JPS63178805A - Production of semipermeable compound film - Google Patents

Production of semipermeable compound film

Info

Publication number
JPS63178805A
JPS63178805A JP62008197A JP819787A JPS63178805A JP S63178805 A JPS63178805 A JP S63178805A JP 62008197 A JP62008197 A JP 62008197A JP 819787 A JP819787 A JP 819787A JP S63178805 A JPS63178805 A JP S63178805A
Authority
JP
Japan
Prior art keywords
soln
membrane
supporting body
polyfunctional
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62008197A
Other languages
Japanese (ja)
Other versions
JP2505440B2 (en
Inventor
Sadao Kojima
小嶋 定雄
Tetsuo Watanabe
哲男 渡辺
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62008197A priority Critical patent/JP2505440B2/en
Publication of JPS63178805A publication Critical patent/JPS63178805A/en
Application granted granted Critical
Publication of JP2505440B2 publication Critical patent/JP2505440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Abstract

PURPOSE:To produce semipermeable compound film having improved salt- excluding rate by allowing hydrocarbon solns. having different concns. of a polyfunctional reagent to contact with a layer of an aq. soln. of an amine compd. coated on a porous supporting body while carrying out the contact in two stages. CONSTITUTION:For example, after coating the surface of a fiberreinforced polysulfone supporting body with aq. soln. of a compd. having >=2 reactive amino groups such as metaphenylenediamine, by dipping the supporting body in the soln., a hydrocarbon soln. of a polyfunctioanl reagent such as trimesic chloride in the soln. of 1,1,2-trichloro-1,2,2-trifluoroethane is coated on the supporting body (first stage treatment). Further, a hydrocabon soln. of the polyfunctional reagent diluted to lower concn. than in the first stage treatment is coated on the surface of the film, then the film is dried, thusobtg. a compound film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、限外:、r=通過法よび逆浸透法などに好適
な半透性複合膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a semipermeable composite membrane suitable for ultraviolet, r=passage, reverse osmosis, and the like.

[従来の技術] 従来、ロブ型と型を異にする半透膜として多孔性支持体
上に実質的に膜性能を発揮する活性層を被覆した複合膜
が開発されている。複合膜においては、活性層と多孔性
支持体を各々の用途に最適な素材を選ぶことが可能とな
り、製膜技術の自由度が増す。また常時湿潤状態で保存
しなければならないロブ型とは異なり乾燥状態での保存
が可能であるなどの利点がある。
[Prior Art] Conventionally, a composite membrane has been developed as a semipermeable membrane of a different type from a lobe type, in which a porous support is coated with an active layer that substantially exhibits membrane performance. In composite membranes, it becomes possible to select the optimal materials for the active layer and porous support for each application, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike the lobe type, which must be stored in a wet state at all times.

このような複合膜のうち活性層がポリアミドまたはポリ
尿素からなる複合膜は膜性能、特に水透過性が高いため
半透性複合膜開発の主流になっている。該複合膜の製造
方法としては、米国特許第3.191,815号明細書
、同第3.744.642@明細書、同第4.039.
440号明細書、同第4.277、344号明細書およ
び特表昭56−500062号公報に開示されているよ
うに多孔性支持体にアミノ基を有する化合物を含む水溶
液を被覆する工程および多官能性反応試薬を含む炭化水
素系溶液を上記の水溶液相と接触させる工程からなる方
法がある。
Among such composite membranes, composite membranes in which the active layer is made of polyamide or polyurea have high membrane performance, particularly water permeability, and have therefore become the mainstream in the development of semipermeable composite membranes. The method for manufacturing the composite membrane is described in US Pat. No. 3,191,815, US Pat. No. 3,744,642, and US Pat.
440, 4.277, 344, and Japanese Patent Publication No. 56-500062, a step of coating a porous support with an aqueous solution containing a compound having an amino group and There is a method that consists of contacting a hydrocarbon-based solution containing a functional reaction reagent with the aqueous phase described above.

[発明が解決しようとする問題点] しかしながら、これらの複合膜の膜性能は、充分に満足
の得られるものではなかった。
[Problems to be Solved by the Invention] However, the membrane performance of these composite membranes was not fully satisfactory.

本発明者らはこのような半透性複合膜の性能向上につい
て検討を行い、特に塩排除率が向上した半透性複合膜の
製造方法を提供することを目的とする。
The present inventors have conducted studies on improving the performance of such semipermeable composite membranes, and particularly aimed to provide a method for producing a semipermeable composite membrane with improved salt rejection.

[問題点を解決するための手段] 上記目的を達成するため本発明は下記の構成からなる。[Means for solving problems] In order to achieve the above object, the present invention consists of the following configuration.

「界面重縮合により半透性複合膜を得る方法において、
多孔性支持体上に、 ■ 2つ以上の反応性アミノ基を有する化合物を含む水
溶液を被覆した後、 ◎ 多官能性反応試薬を含む炭化水素系溶液を(イ)の
水溶液層と接触させ(第1段処理)、■ 更にその表面
を、濃度が希釈された多官能性反応試薬を含む炭化水素
系溶液と接触させる(第2段処理)、 ことを特徴とする半透性複合膜の製造方法。」本発明に
使用される多孔性支持体とはその表面に数十〜数千オン
グストロームの微細孔を有する支持体であって、ポリス
ルホン、ポリ塩化ビニル。
"In a method for obtaining semipermeable composite membranes by interfacial polycondensation,
After coating the porous support with an aqueous solution containing a compound having two or more reactive amino groups, ◎ a hydrocarbon solution containing a polyfunctional reaction reagent is brought into contact with the aqueous solution layer of (a) ( (1) production of a semipermeable composite membrane characterized by: (1) further contacting its surface with a hydrocarbon solution containing a diluted polyfunctional reaction reagent (2nd stage treatment); Method. The porous support used in the present invention is a support having micropores of several tens to several thousand angstroms on its surface, and is polysulfone or polyvinyl chloride.

塩素化塩化ビニル、ポリカーボネート、ポリアクリロニ
トリル、セルローズエステル等を素材とする公知のもの
が含まれる。このうちで、本発明には多孔性のポリスル
ホン支持体が特に有効である。
Known materials made of chlorinated vinyl chloride, polycarbonate, polyacrylonitrile, cellulose ester, etc. are included. Among these, porous polysulfone supports are particularly effective in the present invention.

多孔性ポリスルホンの製膜はポリスルホンをジメチルホ
ルムアミド等の非プロトン性極性溶媒の溶液にして、例
えばポリエステル繊維からなる織物または不織布上に流
延し、次いで実質的に水からなる媒体中で凝固(ゲル化
)する、いわゆる湿式製膜等によって行なう。このよう
にして得られた多孔性ポリスルホンは表面には数十〜数
百オングストローム程度の大きざで表面から裏面にいく
ほど大きくなる微細孔を有する。
Porous polysulfone membranes are produced by making polysulfone into a solution in an aprotic polar solvent such as dimethylformamide, casting it onto a woven or nonwoven fabric made of polyester fibers, and then coagulating (gelling) the solution in a medium consisting essentially of water. This is done by so-called wet film forming, etc. The porous polysulfone thus obtained has micropores on the surface having a size of several tens to several hundred angstroms and increasing in size from the front surface to the back surface.

本発明において2つ以上の反応性のアミノ基を有する化
合物(以下アミノ化合物と略ず。)とは、多官能酸塩化
物またはイソシアネート化合物と反応してアミド結合ま
たは尿素結合を有する重合体を形成することのできるも
のが含まれ、例えば、メタフェニレンジアミノ、パラフ
ェニレンジアミノ、3,5−ジアミノ安息香酸、2.5
−、5−ジアミノベンゼンスルホン酸、メタキシリデン
ジアミノ、バラキシリデンジアミノ、4,4°−ジアミ
ノベンズアニリド、ピペラジン、アミノメチルピペリジ
ン、エチレンジアミノ、1,3.5−トリアミノベンゼ
ンなどが挙げられる。
In the present invention, a compound having two or more reactive amino groups (hereinafter abbreviated as an amino compound) refers to a compound that reacts with a polyfunctional acid chloride or isocyanate compound to form a polymer having an amide bond or a urea bond. For example, meta-phenylene diamino, para-phenylene diamino, 3,5-diaminobenzoic acid, 2.5
-, 5-diaminobenzenesulfonic acid, metaxylidene diamino, baraxylidene diamino, 4,4°-diaminobenzanilide, piperazine, aminomethylpiperidine, ethylene diamino, 1,3,5-triaminobenzene, etc. .

アミノ化合物水溶液におけるアミノ化合物の濃度は0.
1〜10重量%、好ましくは0.5〜5゜0重量でおる
。またアミノ化合物水溶液にはアミノ化合物と多官能性
反応試薬との反応を妨害しないものであれば、界面活性
剤や有機溶媒等が含まれてもよい。
The concentration of the amino compound in the amino compound aqueous solution is 0.
1 to 10% by weight, preferably 0.5 to 5.0% by weight. Further, the amino compound aqueous solution may contain a surfactant, an organic solvent, etc. as long as they do not interfere with the reaction between the amino compound and the polyfunctional reaction reagent.

多孔性支持体表面へのアミノ化合物水溶液の被覆は、該
水溶液が表面に均一にかつ連続的に被覆されればよく、
公知の塗布手段例えば、該水溶液を多孔性支持体表面に
コーティングする方式、多 5一 孔性支持体を該水溶液に浸漬する方法等で行なえばよい
The aqueous solution of the amino compound may be coated on the surface of the porous support as long as the aqueous solution is coated uniformly and continuously on the surface.
The coating may be carried out by any known coating method, such as coating the surface of a porous support with the aqueous solution or immersing the porous support in the aqueous solution.

本発明第1段処理における多官能性反応試薬とは、前記
アミノ化合物と反応してポリアミドまたはポリ尿素を形
成できるものであればいずれでもよく、例えば、トリメ
シン酸ハライド、ベンゾフェノンテトラカルボン酸ハラ
イド、トリメリット酸ハライド、ピロメット酸ハライド
、イソフタル酸ハライド、テレフタル酸ハライド、ナフ
タレンジカルボン酸ハライド、ジフェニルジカルボン酸
ハライド、ピリジンジカルボン酸ハライド、ベンゼンジ
スルホン酸ハライド、ベンゼンジスルホン酸ハライド、
トリレンジイソシアネート、ビス(P−イソシアネート
フェニル)メタンなどが挙げられるが、製膜溶媒に対す
る溶解性及び複合逆浸透膜の性能を考慮するとトリメシ
ン酸クロライド、イソフタル酸クロライド、テレフタル
酸クロライドおよびこれらの混合物が好ましく、特に耐
久性の面からは架橋構造の導入の点でトリメシン酸クロ
ライドが好ましい。
The polyfunctional reaction reagent used in the first stage treatment of the present invention may be any reagent that can form a polyamide or polyurea by reacting with the amino compound, such as trimesic acid halide, benzophenonetetracarboxylic acid halide, and trimesic acid halide. Mellitic acid halide, pyrometic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalenedicarboxylic acid halide, diphenyldicarboxylic acid halide, pyridinedicarboxylic acid halide, benzenedisulfonic acid halide, benzenedisulfonic acid halide,
Examples include tolylene diisocyanate, bis(P-isocyanate phenyl)methane, etc.; however, considering solubility in membrane forming solvents and performance of composite reverse osmosis membranes, trimesic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and mixtures thereof are recommended. Preferred is trimesic acid chloride, particularly from the viewpoint of durability and introduction of a crosslinked structure.

多官能性反応試薬に対する溶媒は、アミノ化合物および
多官能性反応試薬に対して不活性であり、かつ水に対し
て不溶性または難溶性である必要がある。更に該溶媒は
多孔性支持体に対しても不活性なものが好ましい。該溶
媒の代表例としては液状の炭化水素およびハロゲン化炭
化水素、例えば、ペンタン、ヘキサン、ヘプタン、1,
1.2−トリクロロ−L2,2−トリフルオロエタンが
ある。多官能性反応試薬の濃度は好ましくは0.01〜
10重量%、さらに好ましくは0.02〜2重量%であ
る。
The solvent for the polyfunctional reaction reagent needs to be inert to the amino compound and the polyfunctional reaction reagent, and insoluble or sparingly soluble in water. Furthermore, the solvent is preferably inert to the porous support. Typical examples of such solvents include liquid hydrocarbons and halogenated hydrocarbons, such as pentane, hexane, heptane, 1,
There is 1,2-trichloro-L2,2-trifluoroethane. The concentration of the polyfunctional reaction reagent is preferably from 0.01 to
It is 10% by weight, more preferably 0.02 to 2% by weight.

多官能性反応試薬のアミノ化合物水溶液相への接触の方
法はアミノ化合物水溶液の多孔性支持体への被覆方法と
同様に行えばよい。
The method for contacting the polyfunctional reaction reagent with the aqueous amino compound solution phase may be carried out in the same manner as the method for coating the porous support with the aqueous amino compound solution.

本発明において、アミノ化合物と多官能性試薬との反応
によって形成される膜の表面に接触させる希釈された多
官能性試薬(すなわち第2段処理)とは該アミノ化合物
と反応してポリアミドまたはポリ尿素を形成できるもの
であれば、いずれでもよいが、製膜溶媒に対する溶解性
および複合逆浸透膜の性能を考えるとトリメシン酸クロ
ライド、イソフタル酸クロライド、テレフタル酸クロラ
イドおよびこれらの混合物が好ましく、特に耐久性の面
からは架橋構造の導入の点でトリメシン酸クロライドが
好ましい。
In the present invention, the diluted polyfunctional reagent that is brought into contact with the surface of the membrane formed by the reaction between the amino compound and the polyfunctional reagent (i.e., the second stage treatment) reacts with the amino compound to form a polyamide or a polyfunctional reagent. Any material that can form urea may be used, but trimesic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and mixtures thereof are preferred in view of solubility in the membrane forming solvent and performance of the composite reverse osmosis membrane. From the viewpoint of properties, trimesic acid chloride is preferred from the viewpoint of introducing a crosslinked structure.

さらに第2段処理の多官能性反応試薬の濃度は、第1段
処理の濃度の1/10以上、8/10以下の範囲である
ことが好ましい。塩排除率をさらに向上するためでおる
。また、アミノ化合物と多官能性試薬との反応によって
形成される膜の表面に接触させる多官能性反応試薬に対
する溶媒は、アミノ化合物および多官能性反応試薬にた
いして不活性であり、かつ水に対して不溶性であればよ
く、具体的には炭化水素類、およびアルコール類が含ま
れる。該溶媒の代表例としては、ペンタン、ヘキサン、
ヘプタン、1,1.2−トリクロロ−1,2,2−トリ
フルオロエタン、メチルアルコール、エチルアルコール
、ノルマルプロピルアルコール、イソプロピルアルコー
ルがあり、これらを混合して使用してもよい。また、ア
セトンやメチルケトン等のケトン類、ジオキサン、テト
ラヒドロラン、ジエチルエーテル等のエーテル類などこ
れら単独では該膜および多孔性支持体に悪影響を及ぼす
ものも上記の溶媒と混合すれば使用できる。
Further, the concentration of the polyfunctional reaction reagent in the second stage treatment is preferably in the range of 1/10 or more and 8/10 or less of the concentration in the first stage treatment. This is to further improve the salt rejection rate. In addition, the solvent for the polyfunctional reaction reagent that is brought into contact with the surface of the film formed by the reaction between the amino compound and the polyfunctional reagent is inert to the amino compound and the polyfunctional reaction reagent, and is inert to water. It only needs to be insoluble, and specifically includes hydrocarbons and alcohols. Typical examples of the solvent include pentane, hexane,
Examples include heptane, 1,1.2-trichloro-1,2,2-trifluoroethane, methyl alcohol, ethyl alcohol, normal propyl alcohol, and isopropyl alcohol, and a mixture of these may be used. Furthermore, ketones such as acetone and methyl ketone, and ethers such as dioxane, tetrahydrolane and diethyl ether, which adversely affect the membrane and porous support when used alone, can also be used when mixed with the above-mentioned solvents.

該溶媒の膜への接触方法としては該溶媒を膜の表面にコ
ーティングする方法、膜を該溶媒に浸漬する方法、該溶
媒を膜の表面にスプレーする方法等該溶媒が膜表面の全
面に接触する方法であればどのような方法でもよい。該
溶媒の温度は、特に限定されないが、一般的には、10
’Cから該溶媒の沸点より10°C低い温度の範囲とす
る。該溶媒の膜への接触時間は該溶媒の温度により異な
るが、好ましくは10秒から10分間程度である。
Methods of contacting the solvent with the membrane include coating the surface of the membrane with the solvent, immersing the membrane in the solvent, spraying the solvent onto the surface of the membrane, etc. The solvent comes into contact with the entire surface of the membrane. Any method is acceptable as long as it can be done. The temperature of the solvent is not particularly limited, but is generally 10
'C to 10°C lower than the boiling point of the solvent. The contact time of the solvent with the membrane varies depending on the temperature of the solvent, but is preferably about 10 seconds to 10 minutes.

[実施例] 以下に実施例により本発明を具体的に説明するが本発明
は、これらに限定されるものではない。
[Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited thereto.

実施例1 タテ30cm、ヨコ20cmの大きさのポリエステル繊
維からなるタフタ(タテ糸、ヨコ糸とも150デニール
のマルチフィラメント糸、織密度タテ90本/インチ、
ヨコ6フ本/インチ、厚さ16− 〇 − Oμ)をガラス板上に固定し、その上にポリスルホン(
ユニオン・カーボイド社製のUdel  3500)の
15重量%ジメチルホルムアミド(DMF)溶液を20
0μの厚みで室温(20’C)でキャストし、ただちに
純水中に浸漬して5分間放置することによって繊維補強
ポリスルホン支持体く以下FR−PS支持体と略す)を
作製する。このようにして得られたFR−PS支持体(
厚さ210〜215μ)の純水透過係数は、圧力1に5
/cnf、温度25°Cで測定して0.005〜0.0
1C1/ri −sec −atmであった。
Example 1 Taffeta made of polyester fibers with a length of 30 cm and a width of 20 cm (multifilament yarn of 150 denier in both warp and weft, weaving density of 90 pieces/inch in length,
6 horizontal lines/inch, thickness 16-〇-Oμ) was fixed on a glass plate, and polysulfone (
A 15% by weight solution of Udel 3500 (manufactured by Union Carboid) in dimethylformamide (DMF) was added to
A fiber-reinforced polysulfone support (hereinafter abbreviated as FR-PS support) was prepared by casting at room temperature (20'C) to a thickness of 0 μm, immediately immersing it in pure water, and leaving it for 5 minutes. The FR-PS support thus obtained (
The pure water permeability coefficient of 210 to 215μ thick is 5 to 1 pressure.
/cnf, 0.005-0.0 measured at a temperature of 25°C
1C1/ri-sec-atm.

FR−PS支持体をメタフェニレンジアミノの2重量%
水溶液に2分間浸漬した。FR−PS支持体表面から余
分な該水溶液を取り除いた後、1゜1.2−トリクロロ
−1,2,2−トリフルオロエタンにトリメシン酸クロ
ライド0.1重量%溶解した溶液を表面が完全に濡れる
ようにコーティングして1分間静置した。次に膜を垂直
にして余分な該溶液を液切りして除去した後、さらに膜
表面に1.1.2−トリクロロ−1,2,2−トリフル
オロエタンにトリメシン酸クロライド0.05重量%溶
解した溶液を表面が完全に濡れるようにコーティングし
て30秒間静置した膜を垂直にして液切りした後、室温
下で乾燥した。このようにして得られた複合膜を逆浸透
圧が25 ka/−の3.5%合成海水を使用して56
kg/CITf、25°Cの条件下で逆浸透テストした
結果、排除率99.4%、透水速度0゜71−/Tr1
2・日の性能が得られた。
FR-PS support with 2% by weight of metaphenylenediamino
It was immersed in an aqueous solution for 2 minutes. After removing the excess aqueous solution from the surface of the FR-PS support, a solution of 0.1% by weight of trimesic acid chloride dissolved in 1°1,2-trichloro-1,2,2-trifluoroethane was added until the surface was completely covered. It was coated so that it was wet and left to stand for 1 minute. Next, after turning the membrane vertically and removing the excess solution by draining, the membrane surface was further coated with 0.05% by weight of trimesic acid chloride in 1.1.2-trichloro-1,2,2-trifluoroethane. The surface was coated with the dissolved solution so that the surface was completely wetted, and the film was allowed to stand for 30 seconds.The film was then held vertically to drain the liquid, and then dried at room temperature. The composite membrane thus obtained was heated to 56% using 3.5% synthetic seawater with a reverse osmotic pressure of 25 ka/-.
kg/CITf, reverse osmosis test under the conditions of 25°C, rejection rate 99.4%, water permeation rate 0°71-/Tr1
A performance of 2 days was obtained.

比較例1 実施例1において、1,1.2−トリクロロ−1,2,
2−トリフルオロエタンにトリメトン酸クロライド0゜
05重量%溶解した溶液のコーティングを行わない以外
は、同様に実施した結果、排除率99.0%、透水速度
0.7511’/Tn2・日の性能が得られた。
Comparative Example 1 In Example 1, 1,1.2-trichloro-1,2,
The same procedure was performed except that coating with a solution of 0.05% by weight of trimethoyl chloride dissolved in 2-trifluoroethane was not performed, and the results showed a rejection rate of 99.0% and a water permeation rate of 0.7511'/Tn2·day. was gotten.

実施例2〜5、比較例2〜3 実施例1および比較例1においてアミノ化合物としてメ
タフェニレンジアミノおよび多官能性反応試薬としてト
リメリシン酸クロライドのかわりに第1表に示す化合物
を使用する以外は、同様に行った結果、第1表の逆浸透
性能を得た。
Examples 2 to 5, Comparative Examples 2 to 3 In Example 1 and Comparative Example 1, the compounds shown in Table 1 were used instead of metaphenylene diamino as the amino compound and trimerisic acid chloride as the polyfunctional reaction reagent. As a result of carrying out the same procedure, the reverse osmosis performance shown in Table 1 was obtained.

以上の実施例に示したように本発明においては従来の複
合膜の製造方法に比較して、塩排除率が0.3〜0.5
%向上した。
As shown in the above examples, the present invention has a salt rejection rate of 0.3 to 0.5 compared to the conventional composite membrane manufacturing method.
% improved.

[発明の効果1 本発明により、従来の複合膜の製造方法に比較して、塩
排除率が、0.3〜0.5%向上した半透性複合膜の製
造方法を提供することができた。
[Effect of the invention 1] The present invention makes it possible to provide a method for manufacturing a semipermeable composite membrane in which the salt rejection rate is improved by 0.3 to 0.5% compared to conventional methods for manufacturing a composite membrane. Ta.

Claims (2)

【特許請求の範囲】[Claims] (1)界面重縮合により半透性複合膜を得る方法におい
て、多孔性支持体上に、 (イ)2つ以上の反応性アミノ基を有する化合物を含む
水溶液を被覆した後、 (ロ)多官能性反応試薬を含む炭化水素系溶液を(イ)
の水溶液層と接触させ(第1段処理)、 (ハ)更にその表面を、濃度が希釈された多官能性反応
試薬を含む炭化水素系溶液と接触させる(第2段処理)
、 ことを特徴とする半透性複合膜の製造方法。
(1) In a method for obtaining a semipermeable composite membrane by interfacial polycondensation, after (a) coating a porous support with an aqueous solution containing a compound having two or more reactive amino groups, (b) polycondensation, A hydrocarbon solution containing a functional reaction reagent (a)
(c) The surface is further brought into contact with a hydrocarbon solution containing a diluted polyfunctional reaction reagent (second stage treatment).
, A method for producing a semipermeable composite membrane, characterized by:
(2)(ハ)の炭化水素系溶液が、(ロ)の溶液の1/
10以上、8/10以下の範囲の多官能性反応試薬濃度
を有していることを特徴とする特許請求の範囲第(1)
項記載の半透性複合膜の製造方法。
(2) The hydrocarbon solution of (c) is 1/1/2 of the solution of (b).
Claim No. (1) characterized in that the polyfunctional reaction reagent has a concentration in a range of 10 or more and 8/10 or less.
A method for producing a semipermeable composite membrane as described in Section 1.
JP62008197A 1987-01-19 1987-01-19 Method for manufacturing semipermeable composite membrane Expired - Lifetime JP2505440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008197A JP2505440B2 (en) 1987-01-19 1987-01-19 Method for manufacturing semipermeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008197A JP2505440B2 (en) 1987-01-19 1987-01-19 Method for manufacturing semipermeable composite membrane

Publications (2)

Publication Number Publication Date
JPS63178805A true JPS63178805A (en) 1988-07-22
JP2505440B2 JP2505440B2 (en) 1996-06-12

Family

ID=11686546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008197A Expired - Lifetime JP2505440B2 (en) 1987-01-19 1987-01-19 Method for manufacturing semipermeable composite membrane

Country Status (1)

Country Link
JP (1) JP2505440B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319990A2 (en) * 1987-12-10 1989-06-14 E.I. Du Pont De Nemours And Company Process for preparing composite membranes
US6723422B1 (en) 1997-07-02 2004-04-20 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same
JP2009226358A (en) * 2008-03-25 2009-10-08 Toray Ind Inc Manufacturing method of composite semipermeable membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319990A2 (en) * 1987-12-10 1989-06-14 E.I. Du Pont De Nemours And Company Process for preparing composite membranes
EP0319990A3 (en) * 1987-12-10 1989-10-18 E.I. Du Pont De Nemours And Company Process for preparing composite membranes
JPH022864A (en) * 1987-12-10 1990-01-08 E I Du Pont De Nemours & Co Manufacture of composite film
US6723422B1 (en) 1997-07-02 2004-04-20 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same
JP4472028B2 (en) * 1997-07-02 2010-06-02 日東電工株式会社 Composite reverse osmosis membrane and method for producing the same
JP2009226358A (en) * 2008-03-25 2009-10-08 Toray Ind Inc Manufacturing method of composite semipermeable membrane

Also Published As

Publication number Publication date
JP2505440B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JPH0374128B2 (en)
JPH0565213B2 (en)
JPH0419892B2 (en)
JPS6312310A (en) Production of semipermeable composite membrane
JPS6354905A (en) Production of semiosmosis composite membrane
JPS63178805A (en) Production of semipermeable compound film
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
JPS5837842B2 (en) Manufacturing method of ultrafiltration membrane
JPS62180709A (en) Production of semipermeable composite membrane
CN111712317B (en) Reverse osmosis membrane, method for producing same, and water treatment module
JPS6391122A (en) Separation of steam
KR960004616B1 (en) Composite semipermeable membrane and the production thereof
JPS63123406A (en) Manufacture of semipermeable composite membrane
JP3438278B2 (en) Semipermeable composite membrane and method for producing the same
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JPS62171713A (en) Production of semipermeable composite membrane
JPS62279809A (en) Production of semipermeable composite membrane
JPS6151928B2 (en)
JPS62213806A (en) Semi-permeable composite membrane
JPS6390533A (en) Separation of hydrogen
JPH0365229A (en) Composite membrane for use in pervaporation
JPS61101203A (en) Highly permeable composite membrane
JPS62262712A (en) Production of semipermeable membrane
JPS634803A (en) Reverse-osmosis membrane having amino radical and use thereof
JPH07114941B2 (en) Method for manufacturing semipermeable composite membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term