JP2009226358A - Manufacturing method of composite semipermeable membrane - Google Patents

Manufacturing method of composite semipermeable membrane Download PDF

Info

Publication number
JP2009226358A
JP2009226358A JP2008077708A JP2008077708A JP2009226358A JP 2009226358 A JP2009226358 A JP 2009226358A JP 2008077708 A JP2008077708 A JP 2008077708A JP 2008077708 A JP2008077708 A JP 2008077708A JP 2009226358 A JP2009226358 A JP 2009226358A
Authority
JP
Japan
Prior art keywords
membrane
support membrane
composite semipermeable
polyfunctional amine
microporous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008077708A
Other languages
Japanese (ja)
Other versions
JP5120006B2 (en
Inventor
Hiroki Tomioka
洋樹 富岡
Kentaro Takagi
健太朗 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008077708A priority Critical patent/JP5120006B2/en
Publication of JP2009226358A publication Critical patent/JP2009226358A/en
Application granted granted Critical
Publication of JP5120006B2 publication Critical patent/JP5120006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a composite semipermeable membrane having both high water permeability and high solvent removability, without requiring addition of a new chemical. <P>SOLUTION: Provided is a method wherein a polyfunctional amine aqueous solution and an organic solvent solution containing a polyfunctional acid halide are brought into contact with each other on a fine porous support membrane to be subjected to interfacial polycondensation, and wherein the concentration of the polyfunctional amine increases from the surface toward the inside of the microporous support membrane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液状混合物の選択的分離に有用な複合半透膜の製造方法に関し、例えば海水やかん水から塩分を除去するにあたって好適に用いることができる、微多孔性支持膜上にポリアミド分離機能層を形成した複合半透膜の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a composite semipermeable membrane useful for selective separation of a liquid mixture, for example, a polyamide separation functional layer on a microporous support membrane that can be suitably used for removing salt from seawater or brine. The present invention relates to a method for producing a composite semipermeable membrane having a structure formed thereon.

近年、複合半透膜を用いた海水やかん水の淡水化が試みられ、世界中の水処理プラントで実用化されてきている。複合半透膜は、一般に微多孔性支持膜上に分離機能層を被覆してなり、その分離機能層を架橋芳香族ポリアミドから形成した場合には、ベンゼン環を含むことによって剛直性に富み、芳香族多官能アミン水溶液と芳香族多官能酸ハロゲン化物の有機溶媒溶液との界面重縮合により容易に製膜できる利点があり、さらに高塩除去率、高透過流束であることが知られている(特許文献1、2)。   In recent years, desalination of seawater and brackish water using a composite semipermeable membrane has been attempted and has been put to practical use in water treatment plants around the world. The composite semipermeable membrane is generally formed by coating a separation functional layer on a microporous support membrane, and when the separation functional layer is formed from a crosslinked aromatic polyamide, it is rich in rigidity by including a benzene ring, It has the advantage that it can be easily formed by interfacial polycondensation between an aromatic polyfunctional amine aqueous solution and an aromatic polyfunctional acid halide organic solvent solution, and is also known to have a high salt removal rate and a high permeation flux. (Patent Documents 1 and 2).

しかし、複合半透膜の利用が広まるにつれ、省エネルギー化による運転コスト削減の要求が高まっており、低圧力で運転が可能な複合半透膜の開発が望まれている。   However, as the use of composite semipermeable membranes has become widespread, there has been an increasing demand for reducing operating costs through energy saving, and the development of composite semipermeable membranes that can be operated at low pressure is desired.

微多孔性支持膜上にポリアミド分離機能層を形成してなる複合半透膜を使用して低圧力で運転するためには、とくに複合半透膜の透水量を向上させることが重要である。このような方法として、例えば、多官能アミン水溶液と多官能酸ハロゲン化物の有機溶媒溶液との界面重縮合で複合半透膜を製膜する際に、その水溶液側および有機溶媒溶液側の両方に、溶解度パラメーターが8〜14(cal/cm31/2である化合物を存在させる方法(特許文献3)や、該界面重縮合の前または反応中に、IUPAC周期律表のIIIA−VIB族及び3−6族から選ばれる非硫黄原子から選ばれる結合性コアをもつ錯化剤を多官能酸ハロゲン化物と接触させる方法(特許文献4)が開示されている。しかしながらこれらの方法では、製膜に必要な薬剤の量が増大し、経済的な負担や廃液処理への負荷が増加するなどの問題があった。
特開平1−180208号公報 特開平2−115027号公報 特許第3023300号公報 特表2003−531219号公報
In order to operate at a low pressure using a composite semipermeable membrane having a polyamide separation functional layer formed on a microporous support membrane, it is particularly important to improve the water permeability of the composite semipermeable membrane. As such a method, for example, when forming a composite semipermeable membrane by interfacial polycondensation between a polyfunctional amine aqueous solution and a polyfunctional acid halide organic solvent solution, both the aqueous solution side and the organic solvent solution side are used. In the method in which a compound having a solubility parameter of 8 to 14 (cal / cm 3 ) 1/2 is present (Patent Document 3), or before or during the interfacial polycondensation, group IIIA-VIB of the IUPAC periodic table And a method of contacting a complexing agent having a binding core selected from non-sulfur atoms selected from Group 3-6 with a polyfunctional acid halide (Patent Document 4). However, these methods have problems such as an increase in the amount of chemicals required for film formation and an increase in the economic burden and load on waste liquid treatment.
JP-A-1-180208 Japanese Patent Laid-Open No. 2-115027 Japanese Patent No. 3023300 Special table 2003-53219

本発明は、経済的な負担や廃液処理への負荷を増加させることなく、透水量が増大した複合半透膜の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the composite semipermeable membrane with which the water permeation amount increased, without increasing the economical burden and the load to waste liquid treatment.

上記目的を達成するための本発明は、以下の構成をとる。すなわち、
微多孔性支持膜上で、多官能アミンの水溶液と、多官能酸ハロゲン化物を含有する有機溶媒溶液とを微多孔性支持膜上で接触させ界面重縮合させることでポリアミド分離機能層を形成する複合半透膜の製造方法であって、該界面重縮合における多官能アミンが微多孔性支持膜の表面から内部へ向かって高濃度へ勾配して存在していることを特徴とする複合半透膜の製造方法。
To achieve the above object, the present invention has the following configuration. That is,
On the microporous support membrane, a polyfunctional amine aqueous solution and an organic solvent solution containing a polyfunctional acid halide are brought into contact with each other on the microporous support membrane to form a polyamide separation functional layer. A method for producing a composite semipermeable membrane, wherein the polyfunctional amine in the interfacial polycondensation is present in a gradient from the surface to the inside of the microporous support membrane in a high concentration. A method for producing a membrane.

本発明法によれば、高い透水性と高い溶質除去性を併せ持つ複合半透膜を得ることができる。また、新たな薬剤の添加を必要としないため、経済的な負担や廃液処理への負荷を少なくすることができる。   According to the method of the present invention, a composite semipermeable membrane having both high water permeability and high solute removability can be obtained. In addition, since it is not necessary to add a new chemical, it is possible to reduce the economic burden and the burden on waste liquid treatment.

本発明は、架橋ポリアミドからなる分離機能層を有する複合半透膜の表面積を増大させる方法である。   The present invention is a method for increasing the surface area of a composite semipermeable membrane having a separation functional layer made of a crosslinked polyamide.

本発明において複合半透膜は、好ましくは、実質的に分離性能を有する分離機能層が、実質的に分離性能を有さない微多孔性支持膜上に被覆されてなり、該分離機能層は多官能アミンと多官能酸ハロゲン化物とを接触させ界面重縮合させることによって得られる架橋ポリアミドからなるものである。ここで多官能アミンは脂肪族多官能アミンと芳香族多官能アミンの少なくとも1つの成分からなる。   In the present invention, the composite semipermeable membrane is preferably formed by coating a separation functional layer having substantially separation performance on a microporous support membrane having substantially no separation performance. It consists of a crosslinked polyamide obtained by bringing a polyfunctional amine and a polyfunctional acid halide into contact with each other and interfacial polycondensation. Here, the polyfunctional amine comprises at least one component of an aliphatic polyfunctional amine and an aromatic polyfunctional amine.

脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミンおよびその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジンなどが例示され、性能発現の安定性から、特に、ピペラジン、2,5−ジメチルピペラジンが好ましい。   The aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, and is preferably a piperazine-based amine and a derivative thereof. For example, piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2- Examples thereof include n-propylpiperazine and 2,5-di-n-butylpiperazine, and piperazine and 2,5-dimethylpiperazine are particularly preferable from the viewpoint of stability of performance.

また、芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼンなどがあり、そのN−アルキル化物としてN,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミンなどが例示され、性能発現の安定性から、特にメタフェニレンジアミン、1,3,5−トリアミノベンゼンが好ましい。   The aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylene diamine, paraphenylene diamine, 1, 3, 5 -Triaminobenzene and the like, and N-alkylated products thereof include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, N, N-diethylparaphenylenediamine, etc. In view of the stability of performance, metaphenylenediamine and 1,3,5-triaminobenzene are particularly preferable.

多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸の酸ハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロリドが好ましい。上記多官能酸ハロゲン化物は単独で用いることもできるが、混合物として用いてもよい。   The polyfunctional acid halide is an acid halide having two or more carbonyl halide groups in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the amine. Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid. 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and acid halides of 1,4-benzenedicarboxylic acid can be used. Among acid halides, acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, and ease of reactivity. Trimesic acid chloride is preferred. Although the said polyfunctional acid halide can also be used independently, you may use it as a mixture.

多官能酸ハロゲン化物を溶解する有機溶媒は、水と非混和性であり、かつ多孔性支持膜を破壊しないことが好ましく、架橋ポリアミドの生成反応を阻害しないものであればいずれであっても良い。代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられるが、オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカンなど、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセンなどの単体あるいはこれらの混合物が好ましく用いられる。   The organic solvent that dissolves the polyfunctional acid halide is not miscible with water, and preferably does not destroy the porous support membrane, and may be any as long as it does not inhibit the formation reaction of the crosslinked polyamide. . Typical examples include halogenated hydrocarbons such as liquid hydrocarbons and trichlorotrifluoroethane, but they are substances that do not destroy the ozone layer, are easily available, are easy to handle, and are safe for handling. In consideration of the properties, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, etc., and simple substances such as cyclooctane, ethylcyclohexane, 1-octene, 1-decene, or a mixture thereof are preferably used.

本発明において微多孔性支持膜は、実質的にイオン等の分離性能を有さず、実質的に分離性能を有する分離機能層に強度を与えるためのものである。孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい
微多孔性支持膜に使用する材料やその形状は特に限定されないが、例えばポリエステルまたは芳香族ポリアミドから選ばれる少なくとも一種を主成分とする布帛により強化されたポリスルホンや酢酸セルロースやポリ塩化ビニル、あるいはそれらを混合したものが好ましく使用される。使用される素材としては、化学的、機械的、熱的に安定性の高いポリスルホンを使用するのが特に好ましい。
In the present invention, the microporous support membrane is intended to give strength to a separation functional layer that substantially does not have separation performance of ions or the like and has substantial separation performance. The size and distribution of the pores are not particularly limited. For example, the pores have uniform and fine pores or gradually have large pores from the surface on the side where the separation functional layer is formed to the other surface, and the separation functional layer has A support membrane in which the size of the micropores is 0.1 nm or more and 100 nm or less on the surface on the side to be formed is preferable. The material used for the microporous support membrane and the shape thereof are not particularly limited. For example, polyester or aromatic Polysulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof reinforced with a cloth mainly composed of at least one selected from polyamide is preferably used. As a material to be used, it is particularly preferable to use polysulfone having high chemical, mechanical and thermal stability.

具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、孔径が制御しやすく、寸法安定性が高いため好ましい。   Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula because the pore diameter is easy to control and the dimensional stability is high.

Figure 2009226358
Figure 2009226358

例えば、上記ポリスルホンのN,N−ジメチルホルムアミド(DMF)溶液を、密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した微多孔性支持膜を得ることができる。   For example, an N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester cloth or non-woven fabric to a certain thickness, and wet coagulated in water. A microporous support membrane having fine pores with a diameter of several tens of nm or less can be obtained.

上記の多孔性支持体および基材の厚みは、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、50〜300μmの範囲内にあることが好ましく、より好ましくは100〜250μmの範囲内である。また、多孔性支持体の厚みは、10〜200μmの範囲内にあることが好ましく、より好ましくは30〜100μmの範囲内である。   The thickness of the porous support and the substrate described above affects the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, it is preferably in the range of 50 to 300 μm, more preferably in the range of 100 to 250 μm. Moreover, it is preferable that the thickness of a porous support body exists in the range of 10-200 micrometers, More preferably, it exists in the range of 30-100 micrometers.

多孔性支持膜形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔質支持体を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金−パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3〜6kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S−900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真から多孔性支持体の膜厚や表面孔径を決定する。なお、本発明における厚みや孔径は平均値を意味するものである。 次に、複合半透膜の好ましい製造方法について説明する。複合半透膜中の実質的に分離性能を有する分離機能層は、例えば、前述の多官能アミンを含有する水溶液と、前述の多官能酸ハロゲン化物を含有する、水とは非混和性の有機溶媒溶液を用い、後述の微多孔性支持膜上で接触させ界面重縮合させることにより形成される。   The form of the porous support film can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope. For example, when observing with a scanning electron microscope, the porous support is peeled off from the substrate, and then cut by a freeze cleaving method to obtain a sample for cross-sectional observation. The sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV. A Hitachi S-900 electron microscope or the like can be used as the high resolution field emission scanning electron microscope. The film thickness and surface pore diameter of the porous support are determined from the obtained electron micrograph. In addition, the thickness and the hole diameter in this invention mean an average value. Next, the preferable manufacturing method of a composite semipermeable membrane is demonstrated. The separation functional layer having substantially separation performance in the composite semipermeable membrane is, for example, an aqueous solution containing the above-mentioned polyfunctional amine and an organic material immiscible with water containing the above-mentioned polyfunctional acid halide. Using a solvent solution, it is formed by contacting and interfacial polycondensation on a microporous support membrane described later.

多官能アミンを含有する水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。   In the case of an aqueous solution containing a polyfunctional amine or an organic solvent solution containing a polyfunctional acid halide, an acylation catalyst, a polar solvent, an acid scavenger may be used as long as it does not interfere with the reaction between the two components. In addition, compounds such as surfactants and antioxidants may be contained.

本発明において、微多孔性支持膜は、架橋ポリアミドなどの分離機能層を支持するために使用される。微多孔性支持膜の構成は特に限定されないが、好ましい微多孔性支持膜としては布帛により強化されたポリスルホン支持膜などを例示することができる。多孔性支持膜の孔径や孔数は特に限定されないが、均一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔を有していて、その微細孔の大きさは、その片面の表面が100nm以下であるような構造の支持膜が好ましい。   In the present invention, the microporous support membrane is used to support a separation functional layer such as a crosslinked polyamide. The configuration of the microporous support membrane is not particularly limited, but preferred examples of the microporous support membrane include a polysulfone support membrane reinforced with a fabric. The pore diameter and the number of pores of the porous support membrane are not particularly limited, but it has uniform fine pores or gradually large pores from one side to the other side, and the size of the fine pores is the size of one side. A support film having a structure in which the surface of the film is 100 nm or less is preferable.

本発明に使用する微多孔性支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるが、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することができる。   The microporous support membrane used in the present invention may be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha. Although it is possible, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).

微多孔性支持膜に使用する素材は特に限定されず、例えば、ポリスルホン、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル等のホモポリマーあるいはブレンドしたもの等が使用できるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好ましい。具体的に例示すると、ポリスルホンのジメチルホルムアミド(以降、DMFと記載)溶液を密に織ったポリエステル布あるいは不織布の上に略一定の厚さに塗布し、ドデシル硫酸ソーダ0.5重量%DMF2重量%を含む水溶液中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した好適な多孔性支持膜を得ることができる。   The material used for the microporous support membrane is not particularly limited. For example, polysulfone, cellulose acetate, cellulose nitrate, polyvinyl chloride, or other homopolymers or blends can be used, but chemical, mechanical, thermal, etc. It is preferable to use polysulfone having high stability. Specifically, a solution of polysulfone in dimethylformamide (hereinafter referred to as DMF) is applied on a densely woven polyester cloth or non-woven fabric to a substantially constant thickness, and sodium dodecyl sulfate 0.5 wt% DMF 2 wt% By wet coagulation in an aqueous solution containing, a suitable porous support membrane having most of the surface with fine pores having a diameter of several tens of nm or less can be obtained.

そして、本発明では、微多孔性支持膜へ多官能アミン水溶液を含有させる工程において、多官能アミンを微多孔性支持膜の表面から内部へ向かって高濃度へ勾配して存在せしめることを特徴とするものである。多官能アミンを微多孔性支持膜の表面から内部へ向かって高濃度へ勾配して存在せしめる方法としては特に限定されるものではなく、例えば、多官能アミン水溶液を微多孔性支持膜表面にコーティングする方法、微多孔性支持膜を該水溶液に浸漬する方法等で多官能アミンを微多孔性支持膜中へ含有させた後、これよりも低濃度の多官能アミン水溶液を上記同様にコーティングする方法、該水溶液に浸漬する方法等で多官能アミンを微多孔性支持膜中へ含有させたり、多官能アミン水溶液を微多孔性支持膜裏面へコーティングする方法等で多官能アミンを微多孔性支持膜中へ含有させたりすることで、微多孔性支持膜表面の多官能アミン濃度を微多孔性支持膜内部よりも低くすればよい。ここで、多官能アミンを含有する水溶液の濃度は、0.1〜20重量%が好ましく、より好ましくは0.5〜15重量%である。   And in the present invention, in the step of incorporating the polyfunctional amine aqueous solution into the microporous support membrane, the polyfunctional amine is present in a gradient from the surface of the microporous support membrane toward the inside to a high concentration. To do. There is no particular limitation on the method of causing the polyfunctional amine to exist in a high concentration gradient from the surface of the microporous support membrane toward the inside. For example, a polyfunctional amine aqueous solution is coated on the surface of the microporous support membrane. A method in which a polyfunctional amine is contained in the microporous support membrane by a method of immersing the microporous support membrane in the aqueous solution or the like, and then a polyfunctional amine aqueous solution having a lower concentration than this is coated in the same manner as described above The polyfunctional amine is contained in the microporous support membrane by a method of immersing in the aqueous solution, or the polyfunctional amine is microporous support membrane by a method of coating the polyfunctional amine aqueous solution on the back surface of the microporous support membrane. The polyfunctional amine concentration on the surface of the microporous support membrane may be made lower than that in the microporous support membrane by containing it inside. Here, the concentration of the aqueous solution containing the polyfunctional amine is preferably 0.1 to 20% by weight, more preferably 0.5 to 15% by weight.

次いで、過剰に塗布された該水溶液を膜上に液滴が残らないように十分に液切りする。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法等がある。液切りの方法としては、例えば、特開平2−78428号公報に記載されているように、多官能アミン水溶液接触後の多孔性支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。   Next, the excessively applied aqueous solution is sufficiently drained so that no droplets remain on the film. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance. As a method for draining liquid, for example, there is a method in which the film surface is allowed to flow naturally while being held in a vertical direction. As a method of draining, for example, as described in JP-A-2-78428, a method of allowing an excess aqueous solution to naturally flow down by vertically gripping a porous support membrane after contacting a polyfunctional amine aqueous solution. Alternatively, it is possible to use a method of forcibly removing liquid by blowing an air stream such as nitrogen from an air nozzle. In addition, after draining, the membrane surface can be dried to partially remove water from the aqueous solution.

その後、多官能アミンを表面から内部へ向かって高濃度へ勾配して存在せしめた微多孔性支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、界面重縮合により架橋ポリアミドの分離機能層を形成させる。   Then, the organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to the microporous support membrane in which the polyfunctional amine is present in a gradient from the surface to the inside, and crosslinked by interfacial polycondensation. A separation functional layer of polyamide is formed.

有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01〜10重量%の範囲内であると好ましく、0.02〜2.0重量%の範囲内であるとさらに好ましい。この範囲であると、十分な反応速度が得られ、また副反応の発生を抑制することができる。さらに、この有機溶媒溶液にN,N−ジメチルホルムアミドのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。   The concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. Within this range, a sufficient reaction rate can be obtained, and the occurrence of side reactions can be suppressed. Further, it is more preferable that an acylation catalyst such as N, N-dimethylformamide is contained in the organic solvent solution because interfacial polycondensation is promoted.

有機溶媒は、水と非混和性であり、かつ酸ハロゲン化物を溶解し、微多孔性支持膜を破壊しないものが望ましく、アミノ化合物および酸ハロゲン化物に対して不活性であるものであればよい。好ましい例として、n−ヘキサン、n−オクタン、n−デカンなどの炭化水素化合物が挙げられる。   The organic solvent is preferably immiscible with water and dissolves acid halides and does not destroy the microporous support membrane, and may be any one that is inert to amino compounds and acid halides. . Preferred examples include hydrocarbon compounds such as n-hexane, n-octane, and n-decane.

多官能酸ハロゲン化物の有機溶媒溶液を接触させて界面重縮合を行い、微多孔性支持膜上に架橋ポリアミドを含む分離機能層を形成したあとは、余剰の溶媒を液切りするとよい。液切りの方法は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1〜5分間の間にあることが好ましく、1〜3分間であるとより好ましい。短すぎると分離機能層が完全に形成せず、長すぎると有機溶媒が過乾燥となり欠点が発生しやすく、性能低下を起こしやすい。   After interfacial polycondensation is performed by contacting an organic solvent solution of a polyfunctional acid halide to form a separation functional layer containing a crosslinked polyamide on the microporous support membrane, excess solvent may be drained. As a method for draining, for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used. In this case, the time for gripping in the vertical direction is preferably 1 to 5 minutes, more preferably 1 to 3 minutes. If it is too short, the separation functional layer is not completely formed, and if it is too long, the organic solvent is excessively dried and defects are likely to occur, and performance is likely to deteriorate.

上述の方法により得られた複合半透膜は、50〜150℃の範囲内、好ましくは70〜130℃の範囲内で1〜10分間、より好ましくは2〜8分間熱水処理する工程などを付加することで、複合半透膜の溶質阻止性能や透水性をより一層向上させることができる。   The composite semipermeable membrane obtained by the above-described method includes a step of hydrothermal treatment in a range of 50 to 150 ° C., preferably in a range of 70 to 130 ° C. for 1 to 10 minutes, more preferably 2 to 8 minutes. By adding, the solute blocking performance and water permeability of the composite semipermeable membrane can be further improved.

このように形成される本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。   The composite semipermeable membrane of the present invention formed in this way has a large number of pores together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance if necessary. Is wound around a cylindrical water collecting pipe and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.

また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。   In addition, the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump that supplies raw water to them, a device that pretreats the raw water, and the like to form a fluid separation device. By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

参考例、比較例、実施例における膜の特性は、複合半透膜に、温度25℃、pH6.5に調整した海水(塩濃度約3.5%)を操作圧力5.5MPaで供給して膜ろ過処理を行ない、透過水、供給水の水質を測定することにより、次の式から求めた。   The membrane characteristics in the reference examples, comparative examples, and examples are as follows. Seawater (salt concentration of about 3.5%) adjusted to a temperature of 25 ° C. and pH 6.5 was supplied to the composite semipermeable membrane at an operating pressure of 5.5 MPa. Membrane filtration was performed, and the quality of the permeated water and the feed water was measured and determined from the following equation.

(塩除去率)
塩除去率(%)=100×{1−(透過水中の塩濃度/供給水中の塩濃度)}
(膜透過流束)
供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
(Salt removal rate)
Salt removal rate (%) = 100 × {1− (salt concentration in permeated water / salt concentration in feed water)}
(Membrane permeation flux)
Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (seawater) per square meter of the membrane surface with the permeation amount per day (cubic meter).

(実施例)
多孔性支持膜である布帛補強ポリスルホン支持膜(限外濾過膜)は、次の手法により製造した。すなわち、単糸繊度0.5デシテックスのポリエステル繊維と1.5デシテックスのポリエステル繊維との混繊糸からなる、通気度0.7cm/cm・秒、平均孔径7μm以下の湿式不織布であって、縦30cm、横20cmの大きさの物を、ガラス板上に固定し、その上に、ジメチルホルムアミド(DMF)溶媒のポリスルホン濃度15重量%の溶液(20℃)を、総厚み210〜215μmになるようにキャストし、直ちに水に浸積してポリスルホンの多孔性支持膜を製造した。得られた多孔性支持膜をPS支持膜と記す。
このようにして得られたPS支持膜を、メタフェニレンジアミン(以下mPDAという)3.8重量%水溶液中に室温下2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、水中に室温下3秒間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた。トリメシン酸クロリド(以下TMCという)0.175重量%を含むn−デカン溶液を、160cm/mの割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄して複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、膜透過流束は0.69(m/m/日)、塩除去率は99.8%であった。
(Example)
A fabric-reinforced polysulfone support membrane (ultrafiltration membrane), which is a porous support membrane, was produced by the following method. That is, a wet nonwoven fabric having a permeability of 0.7 cm 3 / cm 2 · second and an average pore diameter of 7 μm or less, comprising a mixed yarn of polyester fiber having a single yarn fineness of 0.5 dtex and 1.5 dtex polyester fiber. An article having a size of 30 cm in length and 20 cm in width is fixed on a glass plate, and a solution of dimethylformamide (DMF) solvent having a polysulfone concentration of 15% by weight (20 ° C.) is added to a total thickness of 210 to 215 μm. Then, it was immediately immersed in water to produce a polysulfone porous support membrane. The obtained porous support membrane is referred to as a PS support membrane.
The PS support membrane thus obtained was immersed in a 3.8% by weight aqueous solution of metaphenylenediamine (hereinafter referred to as mPDA) at room temperature for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was discharged from an air nozzle. After removing the excess aqueous solution from the surface of the support membrane, the substrate was immersed in water at room temperature for 3 seconds, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from the air nozzle to remove the excess aqueous solution from the surface of the support membrane. . An n-decane solution containing 0.175% by weight of trimesic acid chloride (hereinafter referred to as TMC) was applied at a rate of 160 cm 3 / m 2 so that the surface of the support film was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, it wash | cleaned for 2 minutes with 90 degreeC hot water, and obtained the composite semipermeable membrane. Evaluation of the composite semipermeable membrane thus obtained revealed that the membrane permeation flux was 0.69 (m 3 / m 2 / day), and the salt removal rate was 99.8%.

(比較例)
mPDA3.8重量%水溶液中に室温下2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後に、水中への浸漬を行わず、直ちにTMC0.175重量%を含むn−デカン溶液の塗布を行ったこと以外は、実施例と同様に複合半透膜を作製した。このようにして得られた複合半透膜を評価したところ、膜透過流束は0.60(m/m/日)、塩除去率は99.8%であった。
(Comparative example)
Immerse in a 3.8% by weight aqueous solution of mPDA at room temperature for 2 minutes, slowly lift the support membrane vertically, blow off nitrogen from an air nozzle to remove excess aqueous solution from the surface of the support membrane, and then immerse in water First, a composite semipermeable membrane was prepared in the same manner as in Example except that an n-decane solution containing 0.175% by weight of TMC was immediately applied. Evaluation of the composite semipermeable membrane thus obtained revealed that the membrane permeation flux was 0.60 (m 3 / m 2 / day), and the salt removal rate was 99.8%.

実施例および比較例の結果から、多官能アミンを微多孔性支持膜の表面から内部へ向かって高濃度へ勾配して存在せしめて複合半透膜を製膜することで、透水量が増大することがわかる。   From the results of Examples and Comparative Examples, the amount of water permeation is increased by forming a composite semipermeable membrane by causing a polyfunctional amine to exist in a gradient from the surface to the inside of the microporous support membrane to a high concentration. I understand that.

Claims (1)

微多孔性支持膜上で、多官能アミンの水溶液と、多官能酸ハロゲン化物を含有する有機溶媒溶液とを微多孔性支持膜上で接触させ界面重縮合させることでポリアミド分離機能層を形成する複合半透膜の製造方法であって、該界面重縮合における多官能アミンが微多孔性支持膜の表面から内部へ向かって高濃度へ勾配して存在していることを特徴とする複合半透膜の製造方法。 On the microporous support membrane, a polyfunctional amine aqueous solution and an organic solvent solution containing a polyfunctional acid halide are brought into contact with each other on the microporous support membrane to form a polyamide separation functional layer. A method for producing a composite semipermeable membrane, wherein the polyfunctional amine in the interfacial polycondensation is present in a gradient from the surface to the inside of the microporous support membrane in a high concentration. A method for producing a membrane.
JP2008077708A 2008-03-25 2008-03-25 Manufacturing method of composite semipermeable membrane Expired - Fee Related JP5120006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077708A JP5120006B2 (en) 2008-03-25 2008-03-25 Manufacturing method of composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077708A JP5120006B2 (en) 2008-03-25 2008-03-25 Manufacturing method of composite semipermeable membrane

Publications (2)

Publication Number Publication Date
JP2009226358A true JP2009226358A (en) 2009-10-08
JP5120006B2 JP5120006B2 (en) 2013-01-16

Family

ID=41242414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077708A Expired - Fee Related JP5120006B2 (en) 2008-03-25 2008-03-25 Manufacturing method of composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP5120006B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002819A1 (en) * 2014-06-30 2016-01-07 東レ株式会社 Composite semipermeable membrane
WO2016002821A1 (en) * 2014-06-30 2016-01-07 東レ株式会社 Composite semipermeable membrane
JP2018089586A (en) * 2016-12-05 2018-06-14 大日本印刷株式会社 Manufacturing method of porous film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962309A (en) * 1982-09-30 1984-04-09 Teijin Ltd Production of composite membrane for separation
JPS63178805A (en) * 1987-01-19 1988-07-22 Toray Ind Inc Production of semipermeable compound film
JPH01180208A (en) * 1988-01-11 1989-07-18 Toray Ind Inc Production of compound semipermeable membrane
JPH022842A (en) * 1987-12-25 1990-01-08 Toray Ind Inc Laminated hollow yarn membrane
WO1999001208A1 (en) * 1997-07-02 1999-01-14 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962309A (en) * 1982-09-30 1984-04-09 Teijin Ltd Production of composite membrane for separation
JPS63178805A (en) * 1987-01-19 1988-07-22 Toray Ind Inc Production of semipermeable compound film
JPH022842A (en) * 1987-12-25 1990-01-08 Toray Ind Inc Laminated hollow yarn membrane
JPH01180208A (en) * 1988-01-11 1989-07-18 Toray Ind Inc Production of compound semipermeable membrane
WO1999001208A1 (en) * 1997-07-02 1999-01-14 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002819A1 (en) * 2014-06-30 2016-01-07 東レ株式会社 Composite semipermeable membrane
WO2016002821A1 (en) * 2014-06-30 2016-01-07 東レ株式会社 Composite semipermeable membrane
JP2018089586A (en) * 2016-12-05 2018-06-14 大日本印刷株式会社 Manufacturing method of porous film

Also Published As

Publication number Publication date
JP5120006B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5696361B2 (en) Composite semipermeable membrane and method for producing the same
JP5741431B2 (en) Composite semipermeable membrane and method for producing the same
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JP2011078980A (en) Composite semipermeable membrane and manufacturing method of the same
JP2010137192A (en) Composite nano-filter membrane
JP2018039003A (en) Composite semipermeable membrane and production method of the same
JP2010094641A (en) Method of treating composite semipermeable film
JP2019098330A (en) Composite semipermeable membrane and method for producing the same
JP2008080187A (en) Composite semipermeable membrane and use thereof
JP2009226320A (en) Composite semi-permeable membrane and its manufacturing method
JP5287353B2 (en) Composite semipermeable membrane
JP5120006B2 (en) Manufacturing method of composite semipermeable membrane
JP6237233B2 (en) Composite semipermeable membrane and composite semipermeable membrane element
JP7342528B2 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
JP5177056B2 (en) Composite semipermeable membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2013223861A (en) Composite diaphragm
JP5050335B2 (en) Manufacturing method of composite semipermeable membrane
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP6511808B2 (en) Composite semipermeable membrane
JP4923913B2 (en) Composite semipermeable membrane and method for producing the same
JP5263104B2 (en) Manufacturing method of composite semipermeable membrane
JP2016010771A (en) Composite semipermeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5120006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees