance was measured.
[0035]
(1) After immersing the capacitor element in a monomer solution, the capacitor element is immersed in an oxidant solution to polymerize and form a conductive polymer on the surface of the capacitor element porous body and the dielectric oxide film inside the pores, and then washed and dried. went. Further, this operation was repeated 20 times to form a sufficient amount of conductive polymer on the capacitor element.
[0036]
(2) After immersing the capacitor element in the monomer solution, the whole solution was subjected to a pressure reduction treatment to 0.2 atm. Thereafter, it was immersed in an oxidant solution to polymerize and form a conductive polymer on the surface of the capacitor element porous body and the dielectric oxide film inside the pores, and washed and dried. Furthermore, this pressure reduction and polymerization operation were repeated 20 times, and a sufficient amount of conductive polymer was formed on the capacitor element.
[0037]
(3) The capacitor element was allowed to stand in a saturated vapor pressure of ethanol at room temperature for 2 minutes, and the porous body surface and the pore inner surface were wetted with ethanol vapor. Thereafter, it was immersed in a monomer solution, and further immersed in an oxidant solution to polymerize and form a conductive polymer on the surface of the capacitor element porous body and the dielectric oxide film inside the pores, and washed and dried. Furthermore, this wetting and polymerization operation was repeated 20 times to form a sufficient amount of conductive polymer on the capacitor element.
[0038]
(4) In order to treat the surfactant on the dielectric oxide film of the capacitor element, the capacitor element was dipped in an aqueous solution of an alkyl phosphate as a surfactant, pulled up and dried. Thereafter, a sufficient amount of conductive polymer was formed on the capacitor element in the same manner as in (1).
[0039]
Table 1 shows the capacitance value at 120 Hz of the electrolytic capacitor produced as described above.
[0040]
[Table 1]
Figure 0003991429
[0041]
As is clear from Table 1, in the electrolytic capacitor in which the conductive polymer is formed by the methods (2) and (3) which are the production methods of the present invention compared to the conventional example (1), the capacity appearance rate is It became high. Moreover, although the electrostatic capacity after processing at 150 degreeC for 1 hour and cooling is also written together in Table 1, compared with the prior art example (4), it is a manufacturing method of this invention by the method of (2) and (3). When a conductive polymer was formed, there was little decrease in capacity and good characteristics could be maintained.
[0042]
As described above, according to the manufacturing method of the present invention, the coverage of the dielectric oxide film with the conductive polymer can be easily improved, and the adhesion with the dielectric film can be maintained high. An electrolytic capacitor having a capacity can be provided stably.
[0043]
In this example, an example in which the two-component chemical oxidative polymerization method was used was shown, but the same effect was obtained in the one-component chemical oxidative polymerization method and also in the electrolytic oxidative polymerization method.
[0044]
In the present embodiment, an example in which pyrrole is used as a monomer is shown, but the type is not limited as long as it becomes a conductive polymer by polymerization.
[0045]
Further, in this example, the effect was confirmed by setting the atmospheric pressure when impregnating the solution under reduced pressure to 0.2 atmospheric pressure, but the atmospheric pressure range is not particularly limited as long as the atmospheric pressure range is below atmospheric pressure and the solution does not boil. .
[0046]
In this example, the wet treatment was performed with ethanol vapor, but the same effect was confirmed with the solvent vapor of the solution to be impregnated or various solvent vapors having affinity with the solution.
[0047]
Further, when the capacitor elements are alternately immersed in the oxidant solution and the monomer solution, it does not matter which of the oxidant solution and the monomer solution is immersed first.
[0048]
Further, in this embodiment, the tantalum electrolytic capacitor is shown, but the present invention can be similarly applied to an aluminum electrolytic capacitor.
[0050]
【The invention's effect】
According to the present invention , prior to solution impregnation, the coverage of the dielectric oxide film by the conductive polymer is preliminarily wetted with the solvent vapor of the solution or the solvent vapor having affinity with the solution. And an excellent electrolytic capacitor with a high capacity appearance rate can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a method for manufacturing an electrolytic capacitor in one embodiment of the present invention. FIG. 2 is a diagram showing an outline of a method for manufacturing an electrolytic capacitor in one embodiment of the present invention.

Claims (2)

陽極が弁金属の多孔体からなり、誘電体層が該弁金属の酸化物皮膜層で、陰極用電解質が導電性高分子である電解コンデンサの製造方法において、In the method of manufacturing an electrolytic capacitor in which the anode is composed of a porous body of a valve metal, the dielectric layer is an oxide film layer of the valve metal, and the cathode electrolyte is a conductive polymer.
前記導電性高分子が、モノマーを溶液中で電解酸化重合させて成る導電性ポリマーであって、その形成方法が、前記モノマーを含む溶液中に、予め導電性を有するプレコート層を誘電体層上に形成した弁金属多孔体を浸漬し、プレコート層を電極としてモノマーを酸化重合することにより多孔体内部および表面に該導電性高分子を形成するものである電解コンデンサの製造方法において、The conductive polymer is a conductive polymer obtained by subjecting a monomer to electrolytic oxidation polymerization in a solution, and a method for forming the conductive polymer includes a conductive precoat layer on the dielectric layer in advance in the solution containing the monomer. In the method for producing an electrolytic capacitor, which is formed by immersing the valve metal porous body formed on the surface and forming the conductive polymer inside and on the surface of the porous body by oxidative polymerization of the monomer using the precoat layer as an electrode,
前記導電性高分子の形成方法が、前記溶液中に弁金属多孔体を浸漬して電解酸化重合を施すに先立ち、前記溶液の溶媒蒸気あるいは該溶液と親和性を有する溶媒の蒸気に弁金属多孔体をさらすことにより、弁金属多孔体空孔内部表面を前記溶媒で湿潤することを特徴とする電解コンデンサの製造方法。The method for forming the conductive polymer includes the step of immersing the valve metal porous body in the solvent vapor of the solution or the solvent vapor having affinity with the solution prior to the electrolytic oxidation polymerization by immersing the valve metal porous body in the solution. A method for producing an electrolytic capacitor, characterized in that a body of a valve metal porous body is wetted with the solvent by exposing the body.
前記弁金属が、アルミニウム又はタンタルである請求項1に記載の電解コンデンサの製造方法。The method for manufacturing an electrolytic capacitor according to claim 1, wherein the valve metal is aluminum or tantalum.
JP07705898A 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP3991429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07705898A JP3991429B2 (en) 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07705898A JP3991429B2 (en) 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11274008A JPH11274008A (en) 1999-10-08
JP3991429B2 true JP3991429B2 (en) 2007-10-17

Family

ID=13623203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07705898A Expired - Fee Related JP3991429B2 (en) 1998-03-25 1998-03-25 Electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3991429B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60128749T2 (en) * 2000-05-11 2008-02-07 Nec Tokin Toyama Ltd. Production method of a solid electrolytic capacitor
JP4557766B2 (en) * 2005-03-23 2010-10-06 三洋電機株式会社 Solid electrolytic capacitor and method of manufacturing the solid electrolytic capacitor
JP4632134B2 (en) * 2005-10-24 2011-02-16 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor
JP4874159B2 (en) 2007-04-20 2012-02-15 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor
CN109778029A (en) * 2019-03-07 2019-05-21 上海交通大学 Rare-earth containing aluminium alloy anode material and its preparation method and application

Also Published As

Publication number Publication date
JPH11274008A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP3741539B2 (en) Electrolytic capacitor and manufacturing method thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
KR100334918B1 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
JP5305569B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
JP3991429B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JPH1050558A (en) Manufacture of solid state electrolytic capacitor
JP4345227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP3284993B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0682591B2 (en) Method for manufacturing solid electrolytic capacitor
JP3267311B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH06120086A (en) Manufacture of solid-state electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2000040642A (en) Manufacture of solid electrolytic capacitor
JP2001167980A (en) Manufacturing method of solid electrolytic capacitor
JPH1174155A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees