WO2005119716A1 - Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them - Google Patents

Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them Download PDF

Info

Publication number
WO2005119716A1
WO2005119716A1 PCT/JP2005/009741 JP2005009741W WO2005119716A1 WO 2005119716 A1 WO2005119716 A1 WO 2005119716A1 JP 2005009741 W JP2005009741 W JP 2005009741W WO 2005119716 A1 WO2005119716 A1 WO 2005119716A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolytic
electrolytic capacitor
sintered
particles
valve metal
Prior art date
Application number
PCT/JP2005/009741
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Wada
Original Assignee
Pure Material Laboratory Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pure Material Laboratory Ltd. filed Critical Pure Material Laboratory Ltd.
Publication of WO2005119716A1 publication Critical patent/WO2005119716A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Definitions

  • Sintered element for solid electrolytic capacitor Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor, and method for producing them
  • the present invention relates to a sintered element for an electrolytic capacitor, which can improve the withstand voltage thereof without increasing the size of the electrolytic capacitor and without reducing its capacitance,
  • the present invention relates to an anodizing element for a capacitor, an electrolytic capacitor having excellent withstand voltage using such an element, and a method for producing the same.
  • a capacitor is used to store electricity in an electric circuit and an electronic circuit of many electric products and electronic products such as a mobile phone and a personal computer, or to interrupt a direct current and generate an alternating current. It is an important element used to serve the purpose of passing.
  • the basic structure of a capacitor is shown as a structure in which a dielectric (insulator) is sandwiched between two electrodes. When a DC voltage is applied between the two electrodes, electricity called an electric charge is stored in each of the electrodes, and a current flows during storage, and stops flowing when storage is completed.
  • Capacitors for electronic circuits include plastic film capacitors, ceramic capacitors, microcapacitors, aluminum electrolytic capacitors, tantalum solid electrolytic capacitors, and electric double layer capacitors.
  • tantalum solid electrolytic capacitors are slightly more expensive than capacitors made of other materials, have extremely long service life, are small in size and have excellent high-frequency characteristics, and are compact digital devices such as mobile phones. It is a capacitor that is ideal for equipment, is currently in the spotlight, and is in high demand.
  • the solid electrolytic capacitor uses, as a positive electrode, a metal called a valve metal having a highly corrosion-resistant and insulating oxide film (passive film) formed on its surface by anodic oxidation.
  • the oxide film is used as a dielectric, and a cathode material is formed on the anodic film.
  • This is a capacitor using this as a cathode.
  • Aluminum electrolytic capacitors and tantalum electrolytic capacitors are currently in practical use.
  • the valve metal include aluminum, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Recently, trial production of a niobium electrolytic capacitor using niobium has started.
  • the aluminum electrolytic capacitor has a structure in which an electrolytic solution (cathode) impregnated in kraft paper or the like is sandwiched between metal aluminum foils on which an oxide film is formed and wound.
  • a tantalum solid electrolytic capacitor has a structure that utilizes the gap created when the metal tantalum powder is sintered and hardened, and can secure a high surface area. Excellent in frequency characteristics.
  • a tantalum solid electrolytic capacitor is formed by pressing a fine particle powder of tantalum (Ta) metal and sintering it in a vacuum at a high temperature. Forming a dielectric oxide film (tantalum pentoxide: TaO) layer having a thickness of about several tens of nanometers.
  • TaO tantalum pentoxide
  • Non-Patent Document 1 It is used as a denser (Non-Patent Document 1).
  • FIG. 1 is a schematic cross-sectional view of the sintered element
  • FIG. 2 is a scanning electron microscope (SEM) photograph of a fractured surface of the sintered element.
  • SEM scanning electron microscope
  • the three-dimensional space 4 has a very complicated structure, as is clear from the SEM photograph power of FIG. 2, and as a result, the surface area of the inner wall surface of the space 4 is enormous.
  • the particles that make up the tantalum metal powder are actually composed of a single particle (called a primary particle) and a particle group formed by aggregating multiple particles (called a secondary particle).
  • the three-dimensional space 4 in the sintered particles 1 has a complicated main road-like space and a branch-like space branched from it. It is composed of a three-dimensional continuous space combined with.
  • each particle 2 has a complicated shape having many irregularities, rather than a circular shape as shown in the figure, thereby further complicating the internal space. That is, the surface area of the inner wall portion forming the three-dimensional internal space is very large.
  • the porous sintered element is immersed in an electrolytic solution and anodized.
  • an electrolytic solution a solution such as phosphoric acid, nitric acid, sulfuric acid, or various carboxylic acid solutions that can easily oxidize tantalum metal by applying a voltage is used.
  • the entire inner and outer surfaces of the tantalum sintered element 1 are completely oxidized by this anodic oxidation, so that
  • This pentoxide film 5 is a passive film, and its thickness is
  • FIG. 4 shows a SEM photograph of a fractured surface of the anodized device.
  • the sintered element that has been subjected to anodizing treatment so that the SEM photographic power also contributes has a structure in which an anodized film is formed outside and metal tantalum is wrapped inside.
  • a three-dimensional space having the anodized film 5 as an inner wall is filled with a cathode material to form a cathode 6.
  • a cathode material to form a cathode 6.
  • Manganese dioxide, polythiophene, polypropylene and the like are used as the cathode material.
  • diacid manganese dilute manganese nitrate Mn (NO) with water.
  • a carbon layer 7 and a silver paste layer 8 are sequentially formed outside the cathode 6, and the cathode 6 is connected to a cathode terminal (not shown) via these layers.
  • niobium (Nb) is used instead of tantalum.
  • Niobium is the anode
  • niobium pentoxide (NbO) coating is the dielectric
  • Such a coating constitutes the cathode.
  • the niobium Z interface is unstable, and good performance cannot be obtained.
  • an oxidized niobium solid electrolytic capacitor using a conductive niobium oxide (NbO) having a low oxygen number as an anode has been experimentally manufactured. It has been confirmed that the withstand voltage is improved by using niobium oxide as the anode (Patent Document 1, Non-Patent Documents 2 and 3).
  • an overvoltage such as a surge voltage or a back electromotive voltage when the circuit switch is turned on or off, or a high ripple voltage during use. If this occurs, the element will be burned due to the overvoltage, and in some cases, a fire may occur in the equipment.
  • the capacitor ideally has an infinite impedance during the application of a direct current, so that no current flows.
  • the impedance does not become infinite even when a direct current is applied, and a current flows. This is the leakage current, which occurs at places where the anodic oxide coating is thin or where there are minute defects. Therefore, strict process control and quality control are required during the production of capacitors, and attention is paid to the formation of high quality anodized films.
  • the series (product name) is known.
  • Non-Patent Document 4 Thin tantalum wires and leads of tantalum solid electrolytic capacitors
  • Patent Document 1 Japanese Patent Application Publication No. 2002-524378
  • Non-Patent Document 1 Atsushi Ihara, Akihiko Masuda "Latest Handbook of Electronic Components and Device Mounting Technologies” Published by: R & D Planning, published December 16, 2002
  • Non-Patent Document 2 “Comparison of Niobium and Niobium Oxide Solid Electrolytic Capacitors” CARTS 2003: 23rd Capacitor And Resistor Technology Symposium, March 31—April 3, 2003
  • Non-Patent Document 3 “Regarding the electrical performance of NbO-based electrolytic capacitor powder Role of synthesis and phase formation '' CARTS 2003: 23rd Capacitor AndResistor Technology Symposium, March 31- April 3, 2003
  • Non-Patent Document 4 Kazuyuki Kanemoto “Development of Open Mode Capacitors"
  • Non-Patent Document 5 “Voltage derating for solid tantalum and niobium capacitors; ⁇ ” ARTS 2003: 23rd Capacitor AndResistor Technology symposium, March 31—April 3, 2003
  • the measures (1) and (2) described above can prevent a fire accident, the important function as a capacitor is lost, and electronic equipment incorporating the capacitor cannot be used. It becomes unusable.
  • the method of (3) can be effective as a measure for preventing ignition, but the size of the element is increased, and if it cannot be used for electronic devices that require miniaturization, it will be less powerful. This leads to higher costs.
  • a slag of NbO suboxide is formed.
  • the slag is sintered to obtain a sintered element.
  • the obtained sintered element is subjected to anodizing treatment, and the surface of the element is coated with a niobium pentoxide niobium film ( (Dielectric film).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid electrolytic capacitor element that does not increase the size of the element and does not reduce the capacitance of the element. It is an object of the present invention to provide a sintered element for a solid electrolytic capacitor capable of improving a voltage, an anode element for a solid electrolytic capacitor, a solid electrolytic capacitor using these elements and having excellent withstand voltage, and a method for producing the same.
  • the present inventor has earnestly conducted experiments and studies to solve the above-described problems and achieve the object, and has obtained the following knowledge.
  • a tantalum solid electrolytic capacitor is manufactured through a number of steps as described above.
  • the cross section of the sintered particles in the element is as shown in FIG. That is, amorphous tantalum pentoxide is formed by anodic oxidation on the outside of the sintered particles, and metal tantalum is formed on the inside thereof.
  • the metal tantalum that functions as the anode When exposed to the above-mentioned overvoltage, which has a high reactivity with oxygen, the metal tantalum that functions as the anode generates heat and reacts with the surrounding oxygen to burn, causing fires in electronic equipment and other causes. .
  • the raw material tantalum powder is changed to a conductive oxide, and the oxide powder is formed and sintered.
  • a method was conceived in which the obtained oxide sintered body was subjected to anodizing treatment to obtain a conductive oxide sintered element having a tantalum pentoxide film formed on the surface.
  • the conductive oxide Ti O or
  • the powder is easily broken at the time of molding, and a metal tantalum powder tends to have a complicated shape, whereas an oxide powder tends to have a relatively simple shape. Therefore, the specific surface area of the molded element is reduced, and the capacitance value of the capacitor is reduced.
  • each particle has a complicated uneven shape, and the particles are connected while maintaining many voids by a so-called fastener effect. Thus, the effect of increasing the three-dimensional space of the molded body, maintaining a complicated uneven shape, and maintaining a large surface area could be obtained.
  • the oxide powder when the oxide powder is formed, the particles are broken into a simple shape, so that the fastener effect is significantly reduced and the formability is deteriorated. It is necessary to use a binder. It was also confirmed that the use of a strong binder caused the binder to remain as a carbon component even after sintering in a vacuum heating furnace, immediately affecting the electrical characteristics of the capacitor.
  • a metal tantalum powder is molded, the obtained molded element is sintered to form a sintered element, and the sintered element is subjected to a heat treatment, and the entire element is made of a conductive oxide.
  • a heat treatment at this stage, the shape of the metal tantalum particles constituting the molded element was not broken, so that the capacitance value of the obtained capacitor did not decrease.
  • the entire element is made of conductive oxide (Ta O or
  • the transport amount of oxygen for forming the 2 2 5 oxidized oxide film depends on the surface of the metal tantalum particles.
  • the current efficiency of anodic oxidation is improved because it may be smaller than in the case of 25.
  • thermal distortion and micro-cracks generated in the metal tantalum particles constituting the element by this heat treatment are eliminated during the subsequent anodic oxidation, and a stable anodic oxidation film can be formed.
  • a fastener effect of the particles can be obtained, so that the binder amount can be reduced.
  • oxygen has an effect of purifying the device by reacting with residual impurities in the device. In particular, it is effective in removing the residual carbon of the binder added during the preparation of the tantalum powder.
  • the anodic oxide film is electrically stabilized as compared with the case of the normal treatment, and the electric characteristics such as leakage current are improved.
  • a metal tantalum is formed and sintered to obtain a sintered element, and the obtained sintered element is subjected to anodizing treatment, so that the surface of the metal tantalum is anodized.
  • An anodized element having a tantalum film formed thereon was obtained.
  • Heat treatment was performed on this anodized element, and the case where the metal tantalum inside the anodized film was used as a conductive oxide was examined.
  • the anodic oxide film is stabilized by the aging effect of this heat treatment. That was confirmed.
  • another factor was the possibility of heat distortion and micro-cracking in a part of the anodic oxide coating.
  • the iridescence by these heat treatments can be achieved by controlling the heat treatment conditions as follows.
  • tantalum metal is converted to the desired conductive oxide TaO or Z and TaO
  • the sintered element before anodizing or the anodizing element after anodizing is heat-treated in an electric furnace.
  • the heat treatment conditions are different in each case.
  • the heating temperature is 200 ° C to 500 ° C
  • the heating time is 10 minutes to 10 hours
  • the oxygen concentration in the atmosphere is 5% to 50%.
  • the sintered element for a solid electrolytic capacitor according to the present invention is formed by sintering the conductive oxide particles of the valve metal in a state of being formed into a predetermined shape, thereby forming the conductive oxide particles. It is characterized in that the primary and secondary particles maintain the same complex asperities as the primary and secondary particles when the non-oxidized valve metal particles are molded and sintered.
  • the conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and the surface of the sintered particles is insulated.
  • the primary oxide and secondary particles constituting the acidic oxide particles are formed into non-oxidized valve metal particles, and are the same as the primary particles and secondary particles when sintered. Characterized by maintaining a complicated uneven shape.
  • the solid electrolytic capacitor according to the present invention is characterized in that the conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and the surface of the sintered particles has an insulating oxide particle.
  • a conductive film is further formed on the surface of the insulating oxide, and the conductive oxide particles are connected by sintering to form an anode.
  • Coating A capacitor structure is formed by forming a dielectric and further, the conductive film forms a cathode, and the primary particles and the secondary particles forming the oxide particles are non-oxidized valve metal particles. It is characterized by maintaining the same complex asperities as primary and secondary particles when molded and sintered.
  • valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element. Then, the conductive oxide is used to obtain a sintered element for a solid electrolytic capacitor.
  • the heat treatment is preferably performed in an atmosphere having an oxygen concentration of 5% to 50%, at a heating temperature of 200 ° C to 500 ° C, and for a heating time of 10 minutes to 10 hours.
  • the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element.
  • An anodizing treatment is performed to form an insulating oxide film on the surface of the sintered element, and the obtained anodizing element is heat-treated so that the valve metal particles covered with the insulating oxide film are conductively oxidized.
  • an anodic oxidation element for a solid electrolytic capacitor is obtained.
  • the heat treatment is preferably performed in an atmosphere having an oxygen concentration of 5% to 50% at a heating temperature of 200 ° C to 500 ° C and a heating time of 10 minutes to 10 hours.
  • a constant current of a constant current value is 1 minute to 60 minutes, and preferably, a constant voltage of a constant voltage value is followed by 1 hour to 8 hours. That is.
  • the application time at the constant current is more preferably 2 minutes to 20 minutes.
  • the application time at the constant voltage is preferably 1 hour to 5 hours.
  • the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element.
  • a sintered element is formed by forming an oxide film, and the sintered element is subjected to anodizing treatment to form an insulating oxide film on the surface of the sintered element.
  • a conductive oxide film is formed, the insulating oxide film is used as a dielectric, the conductive oxide inside the dielectric acts as an anode, and the conductive oxide film outside the dielectric serves as a cathode.
  • a capacitor structure that functions as follows.
  • the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element, and the obtained sintered element is subjected to anodizing treatment.
  • an insulating oxide film on the surface of the sintered element, and heat treating the obtained anodic oxide element to make the valve metal particles covered with the insulating oxide film conductive.
  • An anodized element is formed by converting it to an oxide, a conductive oxide film is formed on the surface of the insulating oxide film of the anodized element, and the insulating oxide film is used as a dielectric. It is characterized in that a capacitor structure in which an inner conductive oxide acts as an anode and an outer conductive oxide film of the dielectric acts as a cathode.
  • the heat treatment is performed under the conditions of an oxygen concentration of 5% to 50%, a heating temperature of 200 ° C to 500 ° C, and a heating time of 10 minutes to 10 hours. It is preferred that
  • a constant current of a constant current value is 1 minute to 60 minutes, and preferably, a constant voltage of a constant voltage value is followed by 1 hour to 8 hours. That is.
  • the application time at the constant current is more preferably 2 minutes to 20 minutes.
  • the application time at the constant voltage is preferably 1 hour to 5 hours.
  • valve metal tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium can be used, and tantalum and niobium are more preferable.
  • the heat resistance of the solid electrolytic capacitor can be remarkably improved, and even when an overvoltage is applied. In addition, it is possible to make burning harder than ever. Further, it is possible to significantly reduce the residual carbon in the element of the solid electrolytic capacitor. Also, it is possible to reduce the leakage current of the solid electrolytic capacitor. Further, according to the production method of the present invention, a stable solid electrolytic capacitor having extremely high thermal stability can be provided.
  • FIG. 1 is a schematic cross-sectional structure diagram of a sintered element for a tantalum solid electrolytic capacitor.
  • FIG. 2 is an SEM photograph of a fractured surface of a sintered element for a tantalum solid electrolytic capacitor.
  • FIG. 3 is a schematic cross-sectional structure diagram of an anodizing element for a tantalum solid electrolytic capacitor.
  • FIG. 4 is an SEM photograph of a fractured surface of an anodizing element for a tantalum solid electrolytic capacitor.
  • FIG. 5 is an X-ray diffraction chart of sintered particles when a sintered element is heat-treated, for explaining the example of the present invention.
  • FIG. 6 is an X-ray diffraction chart of internal components of sintered particles when an anodizing element is subjected to a heat treatment, for explaining an example of the present invention.
  • FIG. 7 is a chart showing a low intensity region of the X-ray diffraction chart shown in FIG. 6. Explanation of symbols
  • the following embodiment is an example in which tantalum is used as a valve metal.
  • the average particle size of the tantalum metal powder used was 0.6 m.
  • the sintered element used in the experiment was manufactured by pressing a tantalum metal powder using a mold and sintering at 1400 ° C for 20 minutes.
  • 3mm X 3. 5mm density after sintering is about one third of the true density 5.
  • the anodizing treatment is carried out in a phosphoric acid aqueous solution having a concentration of lwt% at 60 ° C and a constant current of 35 mA / g (58 mA / m 2 ) at a constant current of about 5 hours until it reaches 40 V. , And 40 V—maintained at a constant voltage for 2 hours to obtain an anodized element.
  • the sintered element sintered element before anodization
  • the anodized element sintered element after anodization
  • the heat treatment conditions include (i) no heat treatment, (ii) 300 ° C for 1 hour, (iii) 350 ° C for 1 hour, (iv) 350 ° C x 4 hours,
  • the heat treatment conditions were (i) 400 ° C. for 30 minutes and (ii) 450 ° C. for 30 minutes.
  • the measurement of the electric characteristics was performed in an electrolytic solution by a wet method.
  • the re- (post-treatment) anodization was performed for 5 minutes at a constant current of the same current density as that of the first (main treatment) anodization, and then performed at a constant voltage of the same voltage as that of the first (main treatment) anodization. Hold for hours.
  • the formation of the conductive oxide by the heat treatment was confirmed by subjecting the heat-treated tantalum metal portion to X-ray diffraction and identifying the obtained peak.
  • the X-ray diffraction device used was MXP18VAHF (product number) manufactured by Mac Science, Inc. of the United States, and the X-ray output was
  • the ignition temperature was measured.
  • the force was measured by a glow-wire flammability tester (Model G, manufactured by Suga Test Instruments Co., Ltd.).
  • the chart in Fig. 5 is an X-ray diffraction chart when the sintered element is subjected to a heat treatment.
  • the curve indicated by A is the peak line of (i) the X-ray diffraction of the sample without heat treatment
  • the curve indicated by B is (ii) the X-ray of the sample heat-treated at 300 ° C for 1 hour.
  • the peak line of X-ray diffraction, the curve indicated by C is (iii) the peak line of X-ray diffraction of the heat-treated sample at 350 ° C X l hours
  • the curve indicated by D is (iv) X of the heat-treated sample at 350 ° CX for 4 hours.
  • the curve indicated by E is the peak line of (V) X-ray diffraction of the heat-treated sample at 350 ° C for 9 hours.
  • Vertical lines displayed at the bottom of these peak curves over three levels are Ta, Ta 0,
  • the Ta O peak position is shown.
  • the chart in Fig. 6 is an X-ray diffraction chart when a heat treatment is applied to the anodized element.
  • the curve indicated by W is the peak line of X-ray diffraction of the sintered element sample without heat treatment, and the curve indicated by X was obtained by performing anodizing treatment of the sintered element at 40VX for 2 hours.
  • the peak line of the X-ray diffraction of the anodized device sample and the curve indicated by Y are (i) the peak line of the X-ray diffraction of the sample obtained by subjecting the anodized device to a heat treatment at 400 ° C.
  • the curve shown is (ii) the peak line of X-ray diffraction of the sample obtained by subjecting the anodized element to heat treatment at 450 ° C. for 30 minutes.
  • Vertical lines displayed in three steps below these peak curves indicate the peak positions of Ta, Ta0, and TaO, respectively.
  • the conductive oxide was formed in the samples after the heat treatment at 400 ° C. for 30 minutes (curve Y) after the anodizing treatment at 40 V ⁇ 2 hours so that these peak curve forces also contributed. It has been confirmed that, after anodizing at 40VX for 2 hours, the heat treatment product at 450 ° C for 30 minutes (curve Z) further replaced all of the inside of the particles with conductive oxide.
  • FIG. 7 is a chart in which the diffraction angle 2 ° of the curves W and Z is enlarged in the vicinity of 10 degrees to 50 degrees. It is. It can be confirmed that a broad peak appears at a diffraction angle 20 of curve Z of 20 degrees to 35 degrees. This is a peak peculiar to the anodized film, and is observed in the curves X and Y. Since the peak is not a sharp peak but appears broad, it may be an amorphous film. You can check. In this curve Z, as in the case of curves X and Y, it can be confirmed that the anodized film is amorphous. This means that the anodized film can be crystallized even after further heat treatment after the anodizing treatment. This indicates that the heat treatment employed in the present invention does not cause deterioration of the anodized film.
  • the results are shown in Table 1 below.
  • various characteristics of the anodized element without heat treatment represented by the curve W as the sample I were measured, and also shown in Table 1. Note that the characteristic values shown in Table 1 are for one sintered element.
  • the measured values of the ignition temperature shown in Table 1 are the ignition temperatures obtained by external ignition.
  • a passivation film (Ta O) is formed on the surface of the sintered particles.
  • the passive body coating protects the inside and the accurate evaluation cannot be performed. Therefore, the ignition temperature when the inside of the sintered particles of the anodized element is metal tantalum, and the ignition temperature when the conductive oxide such as TaO or TaO is used.
  • pellets formed and sintered of Ta 2 O particles were used as samples II and III.
  • the conventional sintered device (Sample I) was a device in which the entire device was made of conductive oxide TaO or TaO force by heat treatment ignited at 375 ° C (Samples II and III).
  • the ignition temperature increased significantly to 545 ° C. That is, the heat resistance was significantly improved.
  • the central part of the sintered particles of the anodized element is metal tantalum. This is converted into a tantalum conductive acid TaO or TaO to form a capacitor.
  • the ignition temperature of the tantalum sintered element incorporated in the device increased from 375 ° C to 545 ° C, confirming that the heat resistance was significantly improved.
  • the measured ignition temperature of NbO is 353 ° C
  • the measured ignition temperature of Nb is 290 ° C.
  • the ignition temperature of Ta is 375 ° C, and when it is Ta O or TaO which is a conductive oxide, the ignition temperature is 545 ° C. Therefore, at least heat resistant
  • Tantalum oxide solid electrolytic capacitors are superior to niobium oxide solid electrolytic capacitors from the viewpoints of performance and ⁇ ⁇ .
  • the carbon content was 1170 at ppm for the normal treatment (conventional product).
  • the sintered element before the anodization was heat-treated at 350 ° C for 9 hours (sample II).
  • 610 At ppm it decreased to 750 at ppm in the anodized device after heat treatment at 450 ° C for 30 minutes (Sample III).
  • Example 1 shows the electrical properties of the conventional product (sample I) and the product of the present invention (samples II and III) which were normally treated.
  • the leakage current is 1.41 A in the conventional product (Sample I). It is 1.21 / ⁇ ⁇ in Sample II, which is the product of the present invention, and 0.83 A in Sample III, which is greatly improved. .
  • the solid electrolytic capacitor in the case where tantalum is used as a valve metal is described.
  • the present invention is also applied to valve metals that may constitute other solid electrolytic capacitors such as niobium. It is clear that the present invention is similarly applicable, and in that case, the same operation and effect can be obtained.
  • the heat resistance can be remarkably improved, and even when an overvoltage is applied, the solid electrolytic capacitor is compared with the conventional one. It is possible to make it extremely difficult to burn. Furthermore, it is possible to greatly reduce the residual carbon in the elements of the solid electrolytic capacitor. It is also possible to reduce the leakage current of the solid electrolytic capacitor. Further, according to the manufacturing method of the present invention, a stable solid electrolytic capacitor having extremely high thermal stability can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

An anode which constitutes a capacitor is formed of a valve metal. The anode is converted into a conductive oxide by heat treatment after forming and sintering an element or after anodizing the element, and heat resistance of the anode against an excess voltage applied on the capacitor is improved. Thus, a sintered element for solid electrolytic capacitor and an anode element for solid electrolytic capacitor, which can improve withstand voltage of the solid electrolytic capacitor element without increasing element sizes nor deteriorating capacitance of the element, are provided. A solid electrolytic capacitor which uses these elements and has excellent withstand voltage and a method for manufacturing such elements and the capacitor are also provided.

Description

明 細 書  Specification
固体電解コンデンサ用焼結素子、固体電解コンデンサ用陽極酸化素子、 固体電解コンデンサ、およびそれらの製造方法  Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor, and method for producing them
技術分野  Technical field
[0001] 本発明は、電解コンデンサを大形化することなぐかつその静電容量の低減をもた らすことなく、その耐電圧性を向上させることのできる電解コンデンサ用焼結素子、電 解コンデンサ用陽極酸化素子、これら素子を用いた耐電圧性に優れた電解コンデン サ、およびそれらの製造方法に関するものである。  The present invention relates to a sintered element for an electrolytic capacitor, which can improve the withstand voltage thereof without increasing the size of the electrolytic capacitor and without reducing its capacitance, The present invention relates to an anodizing element for a capacitor, an electrolytic capacitor having excellent withstand voltage using such an element, and a method for producing the same.
背景技術  Background art
[0002] 周知のように、コンデンサとは、携帯電話、パーソナルコンピュータを始めとした多く の電気製品や電子製品の電気回路、電子回路において、電気を蓄えるためや、直 流電流を遮り交流電流を通す役目を果たすために使用されている重要な素子である 。コンデンサの原理的な構造は、二枚の電極の間に誘電体 (絶縁体)を挟んだ構造と して示される。二つの電極間に直流電圧をかけると、それぞれの電極に電荷と呼ば れる電気が蓄えられ、蓄えている途中では電流が流れ、蓄え終わった状態では電流 が流れなくなる。前記電極、誘電体には、多種多様な材料が用いられており、それら 材料の選択によって、それぞれ特有の利点を持ったコンデンサが提供されて 、る。 電子回路用のコンデンサでは、プラスチックフィルムコンデンサ、セラミックコンデンサ 、マイ力コンデンサ、アルミ電解コンデンサ、タンタル固体電解コンデンサ、電気二重 層コンデンサが挙げられる。  [0002] As is well known, a capacitor is used to store electricity in an electric circuit and an electronic circuit of many electric products and electronic products such as a mobile phone and a personal computer, or to interrupt a direct current and generate an alternating current. It is an important element used to serve the purpose of passing. The basic structure of a capacitor is shown as a structure in which a dielectric (insulator) is sandwiched between two electrodes. When a DC voltage is applied between the two electrodes, electricity called an electric charge is stored in each of the electrodes, and a current flows during storage, and stops flowing when storage is completed. A wide variety of materials are used for the electrodes and dielectrics, and the selection of these materials provides capacitors having unique advantages. Capacitors for electronic circuits include plastic film capacitors, ceramic capacitors, microcapacitors, aluminum electrolytic capacitors, tantalum solid electrolytic capacitors, and electric double layer capacitors.
[0003] 前記各種コンデンサの内のタンタル固体電解コンデンサは、他の材料のコンデンサ に比べやや高価ではある力 s、極めて高寿命で、小型化および高周波特性に優れ、 携帯電話を始めとした小形デジタル機器に最適であり、現在脚光を浴びているコン デンサであり、需要が高い製品である。  [0003] Among the various capacitors, tantalum solid electrolytic capacitors are slightly more expensive than capacitors made of other materials, have extremely long service life, are small in size and have excellent high-frequency characteristics, and are compact digital devices such as mobile phones. It is a capacitor that is ideal for equipment, is currently in the spotlight, and is in high demand.
[0004] 前記固体電解コンデンサとは、陽極酸ィ匕により表面に耐食性および絶縁性の高い 酸化膜 (不働体被膜)が形成される弁金属と呼称される金属を陽電極に使用し、その 陽極酸ィ匕被膜を誘電体とするとともに、この陽極酸ィ匕膜上に陰極材料を被膜化して 、これを陰極として用いたコンデンサであり、現在、アルミ電解コンデンサとタンタル電 解コンデンサが実用に供されている。前記弁金属としては、アルミニウム、タンタル、 ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが あり、最近、ニオブを用いたニオブ電解コンデンサの試作も始まっている。 [0004] The solid electrolytic capacitor uses, as a positive electrode, a metal called a valve metal having a highly corrosion-resistant and insulating oxide film (passive film) formed on its surface by anodic oxidation. The oxide film is used as a dielectric, and a cathode material is formed on the anodic film. This is a capacitor using this as a cathode. Aluminum electrolytic capacitors and tantalum electrolytic capacitors are currently in practical use. Examples of the valve metal include aluminum, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Recently, trial production of a niobium electrolytic capacitor using niobium has started.
[0005] 前記アルミ電解コンデンサは、クラフト紙などに電解液(陰極)をしみ込ませたものを 酸ィ匕被膜が形成された金属アルミニウム箔で挟み、巻き付けた構造をしている。これ に対して、タンタル固体電解コンデンサでは、金属タンタル粉末を焼結して固めた時 にできる隙間を利用する構造となっており、高い表面積を確保できるため、アルミ電 解コンデンサに比べて温度特性、周波数特性とも優れて 、る。  [0005] The aluminum electrolytic capacitor has a structure in which an electrolytic solution (cathode) impregnated in kraft paper or the like is sandwiched between metal aluminum foils on which an oxide film is formed and wound. In contrast, a tantalum solid electrolytic capacitor has a structure that utilizes the gap created when the metal tantalum powder is sintered and hardened, and can secure a high surface area. Excellent in frequency characteristics.
[0006] タンタル固体電解コンデンサは、タンタル (Ta)金属の微粒子粉をプレス成形し、真 空中で高温焼結させて得られた素子の表面層を、溶液中でィ匕成法により陽極酸ィ匕し て、厚さ数十 nm程度の誘電体酸化被膜 (五酸化タンタル: Ta O )層を形成し、コン  [0006] A tantalum solid electrolytic capacitor is formed by pressing a fine particle powder of tantalum (Ta) metal and sintering it in a vacuum at a high temperature. Forming a dielectric oxide film (tantalum pentoxide: TaO) layer having a thickness of about several tens of nanometers.
2 5  twenty five
デンサとして用いている(非特許文献 1 )。  It is used as a denser (Non-Patent Document 1).
[0007] このタンタル固体電解コンデンサの製造工程をさらに詳しく見ると、以下のようであ る。 [0007] The manufacturing process of the tantalum solid electrolytic capacitor is described in more detail as follows.
タンタル金属粉末に樟脳などのノインダーを混合して造粒し、金型に充填するとと もに陽極リード線とするタンタルワイヤーを挿入してプレス成形する。成形品(成形べ レット)は真空焼結炉の中で前記バインダーを揮発させるとともに粒子を焼結させて、 非常にポーラスな焼結素子を得る。図 1は、この焼結素子の断面模式図であり、図 2 は、この焼結素子の破断面の走査型電子顕微鏡 (以下 SEMと言う)写真である。図 1 に見るように、焼結素子 1では、タンタル金属粉末の各粒子 2間および各粒子 2とタン タルワイヤー 3とが互いの表面が溶融された結果、相互に連結されている。その結果 、素子 1の内部には、複雑な三次元的空間 4が形成されている。この三次元的空間 4 は、図 2の SEM写真力も明らかなように、非常に複雑な構造となっており、その結果 、空間 4の内壁面の表面積は膨大なものとなっている。タンタル金属粉末を構成する 粒子は、実際には単独粒子 (一次粒子と呼称されている)と、複数の粒子が凝集され てなる粒子群(二次粒子と呼称されている)とから構成されており、その結果、焼結粒 子 1中の三次元空間 4は、主幹道路的な空間とそれから分岐した支線的空間が複雑 に組み合わされた三次元連続空間から構成されている。それによつて、後述するよう に、この内部空間に形成する陰極を形成するための溶液を空間の細部にまで浸透さ せることが可能となっている。また、各粒子 2は、図示のように円形をなしているのでは なぐ多くの凹凸を持つ複雑な形状をなしており、それによつてさらに内部空間が複 雑ィ匕している。すなわち、三次元内部空間を構成する内壁部分の表面積が非常に 大きなものとなっている。 The tantalum metal powder is mixed with a compound such as camphor and granulated, filled into a mold, and a tantalum wire serving as an anode lead wire is inserted and press-molded. The molded article (molded bellet) volatilizes the binder and sinters the particles in a vacuum sintering furnace to obtain a very porous sintered element. FIG. 1 is a schematic cross-sectional view of the sintered element, and FIG. 2 is a scanning electron microscope (SEM) photograph of a fractured surface of the sintered element. As shown in FIG. 1, in the sintered element 1, the surfaces of the particles 2 of the tantalum metal powder and the particles 2 and the tantalum wire 3 are connected to each other as a result of their surfaces being melted. As a result, a complicated three-dimensional space 4 is formed inside the element 1. The three-dimensional space 4 has a very complicated structure, as is clear from the SEM photograph power of FIG. 2, and as a result, the surface area of the inner wall surface of the space 4 is enormous. The particles that make up the tantalum metal powder are actually composed of a single particle (called a primary particle) and a particle group formed by aggregating multiple particles (called a secondary particle). As a result, the three-dimensional space 4 in the sintered particles 1 has a complicated main road-like space and a branch-like space branched from it. It is composed of a three-dimensional continuous space combined with. As a result, as described later, it is possible to make the solution for forming the cathode formed in the internal space permeate into the details of the space. Further, each particle 2 has a complicated shape having many irregularities, rather than a circular shape as shown in the figure, thereby further complicating the internal space. That is, the surface area of the inner wall portion forming the three-dimensional internal space is very large.
[0008] 次に、前記ポーラスな焼結素子は電解液に浸漬され、陽極ィ匕成される。電解液とし ては、リン酸、硝酸、硫酸、各種カルボン酸溶液などの、電圧印加によってタンタル金 属を容易に酸ィ匕することのできる溶液が使用される。図 3に示すように、この陽極酸化 によって、タンタル焼結素子 1の内外全表面がフルに酸ィ匕されて五酸ィ匕タンタル (Ta [0008] Next, the porous sintered element is immersed in an electrolytic solution and anodized. As the electrolytic solution, a solution such as phosphoric acid, nitric acid, sulfuric acid, or various carboxylic acid solutions that can easily oxidize tantalum metal by applying a voltage is used. As shown in FIG. 3, the entire inner and outer surfaces of the tantalum sintered element 1 are completely oxidized by this anodic oxidation, so that
2 Two
O )被膜 5が形成される。この五酸ィ匕タンタル被膜 5は、不働体被膜であり、その厚さO) A coating 5 is formed. This pentoxide film 5 is a passive film, and its thickness is
5 Five
は、この化成プロセスで印加される電圧で決定され、印加電圧 IV当たり約 1. 5nmの 厚さが形成される。この陽極酸ィ匕被膜 5がコンデンサの誘電体を構成することになり、 内部の連結したタンタル金属粒子 2が陽極を構成し、タンタルワイヤー 3によって電気 的に外部に引き出される。前記陽極酸ィ匕素子の破断面の SEM写真を図 4に示した。 この SEM写真力も分力るように陽極酸ィ匕処理が施された焼結素子は、外部に陽極 酸化被膜が形成され、その内部に金属タンタルが包み込まれた構造となっている。  Is determined by the voltage applied in this chemical conversion process, and a thickness of about 1.5 nm is formed per applied voltage IV. The anodized film 5 constitutes the dielectric of the capacitor, and the connected tantalum metal particles 2 constitute the anode, and are electrically drawn out by the tantalum wire 3. FIG. 4 shows a SEM photograph of a fractured surface of the anodized device. The sintered element that has been subjected to anodizing treatment so that the SEM photographic power also contributes has a structure in which an anodized film is formed outside and metal tantalum is wrapped inside.
[0009] 前記陽極酸ィ匕被膜 5を内壁とする 3次元空間には、陰極材料が充填されて、陰極 6 が形成される。前記陰極材料としては、二酸化マンガン、ポリチォフェン、ポリピロ一 ルなどが使用される。二酸ィ匕マンガンの場合は、硝酸マンガン Mn (NO )を水で薄 A three-dimensional space having the anodized film 5 as an inner wall is filled with a cathode material to form a cathode 6. Manganese dioxide, polythiophene, polypropylene and the like are used as the cathode material. In the case of diacid manganese, dilute manganese nitrate Mn (NO) with water.
3 2 めて 6水塩あるいはそれよりも薄く希釈し、その水溶液中に前記陽極酸ィ匕被膜 5を形 成した後の焼結素子(陽極素子)を浸漬し、取り出して、 250°C〜260°C程度で焼成 することを数回〜 10数回繰り返すことにより、二酸ィ匕マンガンの被膜 (陰極 6)を形成 する。  3 2 Firstly, dilute the hydrated salt or a thinner hydrated solution, immerse the sintered element (anode element) after forming the anodic oxide coating 5 in the aqueous solution, take out it, and remove it at 250 ° C. The firing at about 260 ° C. is repeated several times to several times several times to form a film of manganese dioxide (cathode 6).
[0010] 前記陰極 6の外側には、カーボン層 7および銀ペースト層 8を順次に形成し、これら を介して陰極 6を不図示の陰極端子に連結する。  [0010] A carbon layer 7 and a silver paste layer 8 are sequentially formed outside the cathode 6, and the cathode 6 is connected to a cathode terminal (not shown) via these layers.
[0011] 前記構成のタンタル固体電解コンデンサにおいて、タンタルの替わりにニオブ(Nb[0011] In the tantalum solid electrolytic capacitor having the above configuration, niobium (Nb) is used instead of tantalum.
)を用いたものがニオブ固体電解コンデンサである。ニオブ固体電解コンデンサでは 、ニオブが陽極であり、五酸化ニオブ (Nb O )被膜が誘電体であり、二酸化マンガン ) Is a niobium solid electrolytic capacitor. In niobium solid electrolytic capacitors , Niobium is the anode, niobium pentoxide (NbO) coating is the dielectric, manganese dioxide
2 5  twenty five
などの被膜が陰極を構成する。この構成のニオブ固体電解コンデンサでは、ニオブ Z五酸ィ匕ニオブ界面が不安定となり、良好な性能が得られない。現在では、ニオブ の他に酸素数の少な ヽ導電性ニオブ酸化物 (NbO)を陽極として用いる酸ィ匕ニオブ 固体電解コンデンサも試作されるに至っている。陽極を酸ィ匕ニオブとすることで耐電 圧性が向上することが確認されている (特許文献 1、非特許文献 2および 3)。  Such a coating constitutes the cathode. In the niobium solid electrolytic capacitor having this configuration, the niobium Z interface is unstable, and good performance cannot be obtained. At present, in addition to niobium, an oxidized niobium solid electrolytic capacitor using a conductive niobium oxide (NbO) having a low oxygen number as an anode has been experimentally manufactured. It has been confirmed that the withstand voltage is improved by using niobium oxide as the anode (Patent Document 1, Non-Patent Documents 2 and 3).
[0012] 前述のタンタル固体電解コンデンサでは、電気回路や電子回路に使用された場合 において、回路のスィッチのオン Zオフ時のサージ電圧や逆起電圧、あるいは使用 中の高リップル電圧などの過電圧が生じると、その過電圧によって、素子が焼損し、 場合によっては、機器の発火事故などを引き起こすことがある。  [0012] In the tantalum solid electrolytic capacitor described above, when used in an electric circuit or an electronic circuit, an overvoltage such as a surge voltage or a back electromotive voltage when the circuit switch is turned on or off, or a high ripple voltage during use. If this occurs, the element will be burned due to the overvoltage, and in some cases, a fire may occur in the equipment.
[0013] コンデンサは、理想的には直流印加中ではインピーダンスが無限大となって電流が 流れない。しかし、実際には、直流印加中でもインピーダンスは無限大にならず、電 流が流れてしまう。これが漏れ電流であり、陽極酸化被膜が薄い箇所や微小な欠陥 がある箇所において生じる。したがって、コンデンサの製造時に工程管理、品質管理 を厳重にして、良質な陽極酸ィ匕被膜形成に注意を払っている。  [0013] The capacitor ideally has an infinite impedance during the application of a direct current, so that no current flows. However, in practice, the impedance does not become infinite even when a direct current is applied, and a current flows. This is the leakage current, which occurs at places where the anodic oxide coating is thin or where there are minute defects. Therefore, strict process control and quality control are required during the production of capacitors, and attention is paid to the formation of high quality anodized films.
[0014] ところが、近年、タンタル固体電解コンデンサの高容量ィ匕に伴い、素子の粉末は微 細化し、比表面積は増大し、陽極酸ィ匕被膜は薄くなり、被膜の耐電圧性は低下傾向 にある。そのため、前記過電圧に対する被膜の耐電圧に余裕がなくなっており、被膜 が絶縁破壊されてコンデンサ内の電気導通路が短絡し、素子の焼損事故が増大す る可能性が指摘されている。  However, in recent years, as the capacity of tantalum solid electrolytic capacitors has increased, the element powder has become finer, the specific surface area has increased, the anodized film has become thinner, and the withstand voltage of the film has been decreasing. It is in. For this reason, it has been pointed out that there is no allowance for the withstand voltage of the coating against the above-mentioned overvoltage, and the insulation of the coating is short-circuited, the electrical conduction path in the capacitor is short-circuited, and the burnout of the element may increase.
[0015] これに対して、以下のような 3種類の対策が提案され、実施されている。  [0015] In response, the following three measures have been proposed and implemented.
(1) タンタル固体電解コンデンサにヒューズを用いる。このような製品として、例え ば、ローム社(ROHM CO. LTD)の TCFGP/TCFGA/TCFGB  (1) Use a fuse for the tantalum solid electrolytic capacitor. Such products include, for example, ROHM CO. LTD TCFGP / TCFGA / TCFGB
シリーズ (商品名)が知られている。  The series (product name) is known.
(2) タンタル固体電解コンデンサのタンタルワイヤ ·リード線を細くする(非特許文 献 4)。  (2) Thin tantalum wires and leads of tantalum solid electrolytic capacitors (Non-Patent Document 4).
(3) 陽極酸ィ匕被膜を厚くし、素子の耐電圧を高める (非特許文献 5)。  (3) The thickness of the anodized film is increased to increase the withstand voltage of the element (Non-Patent Document 5).
[0016] 特許文献 1 :特表 2002— 524378号公報 非特許文献 1 :井原 惇行、益田 昭彦 著 「最新電子部品,デバイス実装技術便覧 」 発行所: R&Dプランニング、 2002年 12月 16日発行 Patent Document 1: Japanese Patent Application Publication No. 2002-524378 Non-Patent Document 1: Atsushi Ihara, Akihiko Masuda "Latest Handbook of Electronic Components and Device Mounting Technologies" Published by: R & D Planning, published December 16, 2002
非特許文献 2 :「ニオブとニオブ酸化物固体電解コンデンサの比較」 CARTS 2003:23r d Capacitor And ResistorTechnology Symposium, March 31— April 3, 2003 非特許文献 3:「NbOベース電解コンデンサパウダーの電気的性能に関する合成及 び相形成の役割」 CARTS 2003:23rd Capacitor AndResistor Technology Symposium, March 31- April 3, 2003  Non-Patent Document 2: “Comparison of Niobium and Niobium Oxide Solid Electrolytic Capacitors” CARTS 2003: 23rd Capacitor And Resistor Technology Symposium, March 31—April 3, 2003 Non-Patent Document 3: “Regarding the electrical performance of NbO-based electrolytic capacitor powder Role of synthesis and phase formation '' CARTS 2003: 23rd Capacitor AndResistor Technology Symposium, March 31- April 3, 2003
非特許文献 4 :金本 和之 「オープンモードコンデンサの開発」 電解蓄電器研究会 Non-Patent Document 4: Kazuyuki Kanemoto "Development of Open Mode Capacitors"
2003年 12月 11日 発行 Published December 11, 2003
非特許文献 5:「固体タンタルおよびニオブコンデンサに対する電圧ディレーティング ; φ」し ARTS 2003:23rd Capacitor AndResistor Technology symposium, March 31— April 3, 2003  Non-Patent Document 5: “Voltage derating for solid tantalum and niobium capacitors; φ” ARTS 2003: 23rd Capacitor AndResistor Technology symposium, March 31—April 3, 2003
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] し力しながら、前記(1) (2)の対処方法では、発火事故の防止は可能であるが、肝 心のコンデンサとしての機能は失われ、そのコンデンサを組み込んだ電子機器は使 用不能になってしまう。また、前記(3)の対処方法では、発火防止対策としては効果 を挙げることができるが、素子のサイズを大きくすることになり、小型化が必須の電子 機器には使用できないば力りでなぐコストの上昇を招くことになる。  [0017] However, while the measures (1) and (2) described above can prevent a fire accident, the important function as a capacitor is lost, and electronic equipment incorporating the capacitor cannot be used. It becomes unusable. In addition, the method of (3) can be effective as a measure for preventing ignition, but the size of the element is increased, and if it cannot be used for electronic devices that require miniaturization, it will be less powerful. This leads to higher costs.
[0018] これに対して、ニオブ酸ィ匕物固体電解コンデンサにおいては、陽極として比較的着 火性の高!ヽ金属ニオブ (実測着火温度: 290°C)を使用せず、導電性の酸化ニオブ( 実測着火温度: 353°C)を用いることにより、素子の耐電圧性の向上を図っている。し 力しながら、この酸ィ匕ニオブを陽極に使用したニオブ酸ィ匕物固体電解コンデンサで は、新たな問題が生じてしまう。それは、その製造工程によって避けがたく生じる問題 である。このニオブ酸ィ匕物固体電解コンデンサの製造においては、前記特許文献 1 に開示のように、まず、ニオブの高級酸ィ匕物(五酸ィ匕ニオブ)を低級酸ィ匕物に還元し て、 NbO亜酸化物のスラグを形成する。次に、このスラグを焼結させて、焼結素子を 得る。得られた焼結素子に陽極酸化処理を施し、素子の表面に五酸ィ匕ニオブ被膜( 誘電体膜)を形成する。 [0018] On the other hand, in the case of a solid electrolytic capacitor of niobium oxide, the anode has a relatively high flammability! Without using niobium metal (measured ignition temperature: 290 ° C), the conductive By using niobium (actual ignition temperature: 353 ° C), the withstand voltage of the element is improved. However, a new problem arises in a solid electrolytic capacitor of niobium oxide using this niobium as an anode. It is an unavoidable problem due to the manufacturing process. In the production of this niobium anilide solid electrolytic capacitor, first, as disclosed in Patent Document 1, a high-grade anilide (niobium) is reduced to a lower anilide. Form a slag of NbO suboxide. Next, the slag is sintered to obtain a sintered element. The obtained sintered element is subjected to anodizing treatment, and the surface of the element is coated with a niobium pentoxide niobium film ( (Dielectric film).
[0019] 前述のように、ニオブ酸ィ匕物固体電解コンデンサでは、金型を用いた成形には、酸 化物が用いられる。酸ィ匕物は、硬度が高ぐかつ脆い特性を持っている。そのため、 第 1に金型の損耗が激しくなり、金型の寿命が短くなるため、製造コストの増大をもた らす。第 2に酸ィ匕物粒子が脆いため、成形時に二次粒子はもちろんのこと、一次粒子 も砕けて、複雑な形状を喪失してしまう。その結果、成形素子の内部に形成される 3 次元空間の内部表面積が、金属ニオブ粒子を成形した場合に比べ、著しく低減して しまう。したがって、ニオブ酸ィ匕物固体電解コンデンサでは、素子重量が同一にもか かわらず、金属ニオブ粒子を成形した素子に比べて、コンデンサ容量が低減してしま  [0019] As described above, in a solid electrolytic capacitor of niobium oxide, an oxide is used for molding using a mold. The acid ridicule has high hardness and brittle characteristics. As a result, firstly, the mold is heavily worn and the life of the mold is shortened, resulting in an increase in manufacturing cost. Secondly, since the particles are brittle, not only the secondary particles but also the primary particles are broken at the time of molding, and a complicated shape is lost. As a result, the internal surface area of the three-dimensional space formed inside the molding element is significantly reduced as compared with the case where the metal niobium particles are molded. Therefore, although the element weight is the same, the capacitor capacity of the solid electrolytic capacitor of niobium oxide is smaller than that of the element formed of metal niobium particles.
[0020] 本発明は、上記事情に鑑みてなされたものであって、その課題は、素子のサイズを 大きくすることなぐかつ素子の静電容量の低下をもたらすことなぐ固体電解コンデ ンサ素子の耐電圧を向上させることのできる固体電解コンデンサ用焼結素子、固体 電解コンデンサ用陽極素子、これら素子を用いた耐電圧性に優れた固体電解コンデ ンサ、およびそれらの製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid electrolytic capacitor element that does not increase the size of the element and does not reduce the capacitance of the element. It is an object of the present invention to provide a sintered element for a solid electrolytic capacitor capable of improving a voltage, an anode element for a solid electrolytic capacitor, a solid electrolytic capacitor using these elements and having excellent withstand voltage, and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0021] 上述した課題を解決し、目的を達成するために、本発明者は、鋭意、実験、検討を 重ねたところ、以下のような知見を得るに至った。従来の固体電解コンデンサの耐電 圧の改善を可能とするための検討は、現在最も需要の多いタンタル固体電解コンデ ンサを対象として行った。 The present inventor has earnestly conducted experiments and studies to solve the above-described problems and achieve the object, and has obtained the following knowledge. The study to make it possible to improve the withstand voltage of the conventional solid electrolytic capacitor focused on the tantalum solid electrolytic capacitor, which is currently in the highest demand.
[0022] タンタル固体電解コンデンサは、先に述べたように、多くの工程を経て作製される。 [0022] A tantalum solid electrolytic capacitor is manufactured through a number of steps as described above.
すなわち、  That is,
1.タンタル粉末の調整  1. Adjustment of tantalum powder
2.粉末にバインダーを添加して調整  2.Adjust by adding binder to powder
3.プレス成形  3.Press molding
4.真空焼結  4.vacuum sintering
5.陽極酸化  5.Anodic oxidation
6.陰極面および陰極端子の付与 7.その他諸工程 6. Addition of cathode surface and cathode terminal 7. Other processes
[0023] 前記工程 5により得られる陽極酸ィ匕した素子を SEMで観察すると、その素子にお ける焼結粒子の断面は、図 2に示すようになつている。すなわち、焼結粒子の外側に は陽極酸ィ匕によりアモルファスの五酸ィ匕タンタルが形成されており、その内側は金属 タンタルとなっている。この陽極として働く金属タンタルは、酸素との反応性が強ぐ前 述の過電圧に曝されると、発熱し周囲の酸素と反応して燃焼し、電子機器の発火事 故などを引き起こす原因となる。  When the anodized element obtained in the step 5 is observed by SEM, the cross section of the sintered particles in the element is as shown in FIG. That is, amorphous tantalum pentoxide is formed by anodic oxidation on the outside of the sintered particles, and metal tantalum is formed on the inside thereof. When exposed to the above-mentioned overvoltage, which has a high reactivity with oxygen, the metal tantalum that functions as the anode generates heat and reacts with the surrounding oxygen to burn, causing fires in electronic equipment and other causes. .
[0024] そこで、タンタルの酸ィ匕物について検討したところ、高度に酸化された五酸化タンタ ルは絶縁性である力 低度に酸ィ匕された酸ィ匕タンタル (Ta Oまたは/および Ta O)  [0024] Then, when the tantalum oxidized product was examined, the highly oxidized tantalum pentoxide was insulative and the oxidized tantalum pentoxide (Ta O and / or Ta O)
4 2 は、酸素との反応性が激減しており、し力も導電性を維持していることが判明した。問 題は、その維持されている導電性で素子の陽極として充分な導電性を満たしている かであつたが、実測の結果、問題がないことが確認された。このような低級酸化物は 酸素との反応性が大幅に低減している一方で、導電性を維持しており、陽極として充 分に適用可能である点について、前述のように、先に、ニオブを用いた固体電解コン デンサにおいて、確認されていた訳である力 本発明者は、タンタルにおいて、さら に検討したところ、その導電性酸ィ匕物の使用に当たっては、さらに改良が必要なこと を知るに至った。  In the case of 42, the reactivity with oxygen was drastically reduced, and it was found that the force maintained the conductivity. The problem was whether the maintained conductivity satisfies sufficient conductivity as the anode of the device, but actual measurements confirmed that there were no problems. While such lower oxides have significantly reduced reactivity with oxygen, they maintain conductivity and can be used for filling as an anode, as described above. The present inventors have further investigated tantalum in solid electrolytic capacitors using niobium, and found that further improvements were necessary in using the conductive oxide. I came to know.
[0025] タンタルの低級酸ィ匕物を陽極に使用しょうとした場合、前述のニオブでの場合のよ うに、原料タンタル粉末を導電性酸化物に変化させ、その酸化物粉末を成形し、焼 結し、得られた酸化物焼結体を陽極酸化処理に供して、表面に五酸化タンタル被膜 を形成した導電性酸ィ匕物焼結素子を得るという方法が、まず、考えられた。  [0025] When a lower oxide of tantalum is used for the anode, as in the case of niobium described above, the raw material tantalum powder is changed to a conductive oxide, and the oxide powder is formed and sintered. First, a method was conceived in which the obtained oxide sintered body was subjected to anodizing treatment to obtain a conductive oxide sintered element having a tantalum pentoxide film formed on the surface.
[0026] しカゝしながら、タンタル粉末を低度に酸化させて導電性酸化物 (Ta Oまたは  [0026] While the tantalum powder is being oxidized to a low degree, the conductive oxide (Ta O or
4 Zおよ び Ta O)とし、この酸化物粒子を成形し、その後、焼結して、酸化物焼結素子を得る 4 Z and Ta O) to form the oxide particles and then sinter to obtain an oxide sintered element
2 2
方法であると、まず、成形時に粉末は壊れ易くなり、金属タンタル粉末では複雑な形 状をしていたものが、酸化物粉末では比較的単純な形状となる傾向がある。したがつ て、成形素子における比表面積が減少し、コンデンサとしたときの静電容量値が低下 することになる。また、金属タンタル粉末では、各粒子は複雑な凹凸形状をなしてい たので、各粒子間がいわゆるファスナー効果によって多くの空隙を維持しつつ連結 することができ、成形体の三次元空間を増大させ、かつ複雑な凹凸形状を維持し、大 きい表面積を維持する効果を得ることができていた。これに対し、酸化物粉末を成形 した場合では、粒子が壊されて単純な形状になるため、ファスナー効果が大幅に低 下し、成形性が悪くなり、それを補うために、プレス成形時に強いバインダーを用いる 必要がでてくる。強いバインダーを用いることにより、真空加熱炉での焼結によっても バインダーが炭素成分として残存しやすぐコンデンサとしての電気特性に悪影響を 及ぼ、すことも、確認された。 In the method, first, the powder is easily broken at the time of molding, and a metal tantalum powder tends to have a complicated shape, whereas an oxide powder tends to have a relatively simple shape. Therefore, the specific surface area of the molded element is reduced, and the capacitance value of the capacitor is reduced. In addition, in the case of metal tantalum powder, each particle has a complicated uneven shape, and the particles are connected while maintaining many voids by a so-called fastener effect. Thus, the effect of increasing the three-dimensional space of the molded body, maintaining a complicated uneven shape, and maintaining a large surface area could be obtained. On the other hand, when the oxide powder is formed, the particles are broken into a simple shape, so that the fastener effect is significantly reduced and the formability is deteriorated. It is necessary to use a binder. It was also confirmed that the use of a strong binder caused the binder to remain as a carbon component even after sintering in a vacuum heating furnace, immediately affecting the electrical characteristics of the capacitor.
[0027] これに対して、金属タンタル粉末を成形し、得られた成形素子を燒結して、焼結素 子とし、この焼結素子に対して熱処理を施し、素子全体を導電性酸化物とした場合を 検討した。その結果、この段階での熱処理では、成形素子を構成する金属タンタル 粒子の形状は壊れな 、ので、得られるコンデンサの静電容量値が低下することはな かった。金属タンタル成形素子への熱処理により素子全体を導電性酸化物 (Ta Oま  [0027] On the other hand, a metal tantalum powder is molded, the obtained molded element is sintered to form a sintered element, and the sintered element is subjected to a heat treatment, and the entire element is made of a conductive oxide. Was considered. As a result, at the heat treatment at this stage, the shape of the metal tantalum particles constituting the molded element was not broken, so that the capacitance value of the obtained capacitor did not decrease. The entire element is made of conductive oxide (Ta O or
4 たは Zおよび Ta Oにするので、その次の陽極酸化処理工程において Ta Oの絶縁  4 or Z and TaO, so in the next anodic oxidation process
2 2 5 性酸ィ匕物皮膜を形成するための酸素の輸送量は、金属タンタル粒子表面を Ta 0  The transport amount of oxygen for forming the 2 2 5 oxidized oxide film depends on the surface of the metal tantalum particles.
2 5に する場合に比較して少なくてよいから、陽極酸化の電流効率は向上する。また、この 熱処理により素子を構成する金属タンタル粒子に生じる熱歪や微小亀裂などは、そ の後の陽極酸ィ匕時に解消され、安定な陽極酸ィ匕皮膜が形成できる。また、金属タン タル粉末の各粒子は複雑な凹凸形状を壊されることがなぐ成形に当たっては、粒子 のファスナー効果が得られるため、バインダー量を低減できる。さらに、熱処理による 酸化時、酸素は素子内の残留不純物と反応し素子を精製する効果がある。特にタン タル粉末の調製時に添加された前記バインダーの残留炭素の除去には効果がある。 これにより、陽極酸化皮膜は通常処理のものと比較して、電気的にも安定化し、漏れ 電流などの電気特性は改善される。  The current efficiency of anodic oxidation is improved because it may be smaller than in the case of 25. In addition, thermal distortion and micro-cracks generated in the metal tantalum particles constituting the element by this heat treatment are eliminated during the subsequent anodic oxidation, and a stable anodic oxidation film can be formed. In addition, when forming each particle of the metal tantalum powder without breaking the complicated uneven shape, a fastener effect of the particles can be obtained, so that the binder amount can be reduced. Further, at the time of oxidation by heat treatment, oxygen has an effect of purifying the device by reacting with residual impurities in the device. In particular, it is effective in removing the residual carbon of the binder added during the preparation of the tantalum powder. As a result, the anodic oxide film is electrically stabilized as compared with the case of the normal treatment, and the electric characteristics such as leakage current are improved.
[0028] 次に、金属タンタルを成形し、これを焼結して、焼結素子を得て、得られた焼結素 子に陽極酸化処理を施して、金属タンタルの表面に五酸ィ匕タンタル被膜を形成した 陽極酸化素子を得た。この陽極酸化素子に対して熱処理を施し、陽極酸化被膜の 内側の金属タンタルを導電性酸ィ匕物とした場合を検討した。その結果、まず、この段 階での熱処理では、陽極酸化皮膜はこの熱処理による時効効果により安定化される ことが、確認できた。しかし、陽極酸化被膜の一部分に熱による歪や微小亀裂が発生 する可能性があることも分力 た。それに対して、熱処理後に再陽極酸化処理を実 施すれば、熱歪が緩和されるとともに、生じた微小亀裂が修復されることが、確認され た。この場合においても、熱処理時において酸素は素子内の残留不純物と反応し素 子を精製する効果がある。特に素子成形時に添加されたバインダーの残留炭素の除 去には効果がある。これにより、陽極酸ィ匕皮膜は通常処理のものと比較して、電気的 にも安定ィ匕し、漏れ電流などの電気特性は改善される。 Next, a metal tantalum is formed and sintered to obtain a sintered element, and the obtained sintered element is subjected to anodizing treatment, so that the surface of the metal tantalum is anodized. An anodized element having a tantalum film formed thereon was obtained. Heat treatment was performed on this anodized element, and the case where the metal tantalum inside the anodized film was used as a conductive oxide was examined. As a result, first, in the heat treatment at this stage, the anodic oxide film is stabilized by the aging effect of this heat treatment. That was confirmed. However, another factor was the possibility of heat distortion and micro-cracking in a part of the anodic oxide coating. On the other hand, it was confirmed that re-anodizing treatment after the heat treatment alleviated the thermal strain and repaired the micro cracks that occurred. Also in this case, during the heat treatment, oxygen has the effect of reacting with residual impurities in the device to purify the device. In particular, it is effective for removing the residual carbon of the binder added at the time of forming the element. As a result, the anodized film is electrically stable and has improved electric characteristics such as leakage current, as compared with the case of the normal treatment.
[0029] これらの熱処理による酸ィ匕は、次のように熱処理条件を制御することで可能となる。  [0029] The iridescence by these heat treatments can be achieved by controlling the heat treatment conditions as follows.
すなわち、タンタル金属を目的の導電性酸化物 Ta Oまたは Zおよび Ta O  That is, tantalum metal is converted to the desired conductive oxide TaO or Z and TaO
4 2 とするには、陽極酸ィ匕前の焼結素子あるいは陽極酸ィ匕後の陽極酸ィ匕素子を電気炉 内で熱処理する。熱処理条件はそれぞれの場合で異なる力 加熱温度は 200°Cから 500°C、加熱時間は 10分間から 10時間、また雰囲気中の酸素濃度は 5%から 50% であり、電気炉内に酸素ガス、アルゴンガスあるいは窒素ガスなどを制御しながら注 入する。  In order to obtain 42, the sintered element before anodizing or the anodizing element after anodizing is heat-treated in an electric furnace. The heat treatment conditions are different in each case.The heating temperature is 200 ° C to 500 ° C, the heating time is 10 minutes to 10 hours, and the oxygen concentration in the atmosphere is 5% to 50%. Inject while controlling argon gas or nitrogen gas.
[0030] 本発明は、前記知見に基づいてなされたものである。すなわち、本発明に係る固体 電解コンデンサ用焼結素子は、弁金属の導電性酸ィ匕物粒子が所定の形状に成形さ れた状態で焼結されてなり、前記導電性酸化物粒子を構成する一次粒子および二 次粒子が非酸化状態の弁金属粒子を成形、焼結した場合の一次粒子および二次粒 子と同様の複雑な凹凸形状を維持していることを特徴とする。  [0030] The present invention has been made based on the above findings. That is, the sintered element for a solid electrolytic capacitor according to the present invention is formed by sintering the conductive oxide particles of the valve metal in a state of being formed into a predetermined shape, thereby forming the conductive oxide particles. It is characterized in that the primary and secondary particles maintain the same complex asperities as the primary and secondary particles when the non-oxidized valve metal particles are molded and sintered.
[0031] また、本発明に係る固体電解コンデンサ用陽極酸化素子は、弁金属の導電性酸化 物粒子が所定の形状に成形された状態で焼結されるとともに、該焼結粒子の表面に 絶縁性酸ィ匕物が形成されてなり、前記酸ィ匕物粒子を構成する一次粒子および二次 粒子が非酸化状態の弁金属粒子を成形、焼結した場合の一次粒子および二次粒子 と同様の複雑な凹凸形状を維持していることを特徴とする。  In the anodic oxidation element for a solid electrolytic capacitor according to the present invention, the conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and the surface of the sintered particles is insulated. The primary oxide and secondary particles constituting the acidic oxide particles are formed into non-oxidized valve metal particles, and are the same as the primary particles and secondary particles when sintered. Characterized by maintaining a complicated uneven shape.
[0032] また、本発明に係る固体電解コンデンサは、弁金属の導電性酸化物粒子が所定の 形状に成形された状態で焼結されるとともに、該焼結粒子の表面に絶縁性酸ィ匕物が 形成され、該絶縁性酸化物の表面にさらに導電性の被膜が形成され、前記焼結によ つて連結されて!、る導電性酸化物粒子が陽極を構成し、前記絶縁性酸化物被膜が 誘電体を構成し、さらに前記導電性の被膜が陰極を構成することによって、コンデン サ構造が構成されてなり、前記酸化物粒子を構成する一次粒子および二次粒子が 非酸化状態の弁金属粒子を成形、焼結した場合の一次粒子および二次粒子と同様 の複雑な凹凸形状を維持していることを特徴とする。 Further, the solid electrolytic capacitor according to the present invention is characterized in that the conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and the surface of the sintered particles has an insulating oxide particle. A conductive film is further formed on the surface of the insulating oxide, and the conductive oxide particles are connected by sintering to form an anode. Coating A capacitor structure is formed by forming a dielectric and further, the conductive film forms a cathode, and the primary particles and the secondary particles forming the oxide particles are non-oxidized valve metal particles. It is characterized by maintaining the same complex asperities as primary and secondary particles when molded and sintered.
[0033] また、本発明に係る固体電解コンデンサ用焼結素子の製造方法は、弁金属粒子を 所定の形状に成形した後、焼結して焼結素子とし、得られた焼結素子を熱処理して 導電性酸化物とすることにより、固体電解コンデンサ用の焼結素子を得ることを特徴 とする。  [0033] Further, in the method for manufacturing a sintered element for a solid electrolytic capacitor according to the present invention, the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element. Then, the conductive oxide is used to obtain a sintered element for a solid electrolytic capacitor.
[0034] 前記熱処理は、酸素濃度 5%〜50%の雰囲気下で、 200°C〜500°Cの加熱温度 で、加熱時間が 10分間から 10時間の条件で行われること力 好ましい。  [0034] The heat treatment is preferably performed in an atmosphere having an oxygen concentration of 5% to 50%, at a heating temperature of 200 ° C to 500 ° C, and for a heating time of 10 minutes to 10 hours.
[0035] また、本発明に係る固体電解コンデンサ用陽極酸化素子の製造方法は、弁金属粒 子を所定の形状に成形した後、焼結して焼結素子とし、得られた焼結素子に陽極酸 化処理を施して前記焼結素子の表面に絶縁性酸化被膜を形成し、得られた陽極酸 化素子を熱処理して前記絶縁性酸化被膜に覆われている弁金属粒子を導電性酸化 物とすることにより、固体電解コンデンサ用の陽極酸化素子を得ることを特徴とする。  [0035] Further, in the method for producing an anodized element for a solid electrolytic capacitor according to the present invention, the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element. An anodizing treatment is performed to form an insulating oxide film on the surface of the sintered element, and the obtained anodizing element is heat-treated so that the valve metal particles covered with the insulating oxide film are conductively oxidized. In this case, an anodic oxidation element for a solid electrolytic capacitor is obtained.
[0036] 前記熱処理は、酸素濃度 5%〜50%の雰囲気下で、 200°C〜500°Cの加熱温度 で、加熱時間が 10分間から 10時間の条件で行われること力 好ましい。  [0036] The heat treatment is preferably performed in an atmosphere having an oxygen concentration of 5% to 50% at a heating temperature of 200 ° C to 500 ° C and a heating time of 10 minutes to 10 hours.
[0037] 前記熱処理により導電性酸化物を形成した後に、さらに再陽極酸化処理を行うこと が望ましい。この後処理の再陽極酸化処理の条件は、一定の電流値の定電流で 1分 間〜 60分間であり、望ましくは続いて一定の電圧値の定電圧で 1時間〜 8時間行な う、ことである。前記定電流での印加時間は、より好ましくは 2分間〜 20分間である。 また、前記定電圧での印加時間は好ましくは 1時間〜 5時間である。  [0037] After forming the conductive oxide by the heat treatment, it is preferable to further perform anodization again. The conditions of the re-anodizing treatment in this post-treatment are as follows: a constant current of a constant current value is 1 minute to 60 minutes, and preferably, a constant voltage of a constant voltage value is followed by 1 hour to 8 hours. That is. The application time at the constant current is more preferably 2 minutes to 20 minutes. The application time at the constant voltage is preferably 1 hour to 5 hours.
[0038] また、本発明に係る固体電解コンデンサの製造方法は、弁金属粒子を所定の形状 に成形した後、焼結して焼結素子とし、得られた焼結素子を熱処理して導電性酸ィ匕 物とすることにより焼結素子を形成し、この焼結素子に陽極酸ィ匕処理を施して前記焼 結素子の表面に絶縁性酸化被膜を形成し、この絶縁性酸化被膜表面に導電性酸化 物被膜を形成し、前記絶縁性酸化被膜を誘電体とし、この誘電体をその内側の導電 性酸化物が陽極として作用し、前記誘電体の外側の導電性酸化物被膜が陰極とし て作用するコンデンサ構造を構成することを特徴とする。 [0038] Further, in the method for manufacturing a solid electrolytic capacitor according to the present invention, the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element. A sintered element is formed by forming an oxide film, and the sintered element is subjected to anodizing treatment to form an insulating oxide film on the surface of the sintered element. A conductive oxide film is formed, the insulating oxide film is used as a dielectric, the conductive oxide inside the dielectric acts as an anode, and the conductive oxide film outside the dielectric serves as a cathode. And a capacitor structure that functions as follows.
[0039] また、本発明に係る固体電解コンデンサの他の製造方法は、弁金属粒子を所定の 形状に成形した後、焼結して焼結素子とし、得られた焼結素子に陽極酸化処理を施 して前記焼結素子の表面に絶縁性酸ィ匕被膜を形成し、得られた陽極酸ィ匕素子を熱 処理して前記絶縁性酸化被膜に覆われている弁金属粒子を導電性酸化物にするこ とにより陽極酸化素子を形成し、この陽極酸化素子の前記絶縁性酸化被膜表面に 導電性酸化物被膜を形成し、前記絶縁性酸化被膜を誘電体とし、この誘電体をその 内側の導電性酸化物が陽極として作用し、前記誘電体の外側の導電性酸化物被膜 が陰極として作用するコンデンサ構造を構成することを特徴とする。  [0039] Further, in another method of manufacturing the solid electrolytic capacitor according to the present invention, the valve metal particles are formed into a predetermined shape, and then sintered to form a sintered element, and the obtained sintered element is subjected to anodizing treatment. To form an insulating oxide film on the surface of the sintered element, and heat treating the obtained anodic oxide element to make the valve metal particles covered with the insulating oxide film conductive. An anodized element is formed by converting it to an oxide, a conductive oxide film is formed on the surface of the insulating oxide film of the anodized element, and the insulating oxide film is used as a dielectric. It is characterized in that a capacitor structure in which an inner conductive oxide acts as an anode and an outer conductive oxide film of the dielectric acts as a cathode.
[0040] 前記固体電解コンデンサの各製造方法において、熱処理は、酸素濃度 5%〜50 %の雰囲気下で、 200°C〜500°Cの加熱温度で、加熱時間が 10分間から 10時間の 条件で行われることが、好ましい。  [0040] In each of the manufacturing methods of the solid electrolytic capacitor, the heat treatment is performed under the conditions of an oxygen concentration of 5% to 50%, a heating temperature of 200 ° C to 500 ° C, and a heating time of 10 minutes to 10 hours. It is preferred that
[0041] 前記熱処理により導電性酸化物を形成した後に、さらに再陽極酸化処理を行うこと が望ましい。この後処理の再陽極酸化処理の条件は、一定の電流値の定電流で 1分 間〜 60分間であり、望ましくは続いて一定の電圧値の定電圧で 1時間〜 8時間行な う、ことである。前記定電流での印加時間は、より好ましくは 2分間〜 20分間である。 また、前記定電圧での印加時間は好ましくは 1時間〜 5時間である。  [0041] After the conductive oxide is formed by the heat treatment, it is preferable to perform anodization again. The conditions of the re-anodizing treatment in this post-treatment are as follows: a constant current of a constant current value is 1 minute to 60 minutes, and preferably, a constant voltage of a constant voltage value is followed by 1 hour to 8 hours. That is. The application time at the constant current is more preferably 2 minutes to 20 minutes. The application time at the constant voltage is preferably 1 hour to 5 hours.
[0042] 前記固体電解コンデンサの各製造方法において、弁金属としては、タンタル、バナ ジゥム、ニオブ、チタン、タングステン、ハフニウム、ジルコニウムが使用可能であり、タ ンタル、ニオブがより好適である。  [0042] In each of the manufacturing methods of the solid electrolytic capacitor, as the valve metal, tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium can be used, and tantalum and niobium are more preferable.
発明の効果  The invention's effect
[0043] 本発明にかかる固体電解コンデンサ用の焼結素子および陽極酸ィ匕素子を用いるこ とにより、固体電解コンデンサにおいて、耐熱性を著しく向上させることができ、過電 圧を印加されても、従来に比較して極めて焼損しがたくすることが可能になる。さらに 、固体電解コンデンサの素子中の残留炭素を大幅に低減することが可能になる。ま た、固体電解コンデンサの漏れ電流の低減も実現できる。また、本発明の製造方法 によれば、熱的に極めて安全性の高い安定した固体電解コンデンサを提供すること ができる。 図面の簡単な説明 [0043] By using the sintered element and the anodized element for a solid electrolytic capacitor according to the present invention, the heat resistance of the solid electrolytic capacitor can be remarkably improved, and even when an overvoltage is applied. In addition, it is possible to make burning harder than ever. Further, it is possible to significantly reduce the residual carbon in the element of the solid electrolytic capacitor. Also, it is possible to reduce the leakage current of the solid electrolytic capacitor. Further, according to the production method of the present invention, a stable solid electrolytic capacitor having extremely high thermal stability can be provided. Brief Description of Drawings
[0044] [図 1]図 1は、タンタル固体電解コンデンサ用の焼結素子の模式的断面構造図である  FIG. 1 is a schematic cross-sectional structure diagram of a sintered element for a tantalum solid electrolytic capacitor.
[図 2]図 2は、タンタル固体電解コンデンサ用の焼結素子の破断面の SEM写真であ る。 FIG. 2 is an SEM photograph of a fractured surface of a sintered element for a tantalum solid electrolytic capacitor.
[図 3]図 3は、タンタル固体電解コンデンサ用の陽極酸化素子の模式的断面構造図 である。  FIG. 3 is a schematic cross-sectional structure diagram of an anodizing element for a tantalum solid electrolytic capacitor.
[図 4]図 4は、タンタル固体電解コンデンサ用の陽極酸ィ匕素子の破断面の SEM写真 である。  FIG. 4 is an SEM photograph of a fractured surface of an anodizing element for a tantalum solid electrolytic capacitor.
[図 5]図 5は、本発明の実施例を説明するためのもので、焼結素子を熱処理した場合 の焼結粒子の X線回折チャートである。  FIG. 5 is an X-ray diffraction chart of sintered particles when a sintered element is heat-treated, for explaining the example of the present invention.
[図 6]図 6は、本発明の実施例を説明するためのもので、陽極酸化素子を熱処理した 場合の焼結粒子の内部成分の X線回折チャートである。  FIG. 6 is an X-ray diffraction chart of internal components of sintered particles when an anodizing element is subjected to a heat treatment, for explaining an example of the present invention.
[図 7]図 7は、図 6に示した X線回折チャートの低強度領域を示すチャートである。 符号の説明  FIG. 7 is a chart showing a low intensity region of the X-ray diffraction chart shown in FIG. 6. Explanation of symbols
[0045] 1 焼結素子 [0045] 1 Sintered element
2 焼結粒子  2 Sintered particles
3 タンタノレワイヤー  3 Tantanore wire
4 焼結素子内部の三次元空間  4 Three-dimensional space inside sintered element
5 陽極酸化被膜  5 Anodized film
6 陰極  6 Cathode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0046] 以下に、本発明の実施例を示す。なお、以下の実施例は、本発明を好適に説明す るための例示に過ぎず、なんら本発明を限定するものではない。 Hereinafter, examples of the present invention will be described. It should be noted that the following examples are merely examples for suitably describing the present invention, and do not limit the present invention in any way.
実施例  Example
[0047] 以下に示す実施例は、弁金属としてタンタルを用いた場合の例である。用いたタン タル金属粉末の平均粒径は、 0. 6 mであった。 [0048] (実験方法) The following embodiment is an example in which tantalum is used as a valve metal. The average particle size of the tantalum metal powder used was 0.6 m. (Experiment method)
実験に用いた焼結素子は、タンタル金属粉末を金型を用いてプレス成形し、 1400 °Cで 20分間燒結して作製した。焼結素子のサイズは 1. Omm X 3. 3mm X 3. 5mm 、燒結後の密度は 5. 5gZcm3で真密度の約 3分の 1であり、比表面積は 0. 6m2/g であった。 The sintered element used in the experiment was manufactured by pressing a tantalum metal powder using a mold and sintering at 1400 ° C for 20 minutes. The size of the sintered element 1. Omm X 3. 3mm X 3. 5mm , density after sintering is about one third of the true density 5. 5gZcm 3, specific surface area meet 0. 6 m 2 / g Was.
[0049] 陽極酸化処理は、前記焼結素子を、 60°Cの濃度 lwt%のリン酸水溶液中で、 35 mA/g (58mA/m2)一定の定電流で 40Vになるまで約 5時間、そして 40V—定の 定電圧で 2時間、それぞれ保持して行い、陽極酸化素子を得た。 [0049] The anodizing treatment is carried out in a phosphoric acid aqueous solution having a concentration of lwt% at 60 ° C and a constant current of 35 mA / g (58 mA / m 2 ) at a constant current of about 5 hours until it reaches 40 V. , And 40 V—maintained at a constant voltage for 2 hours to obtain an anodized element.
陽極とする導電性酸化物 (Ta Oまたは  Conductive oxide (Ta O or
4 Zおよび Ta O)を形成するための熱処理は  4 Z and Ta O)
2  2
、前記焼結素子(陽極酸化前の焼結素子)と陽極酸化素子(陽極酸化後の焼結素子 The sintered element (sintered element before anodization) and the anodized element (sintered element after anodization)
)のそれぞれについて、大気中で行い、電気特性の測定に用いた。 ) Was performed in the air and used for measuring electrical characteristics.
[0050] 焼結素子に熱処理を施して導電性酸化物を形成させる場合では、熱処理条件とし て、 (i)熱処理なし、 (ii) 300°C X 1時間、 (iii) 350°C X 1時間、 (iv) 350°C X 4時間、[0050] In the case where the sintered element is subjected to heat treatment to form a conductive oxide, the heat treatment conditions include (i) no heat treatment, (ii) 300 ° C for 1 hour, (iii) 350 ° C for 1 hour, (iv) 350 ° C x 4 hours,
(v) 350°C X 9時間、を実施した。 (v) 350 ° C × 9 hours.
一方、陽極酸化素子に熱処理を施して粒子の内部を導電性酸化物とする場合で は、熱処理条件として、 (i) 400°C X 30分、(ii) 450°C X 30分、を実施した。  On the other hand, when heat treatment was performed on the anodized element to make the inside of the particles a conductive oxide, the heat treatment conditions were (i) 400 ° C. for 30 minutes and (ii) 450 ° C. for 30 minutes.
[0051] 電気特性の測定は電解液中で湿式にて行った。再 (後処理)陽極酸化は、最初 (本 処理)の陽極酸化時と同じ電流密度の定電流で 5分間実施した、その後最初 (本処 理)の陽極酸化時と同じ電圧の定電圧で 1時間保持した。 The measurement of the electric characteristics was performed in an electrolytic solution by a wet method. The re- (post-treatment) anodization was performed for 5 minutes at a constant current of the same current density as that of the first (main treatment) anodization, and then performed at a constant voltage of the same voltage as that of the first (main treatment) anodization. Hold for hours.
[0052] また、前記熱処理による導電性酸化物の形成は、熱処理したタンタル金属部分を X 線回折にかけて得られたピークを同定することにより、確認した。使用した X線回折装 置は、米国のマックサイエンス社製の MXP18VAHF (商品番号)であり、 X線出力は[0052] The formation of the conductive oxide by the heat treatment was confirmed by subjecting the heat-treated tantalum metal portion to X-ray diffraction and identifying the obtained peak. The X-ray diffraction device used was MXP18VAHF (product number) manufactured by Mac Science, Inc. of the United States, and the X-ray output was
40kV X 300mAであり、 CuK a線を使用した。 It was 40 kV x 300 mA and CuKa wire was used.
[0053] また、得られた各素子の耐熱性を評価するために、その着火温度の測定を行った 力 その測定には、グロ一ワイヤー燃焼性試験装置 (スガ試験機株式会社製、型式 GIn order to evaluate the heat resistance of each of the obtained devices, the ignition temperature was measured. The force was measured by a glow-wire flammability tester (Model G, manufactured by Suga Test Instruments Co., Ltd.).
W— 1)を用いた。 W-1) was used.
[0054] (評価) [0054] (Evaluation)
前述のように、熱処理による導電性酸化物 (Ta 0、 Ta O)の形成の確認は、 X線回 折により行った。前記焼結素子および陽極酸化素子のそれぞれの熱処理条件による 熱処理によって得られた各試料の粒子の内部成分のエックス線回折チャートを、図 5 〜図 7に示した。 As mentioned above, confirmation of the formation of conductive oxides (Ta 0, Ta O) by heat treatment It was done by folding. X-ray diffraction charts of the internal components of the particles of each sample obtained by the heat treatment under the respective heat treatment conditions of the sintered element and the anodized element are shown in FIGS.
[0055] 図 5のチャートは、焼結素子に熱処理を施した場合の X線回折チャートである。チヤ ートにお 、て、 Aで示した曲線が(i)熱処理なしのサンプルの X線回折のピーク線で あり、 Bで示した曲線が(ii) 300°C X 1時間の熱処理サンプルの X線回折のピーク線 、 Cで示した曲線が(iii) 350°C X l時間の熱処理サンプルの X線回折のピーク線、 D で示した曲線が(iv) 350°C X 4時間の熱処理サンプルの X線回折のピーク線、 Eで 示した曲線が (V) 350°C X 9時間の熱処理サンプルの X線回折のピーク線である。こ れらピーク曲線の下部に 3段に亘つて表示されている縦線は、それぞれ Ta、 Ta 0、  [0055] The chart in Fig. 5 is an X-ray diffraction chart when the sintered element is subjected to a heat treatment. In the chart, the curve indicated by A is the peak line of (i) the X-ray diffraction of the sample without heat treatment, and the curve indicated by B is (ii) the X-ray of the sample heat-treated at 300 ° C for 1 hour. The peak line of X-ray diffraction, the curve indicated by C is (iii) the peak line of X-ray diffraction of the heat-treated sample at 350 ° C X l hours, and the curve indicated by D is (iv) X of the heat-treated sample at 350 ° CX for 4 hours. The curve indicated by E, the peak line of X-ray diffraction, is the peak line of (V) X-ray diffraction of the heat-treated sample at 350 ° C for 9 hours. Vertical lines displayed at the bottom of these peak curves over three levels are Ta, Ta 0,
4 Four
Ta Oのピーク位置を示している。 The Ta O peak position is shown.
2  2
これらのピーク曲線力 分力るように、 300°C X 1時間(曲線 B)の熱処理以降のサ ンプルにおいて導電性酸化物が形成され始めており、 350°C X 4時間(曲線 D)の熱 処理品ではほとんどが導電性酸ィ匕物になっており、 350°C X 9時間(曲線 E)の熱処 理品では粒子成分の全てが導電性酸ィ匕物に置換されていることが確認できる。  As can be seen from these peak curve forces, conductive oxides began to form in samples after heat treatment at 300 ° C for 1 hour (curve B) and heat treated at 350 ° C for 4 hours (curve D). In most cases, the conductive oxidized product was a conductive oxidized product, and it was confirmed that all of the particle components were replaced with the conductive oxidized product in the heat-treated product at 350 ° C for 9 hours (curve E).
[0056] 図 6のチャートは、陽極酸化素子に熱処理を施した場合の X線回折チャートである 。チャートにおいて、 Wで示した曲線が熱処理なしの焼結素子サンプルの X線回折 のピーク線であり、 Xで示した曲線が焼結素子に 40VX 2時間の陽極酸ィ匕処理を行 つて得た陽極酸ィ匕素子サンプルの X線回折のピーク線、 Yで示した曲線が (i)前記陽 極酸化素子に 400°C X 30分の熱処理を行ったサンプルの X線回折のピーク線、 Zで 示した曲線が (ii)前記陽極酸ィ匕素子に 450°C X 30分の熱処理を行ったサンプルの X線回折のピーク線である。これらピーク曲線の下部に 3段に亘つて表示されている 縦線は、それぞれ Ta、 Ta 0、 Ta Oのピーク位置を示している。 [0056] The chart in Fig. 6 is an X-ray diffraction chart when a heat treatment is applied to the anodized element. In the chart, the curve indicated by W is the peak line of X-ray diffraction of the sintered element sample without heat treatment, and the curve indicated by X was obtained by performing anodizing treatment of the sintered element at 40VX for 2 hours. The peak line of the X-ray diffraction of the anodized device sample and the curve indicated by Y are (i) the peak line of the X-ray diffraction of the sample obtained by subjecting the anodized device to a heat treatment at 400 ° C. for 30 minutes; The curve shown is (ii) the peak line of X-ray diffraction of the sample obtained by subjecting the anodized element to heat treatment at 450 ° C. for 30 minutes. Vertical lines displayed in three steps below these peak curves indicate the peak positions of Ta, Ta0, and TaO, respectively.
4 2  4 2
これらのピーク曲線力も分力るように、 40V X 2時間の陽極酸ィ匕処理の後にさらに 4 00°C X 30分(曲線 Y)の熱処理以降のサンプルにお 、て導電性酸化物が形成され 始めており、 40VX 2時間の陽極酸化処理の後にさらに 450°C X 30分(曲線 Z)の熱 処理品では粒子内部の全てが導電性酸ィ匕物に置換されていることが確認できる。  The conductive oxide was formed in the samples after the heat treatment at 400 ° C. for 30 minutes (curve Y) after the anodizing treatment at 40 V × 2 hours so that these peak curve forces also contributed. It has been confirmed that, after anodizing at 40VX for 2 hours, the heat treatment product at 450 ° C for 30 minutes (curve Z) further replaced all of the inside of the particles with conductive oxide.
[0057] 図 7は、前記曲線 Wと曲線 Zの回折角 2 Θが 10度〜 50度付近を拡大したチャート である。曲線 Zの回折角 2 0が 20度〜 35度にブロードなピークが出ていることが確認 できる。これは陽極酸ィ匕被膜特有のピークであり、前記曲線 Xにも Yにも認められるも ので、鋭いピークでなくブロードに出ていることから、アモルファス (非晶質)な被膜で あることが確認できる。この曲線 Zにおいても、曲線 Xと Yと同様に陽極酸ィ匕被膜がァ モルファスであることを確認できるということは、陽極酸化処理後にさらに熱処理を施 しても、陽極酸ィ匕被膜は結晶化していないことを示しており、本発明において採用し た熱処理により陽極酸ィ匕被膜の劣化が生じることがな!ヽことが確認できる。 FIG. 7 is a chart in which the diffraction angle 2 ° of the curves W and Z is enlarged in the vicinity of 10 degrees to 50 degrees. It is. It can be confirmed that a broad peak appears at a diffraction angle 20 of curve Z of 20 degrees to 35 degrees. This is a peak peculiar to the anodized film, and is observed in the curves X and Y. Since the peak is not a sharp peak but appears broad, it may be an amorphous film. You can check. In this curve Z, as in the case of curves X and Y, it can be confirmed that the anodized film is amorphous. This means that the anodized film can be crystallized even after further heat treatment after the anodizing treatment. This indicates that the heat treatment employed in the present invention does not cause deterioration of the anodized film.
[0058] 次に、前記 X線回折による同定によって、焼結素子の粒子が完全に導電性酸化物 となっている焼結素子サンプル(曲線 E)と、陽極酸化素子の粒子の内部が完全に導 電性酸ィ匕物となっている陽極酸ィ匕サンプル(曲線 Z)とを評価サンプル IIと、 IIIとして 、耐熱性 (着火性)、残留炭素量、電気特性 (漏れ電流、静電容量、等価直列抵抗) について評価した。その結果を下記の表 1に示す。比較のために、サンプル Iとして 前記曲線 Wで示される熱処理なしの陽極酸化素子の諸特性を測定し、同じく表 1〖こ 示した。なお、この表 1に示した各特性値は燒結素子 1個当たりについてのものであ る。 Next, according to the identification by the X-ray diffraction, the sintered element sample in which the particles of the sintered element are completely conductive oxide (curve E) and the inside of the particles of the anodized element were completely removed. The anodized sample (curve Z), which is a conductive oxidized product, was evaluated as an evaluation sample II, and heat resistance (ignitability), residual carbon content, electric characteristics (leakage current, capacitance , Equivalent series resistance). The results are shown in Table 1 below. For comparison, various characteristics of the anodized element without heat treatment represented by the curve W as the sample I were measured, and also shown in Table 1. Note that the characteristic values shown in Table 1 are for one sintered element.
[0059] なお、表 1に示した着火温度の測定値は、外部から着火させることによる着火温度 である。陽極酸化素子では、焼結粒子の表面に不働体被膜 (Ta O )が形成されて  [0059] The measured values of the ignition temperature shown in Table 1 are the ignition temperatures obtained by external ignition. In the anodized element, a passivation film (Ta O) is formed on the surface of the sintered particles.
2 5  twenty five
おり、外部から着火させる場合に前記不働体被膜により内部が保護されて正確な評 価ができない。したがって、陽極酸ィ匕素子の焼結粒子の内部が金属タンタルである 場合の着火温度と、 Ta Oや Ta Oなどの導電性酸化物となっている場合の着火温度  Therefore, when igniting from the outside, the passive body coating protects the inside and the accurate evaluation cannot be performed. Therefore, the ignition temperature when the inside of the sintered particles of the anodized element is metal tantalum, and the ignition temperature when the conductive oxide such as TaO or TaO is used.
4 2  4 2
として、前者では金属タンタル粒子を成形、焼結したペレットをサンプル Iとして代用し In the former, the pellets obtained by molding and sintering metal tantalum particles were used as sample I.
、後者では Ta O粒子を成形、焼結したペレットをサンプル IIおよび IIIとして代用した。 In the latter case, pellets formed and sintered of Ta 2 O particles were used as samples II and III.
4  Four
[0060] [表 1] (表 1) 焼結素子 1個当たりについての値 [Table 1] (Table 1) Value per sintered element
Figure imgf000018_0001
Figure imgf000018_0001
[0061] (耐熱性) [0061] (heat resistance)
表 1に示すように、従来の燒結素子 (サンプル I)は 375°Cで着火した力 熱処理に より素子全体が全て導電性酸化物 Ta Oや Ta O力 成る素子(サンプル IIおよび III)  As shown in Table 1, the conventional sintered device (Sample I) was a device in which the entire device was made of conductive oxide TaO or TaO force by heat treatment ignited at 375 ° C (Samples II and III).
4 2  4 2
の着火温度は 545°Cに大きく上昇した。すなわち、耐熱性が著しく向上した。  The ignition temperature increased significantly to 545 ° C. That is, the heat resistance was significantly improved.
つまり、通常は陽極酸ィヒした素子の燒結粒子の中心部分は金属のタンタルである 力 これをタンタルの導電性酸ィヒ物 Ta Oや Ta Oにすることにより、コンデンサとして  In other words, usually, the central part of the sintered particles of the anodized element is metal tantalum. This is converted into a tantalum conductive acid TaO or TaO to form a capacitor.
4 2  4 2
デバイスに組み込まれたタンタル燒結素子の着火温度が 375°Cから 545°Cに上昇し 、耐熱性が著しく改善されることが確認される。  The ignition temperature of the tantalum sintered element incorporated in the device increased from 375 ° C to 545 ° C, confirming that the heat resistance was significantly improved.
なお、先に説明したように、 NbOの実測着火温度は 353°Cであり、 Nbの実測着火 温度は 290°Cである。これに対して、 Taの着火温度は 375°Cであり、導電性酸化物 である Ta Oや Ta Oとなると、着火温度は 545°Cになる。したがって、少なくとも耐熱  As described above, the measured ignition temperature of NbO is 353 ° C, and the measured ignition temperature of Nb is 290 ° C. On the other hand, the ignition temperature of Ta is 375 ° C, and when it is Ta O or TaO which is a conductive oxide, the ignition temperature is 545 ° C. Therefore, at least heat resistant
4 2  4 2
性と ヽぅ観点からは、タンタル酸化物固体電解コンデンサはニオブ酸化物固体電解 コンデンサより優れていることになる。  Tantalum oxide solid electrolytic capacitors are superior to niobium oxide solid electrolytic capacitors from the viewpoints of performance and ヽ ぅ.
[0062] (残留炭素量) [0062] (Residual carbon amount)
表 1に示すように、炭素量は通常処理のもの(従来品)では 1170 at ppmである力 陽極酸化前の焼結素子に 350°C X 9時間の熱処理を行ったもの(サンプル II)では、 610 at ppmに減少し、陽極酸化後の陽極酸化素子に 450°C X 30分の熱処理を行ったも の(サンプル III)では、 750 at ppmに減少した。 As shown in Table 1, the carbon content was 1170 at ppm for the normal treatment (conventional product). The sintered element before the anodization was heat-treated at 350 ° C for 9 hours (sample II). 610 At ppm, it decreased to 750 at ppm in the anodized device after heat treatment at 450 ° C for 30 minutes (Sample III).
[0063] (電気特性:漏れ電流、静電容量、等価直列抵抗) (Electrical characteristics: leakage current, capacitance, equivalent series resistance)
固体電解コンデンサに関わる研究においては、通常の電気特性の測定は、陽極 酸ィ匕後 100°Cで 30分間の乾燥処理後、電解液の中で湿式で行った。表 1には、通 常処理した従来品(サンプル I)と、本発明品(サンプル IIおよび III)ついて、電気特性 が示されている。漏れ電流は、従来品(サンプル I)では、 1. 41 Aである力 本発明 品であるサンプル IIでは 1. 21 /ζ Α、サンプル IIIでは 0. 83 Aとなり、大幅に改善さ れている。  In the research on solid electrolytic capacitors, the usual measurement of electrical characteristics was performed by anodizing, drying at 100 ° C for 30 minutes, and then wet in an electrolytic solution. Table 1 shows the electrical properties of the conventional product (sample I) and the product of the present invention (samples II and III) which were normally treated. The leakage current is 1.41 A in the conventional product (Sample I). It is 1.21 / ζ ζ in Sample II, which is the product of the present invention, and 0.83 A in Sample III, which is greatly improved. .
また、静電容量と、等価直列抵抗は、三者間でほぼ同じ値であった。  Further, the capacitance and the equivalent series resistance were almost the same value among the three.
[0064] 前記実施例では、弁金属としてタンタルを用いた場合の固体電解コンデンサにつ いて説明した力 ニオブを始めとする他の固体電解コンデンサを構成する可能性の ある弁金属に対しても本発明は同様に適用可能であることは明らかであり、その場合 も同様の作用、効果を得ることが可能である。 [0064] In the above embodiment, the solid electrolytic capacitor in the case where tantalum is used as a valve metal is described. The present invention is also applied to valve metals that may constitute other solid electrolytic capacitors such as niobium. It is clear that the present invention is similarly applicable, and in that case, the same operation and effect can be obtained.
産業上の利用可能性  Industrial applicability
[0065] 以上説明したように、本発明によれば、タンタル固体電解コンデンサを始めとする固 体電解コンデンサにおいて、耐熱性を著しく向上させることができ、過電圧を印加さ れても、従来に比較して極めて焼損しがたくすることが可能になる。さらに、固体電解 コンデンサの素子中の残留炭素を大幅に低減することが可能になる。また、固体電 解コンデンサの漏れ電流の低減も実現できる。また、本発明の製造方法によれば、 熱的に極めて安全性の高い安定した固体電解コンデンサを提供することができる。 As described above, according to the present invention, in solid electrolytic capacitors such as a tantalum solid electrolytic capacitor, the heat resistance can be remarkably improved, and even when an overvoltage is applied, the solid electrolytic capacitor is compared with the conventional one. It is possible to make it extremely difficult to burn. Furthermore, it is possible to greatly reduce the residual carbon in the elements of the solid electrolytic capacitor. It is also possible to reduce the leakage current of the solid electrolytic capacitor. Further, according to the manufacturing method of the present invention, a stable solid electrolytic capacitor having extremely high thermal stability can be provided.

Claims

請求の範囲 The scope of the claims
[1] 弁金属の導電性酸ィヒ物粒子が所定の形状に成形された状態で焼結されてなり、前 記導電性酸化物粒子を構成する一次粒子および二次粒子が非酸化状態の弁金属 粒子を成形、焼結した場合の一次粒子および二次粒子と同様の複雑な凹凸形状を 維持していることを特徴とする固体電解コンデンサ用焼結素子。  [1] The conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and the primary particles and the secondary particles constituting the conductive oxide particles are in a non-oxidized state. A sintered element for a solid electrolytic capacitor, characterized by maintaining the same complex asperities as primary and secondary particles when valve metal particles are formed and sintered.
[2] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力 選ばれる一種であることを特徴とする請求項 1に記載の固体電解コ ンデンサ用焼結素子。  2. The sintered element for a solid electrolytic capacitor according to claim 1, wherein the valve metal is one selected from the group consisting of tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[3] 弁金属の導電性酸化物粒子が所定の形状に成形された状態で焼結されるとともに 、該焼結粒子の表面に絶縁性酸ィ匕物が形成されてなり、前記酸化物粒子を構成す る一次粒子および二次粒子が非酸化状態の弁金属粒子を成形、焼結した場合の一 次粒子および二次粒子と同様の複雑な凹凸形状を維持していることを特徴とする固 体電解コンデンサ用陽極酸化素子。  [3] The conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and an insulating oxide is formed on the surface of the sintered particles. The primary and secondary particles that constitute the non-oxidized valve metal particles maintain and maintain the same complex irregularities as the primary and secondary particles when molded and sintered. Anodizing element for solid electrolytic capacitors.
[4] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力 選ばれる一種であることを特徴とする請求項 3に記載の固体電解コ ンデンサ用陽極酸化素子。  4. The anodic oxidation device for a solid electrolytic capacitor according to claim 3, wherein the valve metal is one selected from the group consisting of tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[5] 弁金属の導電性酸化物粒子が所定の形状に成形された状態で焼結されるとともに 、該焼結粒子の表面に絶縁性酸ィ匕物が形成され、該絶縁性酸化物の表面にさらに 導電性の被膜が形成され、前記焼結によって連結されて!ヽる導電性酸化物粒子が 陽極を構成し、前記絶縁性酸化物被膜が誘電体を構成し、さらに前記導電性の被膜 が陰極を構成することによって、コンデンサ構造が構成されてなり、前記酸化物粒子 を構成する一次粒子および二次粒子が非酸化状態の弁金属粒子を成形、焼結した 場合の一次粒子および二次粒子と同様の複雑な凹凸形状を維持していることを特徴 とする固体電解コンデンサ。  [5] The conductive oxide particles of the valve metal are sintered in a state of being formed into a predetermined shape, and an insulating oxide is formed on the surface of the sintered particles. A conductive film is further formed on the surface, the conductive oxide particles connected by the sintering constitute an anode, the insulating oxide film forms a dielectric, and the conductive oxide particles further form a dielectric. When the coating forms the cathode, a capacitor structure is formed, and the primary particles and the secondary particles constituting the oxide particles form primary particles and the secondary particles when non-oxidized valve metal particles are molded and sintered. A solid electrolytic capacitor characterized by maintaining the same complex asperities as secondary particles.
[6] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力 選ばれる一種であることを特徴とする請求項 5に記載の固体電解コ ンデンサ。  6. The solid electrolytic capacitor according to claim 5, wherein the valve metal is one selected from tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[7] 弁金属粒子を所定の形状に成形した後、焼結して焼結素子とし、得られた焼結素 子を熱処理して導電性酸化物とすることにより、固体電解コンデンサ用の焼結素子を 得ることを特徴とする固体電解コンデンサ用焼結素子の製造方法。 [7] After molding the valve metal particles into a predetermined shape, sintering is performed to obtain a sintered element. A method for producing a sintered element for a solid electrolytic capacitor, characterized in that a sintered element for a solid electrolytic capacitor is obtained by heat-treating a conductor to form a conductive oxide.
[8] 前記熱処理は、酸素濃度 5%〜50%の雰囲気下で、 200°C〜500°Cの加熱温度 で、加熱時間が 10分間から 10時間の条件で行われることを特徴とする請求項 7に記 載の固体電解コンデンサ用焼結素子の製造方法。  [8] The heat treatment is performed in an atmosphere having an oxygen concentration of 5% to 50%, a heating temperature of 200 ° C to 500 ° C, and a heating time of 10 minutes to 10 hours. Item 7. The method for producing a sintered element for a solid electrolytic capacitor described in Item 7.
[9] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力 選ばれる一種であることを特徴とする請求項 7に記載の固体電解コ ンデンサ用焼結素子の製造方法。 [9] The method for producing a sintered element for a solid electrolytic capacitor according to claim 7, wherein the valve metal is one selected from the group consisting of tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[10] 弁金属粒子を所定の形状に成形した後、焼結して焼結素子とし、得られた焼結素 子に陽極酸化処理を施して前記焼結素子の表面に絶縁性酸化被膜を形成し、得ら れた陽極酸ィ匕素子を熱処理して前記絶縁性酸ィ匕被膜に覆われている弁金属粒子を 導電性酸化物とすることにより、固体電解コンデンサ用の陽極酸化素子を得ることを 特徴とする固体電解コンデンサ用陽極酸化素子の製造方法。 [10] After molding the valve metal particles into a predetermined shape, sintering is performed to obtain a sintered element, and the obtained sintered element is subjected to anodizing treatment to form an insulating oxide film on the surface of the sintered element. The anodized element for a solid electrolytic capacitor is formed by heat-treating the obtained anodized element to form a conductive oxide from the valve metal particles covered with the insulating oxide film. A method for producing an anodic oxidation element for a solid electrolytic capacitor, characterized by being obtained.
[11] 前記熱処理は、酸素濃度 5%〜50%の雰囲気下で、 200°C〜500°Cの加熱温度 で、加熱時間が 10分間から 10時間の条件で行われることを特徴とする請求項 10に 記載の固体電解コンデンサ用陽極酸化素子の製造方法。 [11] The heat treatment is performed in an atmosphere having an oxygen concentration of 5% to 50%, a heating temperature of 200 ° C to 500 ° C, and a heating time of 10 minutes to 10 hours. Item 11. The method for producing an anodizing element for a solid electrolytic capacitor according to Item 10.
[12] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力も選ばれる一種であることを特徴とする請求項 10に記載の固体電解 コンデンサ用陽極酸化素子の製造方法。 12. The method according to claim 10, wherein the valve metal is one selected from the group consisting of tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[13] 前記熱処理により導電性酸化物を形成した後に、再陽極酸化処理を行うことを特 徴とする請求項 10に記載の固体電解コンデンサ用陽極酸化素子の製造方法。 13. The method for producing an anodized element for a solid electrolytic capacitor according to claim 10, wherein a re-anodizing treatment is performed after the conductive oxide is formed by the heat treatment.
[14] 前記後処理の再陽極酸化処理条件は、少なくとも定電流で 1分間〜 60分間である ことを特徴とする請求項 13に記載の固体電解コンデンサ用陽極酸化素子の製造方 法。 14. The method for producing an anodized element for a solid electrolytic capacitor according to claim 13, wherein the condition of the re-anodizing treatment in the post-treatment is at least a constant current of 1 minute to 60 minutes.
[15] 弁金属粒子を所定の形状に成形した後、焼結して焼結素子とし、得られた焼結素 子を熱処理して導電性酸化物とすることにより焼結素子を形成し、この焼結素子に陽 極酸化処理を施して前記焼結素子の表面に絶縁性酸化被膜を形成し、この絶縁性 酸化被膜の表面に導電性酸化物被膜を形成し、前記絶縁性酸化被膜を誘電体とし 、この誘電体をその内側の導電性酸化物が陽極として作用し、前記誘電体の外側の 導電性酸ィヒ物被膜が陰極として作用するコンデンサ構造を構成することを特徴とす る固体電解コンデンサの製造方法。 [15] After molding the valve metal particles into a predetermined shape, sintering is performed to obtain a sintered element, and the obtained sintered element is heat-treated to form a conductive oxide, thereby forming a sintered element. The sintered element is subjected to anodizing treatment to form an insulating oxide film on the surface of the sintered element, a conductive oxide film is formed on the surface of the insulating oxide film, and the insulating oxide film is formed. As a dielectric A solid electrolytic capacitor comprising a capacitor structure in which a conductive oxide inside the dielectric acts as an anode and a conductive oxide film outside the dielectric acts as a cathode. Manufacturing method.
[16] 前記熱処理は、酸素濃度 5%〜50%の雰囲気下で、 200°C〜500°Cの加熱温度 で、加熱時間が 10分間から 10時間の条件で行われることを特徴とする請求項 15に 記載の固体電解コンデンサの製造方法。  [16] The heat treatment is performed in an atmosphere having an oxygen concentration of 5% to 50%, a heating temperature of 200 ° C to 500 ° C, and a heating time of 10 minutes to 10 hours. Item 16. The method for producing a solid electrolytic capacitor according to Item 15.
[17] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力も選ばれる一種であることを特徴とする請求項 15に記載の固体電解 コンデンサの製造方法。  17. The method for producing a solid electrolytic capacitor according to claim 15, wherein the valve metal is a kind selected from the group consisting of tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[18] 弁金属粒子を所定の形状に成形した後、焼結して焼結素子とし、得られた焼結素 子に陽極酸化処理を施して前記焼結素子の表面に絶縁性酸化被膜を形成し、得ら れた陽極酸ィ匕素子を熱処理して前記絶縁性酸ィ匕被膜に覆われている弁金属粒子を 導電性酸化物にすることにより陽極酸化素子を形成し、この陽極酸化素子の前記絶 縁性酸化被膜表面に導電性酸化物被膜を形成し、前記絶縁性酸化被膜を誘電体と し、この誘電体をその内側の導電性酸化物が陽極として作用し、前記誘電体の外側 の導電性酸ィ匕物被膜が陰極として作用するコンデンサ構造を構成することを特徴と する固体電解コンデンサの製造方法。  [18] After molding the valve metal particles into a predetermined shape, sintering is performed to obtain a sintered element, and the obtained sintered element is subjected to anodizing treatment to form an insulating oxide film on the surface of the sintered element. The anodic oxidation element is formed by heat-treating the obtained anodized element to convert the valve metal particles covered with the insulating oxide film into a conductive oxide, thereby forming an anodized element. A conductive oxide film is formed on the surface of the insulating oxide film of the device, the insulating oxide film is used as a dielectric, and the conductive oxide inside the dielectric serves as an anode, and the dielectric oxide serves as an anode. A method for producing a solid electrolytic capacitor, characterized in that a conductive oxide film on the outside of the above constitutes a capacitor structure that functions as a cathode.
[19] 前記熱処理は、酸素濃度 5%〜50%の雰囲気下で、 200°C〜500°Cの加熱温度 で、加熱時間が 10分間から 10時間の条件で行われることを特徴とする請求項 18に 記載の固体電解コンデンサの製造方法。  [19] The heat treatment is performed in an atmosphere having an oxygen concentration of 5% to 50%, a heating temperature of 200 ° C to 500 ° C, and a heating time of 10 minutes to 10 hours. Item 19. The method for producing a solid electrolytic capacitor according to Item 18.
[20] 前記弁金属が、タンタル、バナジウム、ニオブ、チタン、タングステン、ハフニウム、 ジルコニウム力も選ばれる一種であることを特徴とする請求項 18に記載の固体電解 コンデンサの製造方法。  20. The method for manufacturing a solid electrolytic capacitor according to claim 18, wherein the valve metal is a kind selected from the group consisting of tantalum, vanadium, niobium, titanium, tungsten, hafnium, and zirconium.
[21] 前記熱処理により導電性酸化物を形成した後に、再陽極酸化処理を行うことを特 徴とする請求項 18に記載の固体電解コンデンサの製造方法。  21. The method for producing a solid electrolytic capacitor according to claim 18, wherein a re-anodizing treatment is performed after the conductive oxide is formed by the heat treatment.
[22] 前記後処理の再陽極酸化処理条件は、少なくとも定電流で 1分間〜 60分間である ことを特徴とする請求項 21に記載の固体電解コンデンサの製造方法。  22. The method for manufacturing a solid electrolytic capacitor according to claim 21, wherein the re-anodizing treatment condition of the post-treatment is at least a constant current of 1 minute to 60 minutes.
PCT/JP2005/009741 2004-06-03 2005-05-27 Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them WO2005119716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-166318 2004-06-03
JP2004166318A JP4139354B2 (en) 2004-06-03 2004-06-03 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2005119716A1 true WO2005119716A1 (en) 2005-12-15

Family

ID=35463114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009741 WO2005119716A1 (en) 2004-06-03 2005-05-27 Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them

Country Status (2)

Country Link
JP (1) JP4139354B2 (en)
WO (1) WO2005119716A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074049A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Solid-state electrolytic capacitor
CN105489376A (en) * 2016-01-14 2016-04-13 中国振华(集团)新云电子元器件有限责任公司 Method for manufacturing high-reliability electrolytic capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108626A (en) * 2004-09-10 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
US7649730B2 (en) * 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
WO2010125778A1 (en) * 2009-04-28 2010-11-04 三洋電機株式会社 Capacitor electrode body, method for manufacturing capacitor electrode body, capacitor, and method for manufacturing capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150041A (en) * 1997-11-19 1999-06-02 Hitachi Aic Inc Manufacture of solid electrolytic capacitor
JP2003217980A (en) * 2002-01-18 2003-07-31 Nec Tokin Corp Nb SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150041A (en) * 1997-11-19 1999-06-02 Hitachi Aic Inc Manufacture of solid electrolytic capacitor
JP2003217980A (en) * 2002-01-18 2003-07-31 Nec Tokin Corp Nb SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074049A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Solid-state electrolytic capacitor
CN105489376A (en) * 2016-01-14 2016-04-13 中国振华(集团)新云电子元器件有限责任公司 Method for manufacturing high-reliability electrolytic capacitor

Also Published As

Publication number Publication date
JP4139354B2 (en) 2008-08-27
JP2005347577A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US5790368A (en) Capacitor and manufacturing method thereof
KR100832370B1 (en) Ceramic powder, electroconductive paste using same, multilayer ceramic electronic component, and method for production thereof
JP4299297B2 (en) Capacitor and method for manufacturing the capacitor
JP2010500771A (en) Semi-finished product having structured sintered active surface and method for producing the same
JP2009505413A (en) Solid capacitor and manufacturing method thereof
US7729104B2 (en) Tantalum powder and solid electrolyte capacitor including the same
US6835225B2 (en) Niobium sintered body, production method therefor, and capacitor using the same
US6982047B2 (en) Surface-treated ultrafine metal powder, method for producing the same, conductive metal paste of the same, and multilayer ceramic capacitor using said paste
US20030147203A1 (en) Niobium capacitor and method of manufacture thereof
WO2005119716A1 (en) Sintered element for solid electrolytic capacitor, anodized element for solid electrolytic capacitor, solid electrolytic capacitor and method for manufacturing them
KR100832372B1 (en) Ceramic powder, electroconductive paste using same, multilayer ceramic electronic component, and method for production thereof
JP4197119B2 (en) Method for producing composite titanium oxide film and method for producing titanium electrolytic capacitor
WO2003008673A1 (en) Metal foil consisting of alloy of earth-acid metal, and capacitor provided with the same
JP2008159965A (en) Electronic component and manufacturing method thereof
TWI470660B (en) Method for manufacturing electrode structure body, electrode structure body and capacitor
JP4521849B2 (en) Niobium powder for capacitor, sintered body using the niobium powder, and capacitor using the sintered body
JP3984519B2 (en) Capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005101562A (en) Chip solid electrolytic capacitor and its manufacturing method
US9704652B2 (en) Method for manufacturing tungsten-based capacitor element
JP2006108626A (en) Solid electrolytic capacitor and its manufacturing method
JP2003146659A (en) Method of forming compound titanium oxide coating film and titanium electrolytic capacitor
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
JP4554063B2 (en) Method for forming titanium oxide film and titanium electrolytic capacitor
JP4367752B2 (en) Method for manufacturing solid electrolytic capacitor element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase