JPH11150041A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH11150041A
JPH11150041A JP33491097A JP33491097A JPH11150041A JP H11150041 A JPH11150041 A JP H11150041A JP 33491097 A JP33491097 A JP 33491097A JP 33491097 A JP33491097 A JP 33491097A JP H11150041 A JPH11150041 A JP H11150041A
Authority
JP
Japan
Prior art keywords
solid electrolytic
chemical conversion
electrolytic capacitor
sintered body
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33491097A
Other languages
Japanese (ja)
Inventor
Mitsuteru Yoshida
光輝 吉田
Susumu Wada
迪 和田
Norihiro Hamoro
憲弘 羽諸
Hirobumi Kamimura
博文 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP33491097A priority Critical patent/JPH11150041A/en
Publication of JPH11150041A publication Critical patent/JPH11150041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a solid electrolytic capacitor which can be minimized and in which leakage current defects or dielectric frakdown defects can be reduced. SOLUTION: In method for manufacturing a solid electrolytic capacitor 12 an oxide film 4 is formed through a chemical conversion processing of a valve action metal, and next a solid electrolytic layer 5 is formed, has features for performing steps for forming the oxide film 4 by a first chemical conversion processing and a followed by thermal processing at a temperature higher than 150 deg.C and the step of a second chemical conversion processing after the first processing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は小形化が可能で、漏
れ電流不良や耐圧不良を低下できる固体電解コンデンサ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor which can be reduced in size and which can reduce leakage current failure and breakdown voltage failure.

【0002】[0002]

【従来の技術】タンタル固体電解コンデンサ等の固体電
解コンデンサは、例えば、タンタルやアルミニウム等の
弁作用金属の粉末に、カンファやアクリル系樹脂等を有
機溶剤と混合したバインダーを添加して混合し、その
後、有機溶剤を揮発して除去した粉末を用いる。そして
この粉末を、予じめタンタル等の弁作用金属からなる陽
極用リード線の一端を埋め込んで、プレス加圧成形す
る。成形後、真空中で高温度で加熱して焼結し、焼結体
を形成する。次に、この焼結体に酸化皮膜、二酸化マン
ガン又はポリピロールやポリアニリン等の有機導電性高
分子等からなる固体電解質層、カーボン層及び銀層を順
次形成してコンデンサ素子を形成する。
2. Description of the Related Art A solid electrolytic capacitor such as a tantalum solid electrolytic capacitor is manufactured by adding a binder obtained by mixing camphor, an acrylic resin or the like with an organic solvent to powder of a valve metal such as tantalum or aluminum, and mixing the powder. Thereafter, a powder obtained by volatilizing and removing the organic solvent is used. Then, this powder is previously press-molded by embedding one end of an anode lead wire made of a valve metal such as tantalum. After the molding, it is heated at a high temperature in a vacuum and sintered to form a sintered body. Next, an oxide film, a solid electrolyte layer made of an organic conductive polymer such as manganese dioxide or polypyrrole or polyaniline, a carbon layer and a silver layer are sequentially formed on the sintered body to form a capacitor element.

【0003】ところで、固体電解コンデンサの小形化に
対応して、焼結体を形成するタンタルの粉末として、よ
り微細なものが用いられるようになってきた。
[0003] In response to the downsizing of solid electrolytic capacitors, finer powders of tantalum for forming sintered bodies have been used.

【0004】[0004]

【発明が解決しようとする課題】しかし、より微細な粉
末を用いた場合、焼結時の温度を下げる必要がある。そ
して、低い温度で形成した焼結体は、粉末どうしが接続
する接続点が多くなり、かつその接続点の強度が弱くな
る。また、焼結体内の不純物を除去し難くなり、このた
め、粉末どうしの接続が不十分になったり、不純物を原
因とする欠陥部が多くなる。そしてこの焼結体を用いて
酸化皮膜を形成し、次いで、固体電解質層を形成する
と、この固体電解質層を形成する際の加熱処理により、
クラックを生じ易くなる。従って、固体電解質層が酸化
皮膜の表面にではなく、弁作用金属の表面に直接形成さ
れている。このため漏れ電流不良や耐圧不良を生じ易く
なる欠点がある。また、コンデンサは、プリント配線板
等に実装する際には、例えば200〜240℃程度の温
度で加熱される。このため、酸化皮膜の弱点部にクラッ
クを生じ、漏れ電流不良や耐圧不良を生じ易くなる欠点
がある。
However, when a finer powder is used, it is necessary to lower the sintering temperature. Then, in the sintered body formed at a low temperature, the number of connection points at which the powders are connected increases, and the strength of the connection points decreases. In addition, it becomes difficult to remove impurities in the sintered body, so that the connection between the powders becomes insufficient and the number of defective portions caused by the impurities increases. Then, an oxide film is formed using the sintered body, and then, when a solid electrolyte layer is formed, a heat treatment for forming the solid electrolyte layer results in
Cracks are likely to occur. Therefore, the solid electrolyte layer is formed directly on the surface of the valve metal, not on the surface of the oxide film. For this reason, there is a disadvantage that a leakage current defect and a withstand voltage defect easily occur. Further, when mounting the capacitor on a printed wiring board or the like, the capacitor is heated at a temperature of, for example, about 200 to 240 ° C. For this reason, there is a defect that a crack is generated at the weak point portion of the oxide film, and a leakage current defect and a withstand voltage defect are easily generated.

【0005】本発明は、以上の欠点を改良し、小形化が
可能で、かつ漏れ電流不良や耐圧不良を低下できる固体
電解コンデンサの製造方法を提供するものである。
An object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor which can improve the above-mentioned drawbacks, can be reduced in size, and can reduce leakage current failure and breakdown voltage failure.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目標を
達成するために、弁作用金属を化成処理して酸化皮膜を
形成し、次いで、固体電解質層を形成する固体電解コン
デンサの製造方法において、第1の化成処理により酸化
皮膜を形成した後に150℃より高い温度で加熱処理す
る工程と、この工程後に第2の化成処理をする工程とを
行なうことを特徴とする固体電解コンデンサの製造方法
を提供するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method of manufacturing a solid electrolytic capacitor in which a valve metal is chemically converted to form an oxide film, and then a solid electrolyte layer is formed. Wherein a step of performing a heat treatment at a temperature higher than 150 ° C. after forming an oxide film by the first chemical conversion treatment and a step of performing a second chemical conversion treatment after this step are performed. It provides a method.

【0007】本発明は、酸化皮膜を形成した後に、15
0℃より高い温度で加熱処理している。すなわち、この
加熱処理により、弱点部等に予じめクラックを形成す
る。そして加熱処理後に、第2の化成処理を行って、酸
化皮膜に生じたクラックの箇所を修復する。従って、そ
の後に、二酸化マンガン等からなる固体電解質層を形成
する際に、焼成等の加熱処理を行っても、クラックを生
じ難くできる。また、プリント配線板等に実装する際の
加熱処理によっても酸化皮膜にクラックを生じ難くでき
る。これにより、漏れ電流不良や耐圧不良を低下でき
る。
According to the present invention, after forming an oxide film, 15
Heat treatment is performed at a temperature higher than 0 ° C. That is, by this heat treatment, cracks are formed in advance in weak spots and the like. Then, after the heat treatment, a second chemical conversion treatment is performed to repair cracks formed in the oxide film. Therefore, when a solid electrolyte layer made of manganese dioxide or the like is formed thereafter, cracks can be hardly generated even if heat treatment such as firing is performed. In addition, cracks can be less likely to occur in the oxide film even by a heat treatment when mounting on a printed wiring board or the like. As a result, leakage current failure and breakdown voltage failure can be reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。先ず、タンタルやアルミニウム、ニオブ等の弁作
用金属の粉末に、カンファやアクリル系樹脂等を有機溶
剤で溶かしたバインダーを添加し、混合する。なお、粉
末の粒径は単粒粉で0.05〜0.5μmの範囲が好ま
しい。混合した後、加熱して有機溶剤を揮発して除去す
る。次に、弁作用金属の粉末を、タンタル等の弁作用金
属からなる陽極用リード線を引き出した状態にして、円
筒形や角形等の形状にプレス等で圧縮成形する。圧縮成
型後、真空中等の雰囲気中において高温度で焼成して、
図1に示す通りの焼結体1を形成する。焼成後、陽極用
リード線2の根本に、テフロンやシリコーンゴム、シリ
コーン樹脂等からなる円板状等の絶縁板3を配置する。
Embodiments of the present invention will be described below. First, a binder in which camphor, an acrylic resin, or the like is dissolved in an organic solvent is added to powder of a valve metal such as tantalum, aluminum, or niobium, and mixed. In addition, the particle diameter of the powder is preferably in the range of 0.05 to 0.5 μm as a single powder. After mixing, the mixture is heated to volatilize and remove the organic solvent. Next, the powder of the valve action metal is compression-molded by a press or the like into a cylindrical or square shape in a state where the anode lead wire made of the valve action metal such as tantalum is drawn out. After compression molding, firing at high temperature in an atmosphere such as vacuum,
A sintered body 1 as shown in FIG. 1 is formed. After the firing, a disk-shaped insulating plate 3 made of Teflon, silicone rubber, silicone resin, or the like is arranged at the root of the anode lead wire 2.

【0009】そして、この焼結体1から引き出されてい
る陽極用リード線2の先端をアルミニウムやステンレス
等の金属板に溶接する。この状態で、焼結体を硝酸やリ
ン酸、硫酸、カルボン酸等の電解質を溶解した電解液中
に浸漬し、電圧を印加して第1の化成処理をし、厚さ2
00オングストローム〜6000オングストローム程度
の酸化皮膜4を形成する。
Then, the tip of the anode lead wire 2 drawn from the sintered body 1 is welded to a metal plate such as aluminum or stainless steel. In this state, the sintered body is immersed in an electrolytic solution in which an electrolyte such as nitric acid, phosphoric acid, sulfuric acid, or carboxylic acid is dissolved, a first chemical conversion treatment is performed by applying a voltage, and a thickness of 2
An oxide film 4 having a thickness of about 00 Å to 6000 Å is formed.

【0010】酸化皮膜4を形成後、空気中等の雰囲気中
で加熱処理をする工程を行なう。この加熱処理は、15
0℃より高い温度、好ましくは180〜330℃の温度
範囲で行ない、特に210〜270℃の温度範囲が好ま
しい。すなわち、加熱処理の温度が180℃より低いか
330℃より高いと漏れ電流不良や耐圧不良を低下する
効果が小さくなる。また、加熱時間は10〜30分程度
が好ましい。
After the oxide film 4 is formed, a step of performing a heat treatment in an atmosphere such as air is performed. This heat treatment is performed for 15
The reaction is carried out at a temperature higher than 0 ° C., preferably in the temperature range of 180 to 330 ° C., and particularly preferably in the temperature range of 210 to 270 ° C. That is, when the temperature of the heat treatment is lower than 180 ° C. or higher than 330 ° C., the effect of reducing the leakage current defect and the withstand voltage defect is reduced. The heating time is preferably about 10 to 30 minutes.

【0011】加熱処理後、焼結体1に第2の化成処理を
する。この第2の化成処理は、第1の化成処理に用いた
ものと同様な電解液を用いる方が好ましい。すなわち、
硝酸やリン酸等の電解質を溶解した電解液中に加熱処理
後の焼結体を浸漬し、電圧を印加して化成処理する。こ
の時に印加する電圧の大きさは、第1の化成処理の際の
印加電圧の0.6〜1.0倍程度が良く、特に0.8〜
1.0倍が好ましい。すなわち、印加する電圧が0.6
倍より低いか1.0倍よりも高いと、漏れ電流不良等を
低下する効果が小さい。そして特に、印加する電圧が
0.8〜1.0倍のときはこの不良を低下する効果が大
きくなる。
After the heat treatment, the sintered body 1 is subjected to a second chemical conversion treatment. In the second chemical conversion treatment, it is preferable to use the same electrolytic solution as that used in the first chemical conversion treatment. That is,
The sintered body after the heat treatment is immersed in an electrolytic solution in which an electrolyte such as nitric acid or phosphoric acid is dissolved, and a chemical conversion treatment is performed by applying a voltage. The magnitude of the voltage applied at this time is preferably about 0.6 to 1.0 times the applied voltage at the time of the first chemical conversion treatment, and particularly preferably 0.8 to 1.0 times.
1.0 times is preferred. That is, when the applied voltage is 0.6
If it is lower than 1.0 times or higher than 1.0 times, the effect of lowering leakage current failure and the like is small. In particular, when the applied voltage is 0.8 to 1.0 times, the effect of reducing this defect becomes large.

【0012】第2の化成処理をした後、二酸化マンガン
やTCNQ塩、有機導電性高分子からなる固体電解質層
5を形成する。この固体電解質層5を形成するには、陽
極用リード線2の引き出し面側を上にして焼結体1を硝
酸マンガン溶液中等に、液面が陽極用リード線2の引き
出し面のわずかに上であって絶縁板3を越えない程度に
浸漬する。これにより、液を焼結体1に付着し含浸す
る。含浸後、溶液の種類に応じた処理を行ない、固体電
解質5を形成する。
After the second chemical conversion treatment, a solid electrolyte layer 5 made of manganese dioxide, a TCNQ salt, or an organic conductive polymer is formed. In order to form the solid electrolyte layer 5, the sintered body 1 is placed in a manganese nitrate solution or the like with the lead surface side of the anode lead wire 2 facing upward, and the liquid level is slightly higher than the lead surface of the anode lead wire 2. And soak it so as not to exceed the insulating plate 3. Thereby, the liquid adheres to and impregnates the sintered body 1. After the impregnation, a treatment according to the type of the solution is performed to form the solid electrolyte 5.

【0013】すなわち、溶液が硝酸マンガン溶液であれ
ば、焼結体1を硝酸マンガン溶液中に浸漬して液を含浸
した後、加熱分解し、さらに再化成処理する。そして硝
酸マンガン溶液の濃度を順次高くして、これらの含浸、
加熱分解及び再化成処理の工程を繰り返し行ない、所定
の厚さの二酸化マンガンからなる固体電解質層5を形成
する。
That is, if the solution is a manganese nitrate solution, the sintered body 1 is immersed in the manganese nitrate solution to impregnate the solution, then thermally decomposed, and further subjected to re-chemical treatment. And by increasing the concentration of the manganese nitrate solution sequentially, these impregnations,
The steps of thermal decomposition and re-chemical treatment are repeated to form a solid electrolyte layer 5 of manganese dioxide having a predetermined thickness.

【0014】また、有機導電性高分子からなる固体電解
質層5を形成するには次の各種の方法により行なう。す
なわち、第1の方法は、有機導電性高分子の溶液中に焼
結体1を浸漬する。浸漬後、アルコール等の有機溶剤で
洗浄する。洗浄後、乾燥して溶媒を蒸発させる。そして
必要に応じてこの浸漬から乾燥までの工程を繰り返して
行ない、所定の厚さに形成する。また、第2の方法は、
脱ドープした高分子の溶液中に焼結体1を浸漬する。浸
漬後、洗浄し、乾燥する。そしてこの浸漬から乾燥まで
の工程を必要に応じて所定回数繰り返して行ない、所定
の厚さの脱ドープした高分子の膜を形成する。この膜を
形成後、焼結体1をドーピング溶液中に数10分〜数時
間浸漬して接触し、高分子の膜をドーピングして導電性
を付与し、有機導電性高分子の膜を形成する。さらに、
第3の方法は、アニリンやピロール、チオフェン等のモ
ノマーにドーピングイオンを含む溶液中に焼結体1を浸
漬する。次に、酸化剤の溶液中に焼結体1を浸漬して化
学重合反応させて、有機導電性高分子の膜を形成する。
そして第4の方法は、ドーピングイオンを含まないアニ
リンやピロール等のモノマーの溶液中に焼結体1を浸漬
する。次に、酸化剤の溶液中に焼結体1を浸漬して化学
重合反応させ、高分子の膜を形成する。高分子の膜を形
成後、焼結体1をドーピング溶液中に浸漬して接触し、
導電性を付与して有機導電性高分子の膜を形成する。な
お、ドーパントは、例えば、スルホン酸化合物や、カル
ボン酸化合物、リン酸化合物等を用いる。そしてスルホ
ン酸化合物としては、解離定数がナフタレンスルホン酸
又はその誘導体とほぼ同一か又はより小さく、かつドー
パントの陰イオンがナフタレンスルホン酸又はその誘導
体の陰イオンよりも小さい物質とする。このようなドー
パントとしては、例えば、スルホイソフタル酸やスルホ
コハク酸、メタンスルホン酸、フェノールスルホン酸、
スルホサリチル酸、ベンゼンスルホン酸、ベンゼンジス
ルホン酸、アルキルベンゼンスルホン酸及びその誘導
体、カンファースルホン酸、スルホン酢酸、スルホアニ
リン、ジフェノールスルホン酸等の酸又はこれらの酸の
塩を用いる。また、ドーピング溶液は、例えばドーパン
トあるいはドーパントと酸化剤とを有機溶媒に溶解した
組成にする。液中のドーパントや酸化剤の濃度は0.0
1〜1mol/lの範囲が好ましい。そして有機溶媒は、
例えば、ケトン類やエステル類、アルコール類、芳香族
炭化水素類、ニトリル酸、セルソルブ類、含チッ素化合
物等を用いる。さらに、酸化剤の溶液は、酸化剤だけで
はなく、他にドーパントを加えた溶液や、酸化剤とドー
パントとの塩の溶液を用いてもよい。そして酸化剤に
は、第2の鉄塩や過硫酸塩、バナジン酸塩等の水素基準
電極に対して0.8V以上の酸化電位を有する塩を用い
る。ところで、タンタル粉末により素子を形成した場合
には、タンタル粉末のCV値が大きくなり体積当りの静
電容量が大きくなるほど、素子内部に液が含浸し難くな
る。従って、特性の良好な導電性高分子の膜を形成する
ためには、導電性高分子の溶液等に濃度の高いものを用
いる必要がある。そして高分子のなかでポリアニリン
は、溶媒への溶解度が大きく、比較的高濃度の溶液を調
製でき、適当な物質である。
The formation of the solid electrolyte layer 5 made of an organic conductive polymer is performed by the following various methods. That is, in the first method, the sintered body 1 is immersed in a solution of the organic conductive polymer. After immersion, it is washed with an organic solvent such as alcohol. After washing, dry and evaporate the solvent. If necessary, the steps from immersion to drying are repeated to form a predetermined thickness. The second method is
The sintered body 1 is immersed in a solution of the undoped polymer. After immersion, wash and dry. The process from immersion to drying is repeated a predetermined number of times as necessary, to form a undoped polymer film having a predetermined thickness. After forming this film, the sintered body 1 is immersed in a doping solution for several tens of minutes to several hours to come into contact with it, doping the polymer film to impart conductivity, and forming an organic conductive polymer film. I do. further,
In the third method, the sintered body 1 is immersed in a solution containing doping ions in a monomer such as aniline, pyrrole, or thiophene. Next, the sintered body 1 is immersed in a solution of an oxidizing agent to cause a chemical polymerization reaction, thereby forming a film of an organic conductive polymer.
In the fourth method, the sintered body 1 is immersed in a solution of a monomer such as aniline or pyrrole containing no doping ions. Next, the sintered body 1 is immersed in a solution of an oxidizing agent to cause a chemical polymerization reaction, thereby forming a polymer film. After the formation of the polymer film, the sintered body 1 is immersed in the doping solution and brought into contact therewith,
A film of an organic conductive polymer is formed by imparting conductivity. As the dopant, for example, a sulfonic acid compound, a carboxylic acid compound, a phosphoric acid compound, or the like is used. The sulfonic acid compound is a substance having a dissociation constant substantially equal to or smaller than that of naphthalenesulfonic acid or a derivative thereof, and a dopant anion smaller than that of naphthalenesulfonic acid or a derivative thereof. Such dopants include, for example, sulfoisophthalic acid, sulfosuccinic acid, methanesulfonic acid, phenolsulfonic acid,
Acids such as sulfosalicylic acid, benzenesulfonic acid, benzenedisulfonic acid, alkylbenzenesulfonic acid and derivatives thereof, camphorsulfonic acid, sulfonic acetic acid, sulfoaniline, and diphenolsulfonic acid, or salts of these acids are used. The doping solution has, for example, a composition in which a dopant or a dopant and an oxidizing agent are dissolved in an organic solvent. The concentration of the dopant or oxidant in the solution is 0.0
A range of 1 to 1 mol / l is preferred. And the organic solvent is
For example, ketones, esters, alcohols, aromatic hydrocarbons, nitrile acid, cellosolves, nitrogen-containing compounds, and the like are used. Further, as the solution of the oxidizing agent, not only the oxidizing agent but also a solution to which a dopant is added or a solution of a salt of the oxidizing agent and the dopant may be used. As the oxidizing agent, a salt having an oxidation potential of 0.8 V or more with respect to the hydrogen reference electrode, such as a second iron salt, a persulfate, or a vanadate, is used. By the way, when an element is formed from tantalum powder, the more the CV value of the tantalum powder increases and the capacitance per volume increases, the more difficult it is to impregnate the liquid inside the element. Therefore, in order to form a conductive polymer film having good characteristics, it is necessary to use a conductive polymer solution or the like having a high concentration. Among the polymers, polyaniline is a suitable substance because it has a high solubility in a solvent and can prepare a solution having a relatively high concentration.

【0015】固体電解質層5を形成後、カーボンペース
トを塗布してカーボン層6を形成する。また、カーボン
層6の表面には銀ペーストを塗布して銀層7を形成す
る。そして固体電解質層5、カーボン層6及び銀層7を
陰極層として用いる。
After forming the solid electrolyte layer 5, a carbon paste is applied to form a carbon layer 6. A silver paste is applied to the surface of the carbon layer 6 to form a silver layer 7. Then, the solid electrolyte layer 5, the carbon layer 6, and the silver layer 7 are used as a cathode layer.

【0016】銀層7を形成後、この銀層7に導電性接着
剤8により陰極端子9を接続するとともに、陽極用リー
ド線2に陽極端子10を抵抗溶接等する。そして樹脂モ
ールド法や樹脂ディップ法等により外装11を形成す
る。外装11を形成後、エージング処理し、さらに陰極
端子9と陽極端子10とを外装11の表面に沿って折り
曲げて、固体電解コンデンサ12を形成する。
After the silver layer 7 is formed, a cathode terminal 9 is connected to the silver layer 7 with a conductive adhesive 8 and an anode terminal 10 is resistance-welded to the anode lead wire 2. Then, the exterior 11 is formed by a resin molding method, a resin dipping method, or the like. After the exterior 11 is formed, aging treatment is performed, and the cathode terminal 9 and the anode terminal 10 are bent along the surface of the exterior 11 to form the solid electrolytic capacitor 12.

【0017】[0017]

【実施例】次に、本発明の実施例について説明する。先
ず、30KCV/gのタンタルの微粉末にバインダーを
混合し、加熱して溶剤を除去する。溶剤を除去後、タン
タル粉末を、タンタル製の陽極用リード線を引き出した
状態にして、角形プレス圧縮成形する。圧縮成形後、真
空中で1800〜2200℃程度の温度で焼結し、1.
10mm×1.80mm×1.45mm角の焼結体を形成す
る。焼結体を形成後、陽極用リード線の根本にテフロン
製の厚さ0.1〜0.2mm程度の同板状の絶縁板を配置
する。次に、焼結体を、リン酸水溶液中に浸漬し、直流
電圧24Vを印加して第1の化成処理をし、酸化皮膜を
形成する。酸化皮膜を形成後、焼結体を空気中に放置し
て、温度150〜360℃で20分間、加熱処理する。
加熱処理後、焼結体をリン酸水溶液中に30分間浸漬
し、直流電圧24Vを印加して第2の化成処理をする。
第2の化成処理後、硝酸マンガン溶液中に焼結体を浸漬
して液を含浸し、その後、熱分解し、再化成する。そし
てこの含浸から再化成までの工程を数回繰り返して行な
い、二酸化マンガンからなる固体電解質層を形成する。
固体電解質層を形成後、カーボンペースト及び銀ペース
トを順次塗布して、カーボン層及び銀層を形成する。こ
れらの陰極層を形成後、銀層に導電性接着剤により陰極
端子を接続するとともに、陽極用リード線に陽極端子を
抵抗溶接する。この後、トランスファーモールド法によ
り外装を形成する。外装を形成後、エージング処理等を
行い、定格7V,10μFのタンタル固体電解コンデン
サを形成する。
Next, an embodiment of the present invention will be described. First, a binder is mixed with a fine powder of tantalum of 30 KCV / g, and the solvent is removed by heating. After removing the solvent, the tantalum powder is subjected to rectangular press compression molding with the tantalum anode lead wire pulled out. After compression molding, sintering is performed at a temperature of about 1800 to 2200 ° C. in a vacuum.
A sintered body of 10 mm × 1.80 mm × 1.45 mm square is formed. After forming the sintered body, the same plate-shaped insulating plate made of Teflon and having a thickness of about 0.1 to 0.2 mm is arranged at the root of the anode lead wire. Next, the sintered body is immersed in a phosphoric acid aqueous solution and subjected to a first chemical conversion treatment by applying a DC voltage of 24 V to form an oxide film. After forming the oxide film, the sintered body is left in the air, and is heated at a temperature of 150 to 360 ° C. for 20 minutes.
After the heat treatment, the sintered body is immersed in a phosphoric acid aqueous solution for 30 minutes, and a second chemical conversion treatment is performed by applying a DC voltage of 24 V.
After the second chemical conversion treatment, the sintered body is immersed in a manganese nitrate solution to impregnate the liquid, and then thermally decomposed and re-chemically formed. Then, the steps from impregnation to re-chemical formation are repeated several times to form a solid electrolyte layer made of manganese dioxide.
After forming the solid electrolyte layer, a carbon paste and a silver paste are sequentially applied to form a carbon layer and a silver layer. After forming these cathode layers, the cathode terminal is connected to the silver layer by a conductive adhesive, and the anode terminal is resistance-welded to the anode lead wire. Thereafter, an exterior is formed by a transfer molding method. After forming the exterior, aging treatment and the like are performed to form a tantalum solid electrolytic capacitor rated at 7 V and 10 μF.

【0018】そしてこの実施例のタンタル固体電解コン
デンサについて、加熱処理時の温度に対する漏れ電流の
不良率を測定し、従来例及び比較例のタンタル固体電解
コンデンサの漏れ電流の不良率とともに、表1に示し
た。
With respect to the tantalum solid electrolytic capacitor of this embodiment, the defect rate of the leakage current with respect to the temperature at the time of the heat treatment was measured. Indicated.

【0019】なお、従来のタンタル固体電解コンデンサ
は、本発明の実施例において、酸化皮膜を形成後に、加
熱処理及び第2の化成処理を行なわずに、固体電解質層
を形成する以外は、同一条件で製造したものとする。
The conventional tantalum solid electrolytic capacitor is the same as the embodiment of the present invention except that a solid electrolyte layer is formed without performing a heating treatment and a second chemical conversion treatment after forming an oxide film. It shall be manufactured by.

【0020】また、比較例は、酸化皮膜を形成後の加熱
処理の温度が異なる他は、実施例と同一の条件で製造し
たものとする。
The comparative example is manufactured under the same conditions as in the example except that the temperature of the heat treatment after forming the oxide film is different.

【0021】試料数は各々5000個とする。 以下余白。The number of samples is 5000 each. Margin below.

【0022】[0022]

【表1】 [Table 1]

【0023】この表1から明らかな通り、漏れ電流不良
率は、実施例1〜実施例7が1.6〜3.5%、従来例
及び比較例が3.7%となる。すなわち、実施例1〜実
施例7の方が従来例及び比較例に比べて約43.2%〜
94.6%の大きさに低下している。
As is clear from Table 1, the leakage current defect rate is 1.6 to 3.5% in Examples 1 to 7 and 3.7% in the conventional example and the comparative example. That is, Examples 1 to 7 are about 43.2% or more in comparison with the conventional example and the comparative example.
It is reduced to 94.6%.

【0024】また、加熱処理の温度を270℃とし、第
2の化成処理の電圧を変えた場合の漏れ電流の不良率を
測定した。なお、製造条件は、表1の実施例4におい
て、化成の電圧を変える以外は、同一の条件とする。測
定結果は、表2に示す。また、この表2には、第1の化
成処理の電圧を24Vとしたときの、第2の化成処理の
電圧/第1の化成処理の電圧の比率を示す。 以下余白。
Further, the defect rate of the leakage current when the temperature of the heat treatment was 270 ° C. and the voltage of the second chemical conversion treatment was changed was measured. The manufacturing conditions were the same as those in Example 4 of Table 1, except that the voltage for the formation was changed. Table 2 shows the measurement results. Table 2 shows the ratio of the voltage of the second chemical treatment / the voltage of the first chemical treatment when the voltage of the first chemical treatment is 24 V. Margin below.

【0025】[0025]

【表2】 [Table 2]

【0026】この表2から明らかな通り、漏れ電流不良
率は、実施例8が3.5%であるのに対して、実施例9
〜実施例13が1.6〜2.6%となる。このことか
ら、第2の化成処理の電圧/第1の化成処理の電圧の比
率が0.5より大きい方が漏れ電流不良率を低下する効
果が大きいことが明らかである。そして、特に、その比
率が0.8以上の場合には、実施例11〜実施例13か
ら明らかな通り、前記の比率が0.5である実施例8に
比較して、漏れ電流不良率が約半分以下に低下し、効果
が顕著である。
As is evident from Table 2, the leakage current defect rate was 3.5% in Example 8, whereas the defect rate in Example 9 was 3.5%.
-Example 13 becomes 1.6 to 2.6%. From this, it is clear that the ratio of the voltage of the second chemical conversion treatment / the voltage of the first chemical conversion treatment being larger than 0.5 has a greater effect of reducing the leakage current defective rate. In particular, when the ratio is 0.8 or more, as is clear from Examples 11 to 13, the leakage current defect rate is lower than that in Example 8 in which the ratio is 0.5. The effect is remarkably reduced to about half or less.

【0027】[0027]

【発明の効果】以上の通り、本発明の製造方法によれ
ば、第1の化成処理により酸化皮膜を形成した後に、1
50℃より高い温度で加熱処理し、次いで、第2の化成
処理を行っているため、漏れ電流不良や耐圧不良を低下
でき、小形化が可能な固体電解コンデンサが得られる。
As described above, according to the production method of the present invention, after forming an oxide film by the first chemical conversion treatment,
Since the heat treatment is performed at a temperature higher than 50 ° C. and then the second chemical conversion treatment is performed, a leakage current defect and a withstand voltage defect can be reduced, and a solid electrolytic capacitor that can be reduced in size can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態によって製造した固体電解
コンデンサの断面図を示す。
FIG. 1 shows a cross-sectional view of a solid electrolytic capacitor manufactured according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…焼結体、 4…酸化皮膜、 5…固体電解質層、
6…カーボン層、7…銀層、 12…固体電解コンデン
サ。
1 ... sintered body, 4 ... oxide film, 5 ... solid electrolyte layer,
6 ... carbon layer, 7 ... silver layer, 12 ... solid electrolytic capacitor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上村 博文 福島県田村郡三春町大字熊耳大平16 日立 エーアイシー株式会社三春工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirofumi Uemura 16 Okuma Kuhei, Miharu-machi, Tamura-gun, Fukushima Prefecture Inside the Miharu Plant of Hitachi AIC Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属を化成処理して酸化皮膜を形
成し、次いで、固体電解質層を形成する固体電解コンデ
ンサの製造方法において、第1の化成処理により酸化皮
膜を形成した後に150℃より高い温度で加熱処理する
工程と、この工程後に第2の化成処理をする工程とを行
なうことを特徴とする固体電解コンデンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor in which a valve metal is subjected to a chemical conversion treatment to form an oxide film, and then a solid electrolyte layer is formed. A method for manufacturing a solid electrolytic capacitor, comprising a step of performing a heat treatment at a high temperature and a step of performing a second chemical conversion treatment after this step.
JP33491097A 1997-11-19 1997-11-19 Manufacture of solid electrolytic capacitor Pending JPH11150041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33491097A JPH11150041A (en) 1997-11-19 1997-11-19 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33491097A JPH11150041A (en) 1997-11-19 1997-11-19 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH11150041A true JPH11150041A (en) 1999-06-02

Family

ID=18282613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33491097A Pending JPH11150041A (en) 1997-11-19 1997-11-19 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH11150041A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1117110A2 (en) * 2000-01-12 2001-07-18 Nec Corporation Fabrication method of solid electrolytic capacitor
US6850406B2 (en) 2002-01-18 2005-02-01 Nec Tokin Corporation Nb solid electrolytic capacitor and method for preparing the same
WO2005119716A1 (en) * 2004-06-03 2005-12-15 Pure Material Laboratory Ltd. Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them
US7176514B2 (en) 2002-04-15 2007-02-13 Infineon Technologies Ag Method and configuration for reinforcement of a dielectric layer at defects by self-aligning and self-limiting electrochemical conversion of a substrate material
JP2007059629A (en) * 2005-08-24 2007-03-08 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
JP2009296019A (en) * 2001-04-12 2009-12-17 Showa Denko Kk Method for manufacturing niobium capacitor
WO2010013701A1 (en) * 2008-07-29 2010-02-04 昭和電工株式会社 Method for manufacturing niobium solid electrolytic capacitor
CN103325570A (en) * 2013-07-03 2013-09-25 中国振华(集团)新云电子元器件有限责任公司 Preparation method of high temperature resistant capacitor
WO2013190756A1 (en) * 2012-06-22 2013-12-27 昭和電工株式会社 Capacitor production method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1117110A3 (en) * 2000-01-12 2006-04-19 Nec Tokin Corporation Fabrication method of solid electrolytic capacitor
EP1117110A2 (en) * 2000-01-12 2001-07-18 Nec Corporation Fabrication method of solid electrolytic capacitor
JP2009296019A (en) * 2001-04-12 2009-12-17 Showa Denko Kk Method for manufacturing niobium capacitor
US6850406B2 (en) 2002-01-18 2005-02-01 Nec Tokin Corporation Nb solid electrolytic capacitor and method for preparing the same
US7176514B2 (en) 2002-04-15 2007-02-13 Infineon Technologies Ag Method and configuration for reinforcement of a dielectric layer at defects by self-aligning and self-limiting electrochemical conversion of a substrate material
WO2005119716A1 (en) * 2004-06-03 2005-12-15 Pure Material Laboratory Ltd. Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them
JP2007059629A (en) * 2005-08-24 2007-03-08 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
WO2010013701A1 (en) * 2008-07-29 2010-02-04 昭和電工株式会社 Method for manufacturing niobium solid electrolytic capacitor
JP4719823B2 (en) * 2008-07-29 2011-07-06 昭和電工株式会社 Manufacturing method of niobium solid electrolytic capacitor
US8257449B2 (en) 2008-07-29 2012-09-04 Showa Denko K.K. Method for manufacturing niobium solid electrolytic capacitor
WO2013190756A1 (en) * 2012-06-22 2013-12-27 昭和電工株式会社 Capacitor production method
JPWO2013190756A1 (en) * 2012-06-22 2016-02-08 昭和電工株式会社 Capacitor manufacturing method
JP2016167599A (en) * 2012-06-22 2016-09-15 昭和電工株式会社 Method of manufacturing capacitor
US9607770B2 (en) 2012-06-22 2017-03-28 Show A Denko K.K. Method for producing capacitor
CN103325570A (en) * 2013-07-03 2013-09-25 中国振华(集团)新云电子元器件有限责任公司 Preparation method of high temperature resistant capacitor

Similar Documents

Publication Publication Date Title
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JPH11121281A (en) Method for manufacturing solid electrolytic capacitor
JPH11150041A (en) Manufacture of solid electrolytic capacitor
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
EP2461337B1 (en) Manufacturing method for solid electrolytic capacitor
CN102113074B (en) Method for manufacturing niobium solid electrolytic capacitor
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JP2694670B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH1050561A (en) Solid state electrolytic capacitor
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JPH0682591B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000252169A (en) Manufacture of solid electrolytic capacitor
JPH11135366A (en) Solid electrolytic capacitor
JP3365211B2 (en) Method for manufacturing solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH09293638A (en) Manufacture of solid electrolytic capacitor
JP2000091163A (en) Manufacture of solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP2000340466A (en) Manufacture of solid electrolytic capacitor
JP2000082637A (en) Manufacture of solid electrolytic capacitor
JP2002289474A (en) Manufacturing method for solid electrolytic capacitor
JP2004128033A (en) Method of manufacturing solid state electrolytic capacitor
JP2005259759A (en) Solid electrolytic capacitor and its manufacturing method
JPH10261548A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A02 Decision of refusal

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A02