JPS6390533A - Separation of hydrogen - Google Patents

Separation of hydrogen

Info

Publication number
JPS6390533A
JPS6390533A JP61237775A JP23777586A JPS6390533A JP S6390533 A JPS6390533 A JP S6390533A JP 61237775 A JP61237775 A JP 61237775A JP 23777586 A JP23777586 A JP 23777586A JP S6390533 A JPS6390533 A JP S6390533A
Authority
JP
Japan
Prior art keywords
formula
hydrogen
copolyimide
membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61237775A
Other languages
Japanese (ja)
Other versions
JPH085961B2 (en
Inventor
Yukio Yanaga
弥永 幸雄
Asaji Hayashi
浅次 林
Shizue Sakai
酒井 静枝
Tooru Imanara
今奈良 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61237775A priority Critical patent/JPH085961B2/en
Publication of JPS6390533A publication Critical patent/JPS6390533A/en
Publication of JPH085961B2 publication Critical patent/JPH085961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To accomplish separation of hydrogen in an advantageous manner from a gas by using a membrane made up of a material of asymmetrical structure consisting mainly of specific copolyamide-imide which is highly heat- resistant and capable of forming such as spinning at room temperature. CONSTITUTION:The objective separation of hydrogen from a gas can be accomplished by using a membrane made up of a material of asymmetrical structure consisting mainly of (A) a copolyimide of formula I (in this formula I, 10-30mol% of R being of formula II and the rest of R of formula III or IV) and/or (B) a copolyamide-imide constituted of (i) 90-70mol% recurring unit of formula V and (ii) 10-30mol% of recurring unit of formula VI. The copolymer A can be prepared by reaction of a mixture of 3,4,3',4'-benzophenone tetracarboxylic acid dianhydride, tolylene diisocyanate and methylenebisphenyl isocyanate; whereas, the copolymer B by reaction of a mixture of 4,4'- methylenebisphenol isocyanate, trimellitic anhydride and isophthalic acid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は・jl”l”l”−ベンゾフェノンテトラカル
ボン酸二無水物をトリレンジインシアネート及ヒメチレ
ンビスフェニルイソシアネートの混合物と反ろさせて得
られた芳香族コボリイミ)” 及U / 又1d 、 
q、 4t’−メチレンビスフェニルインシアネートを
トリメリット酸無水物及びイン7タル酸の混合物と反応
させて得られた芳香族コポリアミドイミドを主たる構成
材料とする非対称構造の膜を用すて気体から水素を分離
する水素の分離方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is characterized in that -jl"l"l"-benzophenone tetracarboxylic dianhydride is reacted with a mixture of tolylene diin cyanate and himethylene bisphenyl isocyanate. The obtained aromatic Koboliimi)” and U / also 1d,
q, 4t'-methylenebisphenyl incyanate is reacted with a mixture of trimellitic anhydride and in7talic acid to produce a gas using an asymmetrically structured membrane whose main constituent is an aromatic copolyamideimide. The present invention relates to a method for separating hydrogen from hydrogen.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

気体から水素を分離することは工業的Kt!!で89、
例えば、C1化学における水素と一酸化炭素の分離、ア
ンモニア合成における水素の回収等釦関連して広く行わ
れている。
Separating hydrogen from gas is an industrial Kt! ! So 89,
For example, separation of hydrogen and carbon monoxide in C1 chemistry, recovery of hydrogen in ammonia synthesis, etc. are widely practiced in connection with buttons.

これらの分離を膜を用いて行うものとしては例えばポリ
スルホンの非対称構造中空糸の表面に約7μの厚さでシ
リコーンをコーティングした複合膜(モンナント社プリ
ズムセパレータ〕が知られているが・使用可能温度が0
〜70℃と言われておシ、十分なものとは言えない。
A known example of a membrane that performs these separations is a composite membrane (Monnanto Prism Separator), which is made by coating the surface of polysulfone asymmetrically structured hollow fibers with silicone to a thickness of approximately 7μ. is 0
It is said that the temperature is ~70℃, but it cannot be said to be sufficient.

また・ビフェニルテトラカルボン酸系の芳香族ポリイミ
ドの非対称構造中空糸(宇部興産社製)も知られている
が、紡糸に際してパラクロルフェノール等のクロル系溶
媒を使用しており、室温よシ高い温度で紡糸を行うこと
が必要であシ、取扱いのむずかしさから必ずしも有利な
ものとは言えない。
Also, asymmetrically structured hollow fibers made of biphenyltetracarboxylic acid-based aromatic polyimide (manufactured by Ube Industries, Ltd.) are known, but they use chlorine-based solvents such as parachlorophenol during spinning, and the temperature is higher than room temperature. However, it is not necessarily advantageous because it is difficult to handle.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、このような事情に鑑みて、耐熱性が高く
、しかも室温で紡糸等の成形が可能な素材を用いた水素
の分離方法について鋭意検討を行った結果、3.41.
 名q’−ベンシブエノンテトラカルボン酸二無水物を
トリレンジイソシアネート及びメチレンビスフェニルイ
ソシアネートの混合物と反応させて得られた芳香族コポ
リ・イミド及ヒ/又は%9,41’−メチレンビスフェ
ニルイソシアネートをトリメリット酸無水物およびイソ
フタル酸の混合物と反応させて得られた耐熱性が高くし
かも室温で可溶な芳香族コポリアミドイミドを主たる構
成材料とする非対称構造の膜を用いることによシ、有利
に気体から水素を分離できることを見い出し、本発明に
到達した。
In view of these circumstances, the inventors of the present invention have conducted intensive studies on a hydrogen separation method using a material that has high heat resistance and can be formed by spinning or the like at room temperature.
Aromatic copolyimide and/or 9,41'-methylenebisphenyl isocyanate obtained by reacting q'-bensibuenonetetracarboxylic dianhydride with a mixture of tolylene diisocyanate and methylenebisphenyl isocyanate By using an asymmetrically structured membrane whose main constituent material is an aromatic copolyamideimide which has high heat resistance and is soluble at room temperature, obtained by reacting trimellitic acid anhydride and isophthalic acid with a mixture of trimellitic acid anhydride and isophthalic acid. We have discovered that hydrogen can be advantageously separated from gas, and have arrived at the present invention.

すなわち、本発明の要旨は一般式(1ンの繰シ返し単位
で表わされる構造を有するコポリイミドであって、上記
繰り返し単位のio〜、70 % ル@ ハR2>Xハ
=xoz+  ヲ表bT モのであり、上記繰シ返し単
位の90〜70モル係はRが、 ポリイミド、及び/又は繰シ返し単位の90〜70モル
係が式(It) で表わされる構造を有し、かつ繰夛返し単位のlθ〜3
0モルチが式(1) で表わされる構造を有するコポリアミドイミドを主たる
構成材料とする非対称構造の膜を用いて気体から水素を
分離することを特徴とする水素の分離方法に存する。
That is, the gist of the present invention is a copolyimide having a structure represented by a repeating unit of the general formula (1), wherein 70% of the repeating unit is 90 to 70 molar units of the repeating units are polyimide, and/or 90 to 70 molar units of the repeating units have a structure represented by the formula (It), and Return unit lθ~3
The invention relates to a method for separating hydrogen, characterized in that hydrogen is separated from a gas using a membrane with an asymmetric structure, the main constituent material of which is copolyamideimide having a structure represented by the formula (1).

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用される芳香族コポリイミドは一般式
(1) の繰夛返し単位の存在を特徴とするコポリイミドでsb
、ここで上記繰シ返し単位のio〜のであシ、上記繰シ
返し単位の90〜70モルチはRが このコポリイミドは例えばUBPJ、7o r、y s
 、r号に記載されているようにj、 名f、 4I’
−ベンゾフェノンテトラカルボン酸二無水物を適当なモ
ル比のダ、q′−メチレンビスフェニルイソシアネート
(F、y’−ジフェニルメタンジイソシアネート)およ
びトリレンジイソシアネート(コ、4’ −A性体、コ
、6−異性体、あるいはそれらの混合物)とともに極性
溶媒の存在下で反応させること忙よシ容易に得ることが
できる。
The aromatic copolyimide used in the present invention is a copolyimide characterized by the presence of repeating units of the general formula (1).
, where 90 to 70 moles of the repeating unit are R, and this copolyimide is, for example, UBPJ, 7or, ys.
, as stated in issue r, j, name f, 4I'
-benzophenonetetracarboxylic dianhydride in an appropriate molar ratio of da, q'-methylene bisphenyl isocyanate (F, y'-diphenylmethane diisocyanate) and tolylene diisocyanate (co, 4' -A, co, 6- isomers or mixtures thereof) in the presence of a polar solvent.

また、本発明において使用される芳香族コポリアミドイ
ミドは繰シ返し単位の70〜デOモル慢が式(■) で表わされる構造を有し、かつ繰り返し単位の30〜i
oモルチが式(1) で表わされる構造を有するコポリアミドイミドである。
Further, the aromatic copolyamideimide used in the present invention has a structure in which 70 to 1 molar units of the repeating unit are represented by the formula (■), and 30 to 1 molar units of the repeating unit
Omolti is a copolyamideimide having a structure represented by formula (1).

このコポリアミドイミドは米国特許第3、qコ?、49
7号に教示の方法によシ容易に製造される。このような
コポリアミドイミドは、前記特許に記載の操作を用いて
約70モルチから約?Oモルチ対約JOモル係から約1
0モルチの割合のトリメリット酸無水物とインフタル酸
の混合物と#1ぼ等量のiooモルチ割合o +t <
r’−メチレンビスフェニルイソシアネートの反応から
容易に得ることができる。
This copolyamide-imide is covered by U.S. Patent No. 3, qco? , 49
It is easily manufactured by the method taught in No. 7. Such copolyamideimides can be prepared from about 70 mol. About 1 from O Molch vs. JO Molch
Mixture of trimellitic anhydride and inphthalic acid in proportion of 0 molti and #1 equivalent ioo molti proportion o + t <
It can be easily obtained from the reaction of r'-methylenebisphenyl isocyanate.

コポリイミド又はコポリアミドイミドの重合、およびこ
れらを溶解させるのに用いられる溶媒は・極性有機溶媒
でありジメチルホルムアミド、ジメチルアセトアミド、
N−メチルピロリドン、ジメチルスルホキシド、ジメチ
ルスルホン、ヘキサメチルホスホルアミド、テトラメチ
ル尿素、ピリジンなどが例示されるが、特に限定される
ものではない。また、これらを混合して使用してもかま
わない6本発明においてコポリイミドに対しては、好ま
しくはジメチルホルムアミド及びN−メチルピロリドン
が用いられ、より好ましくはジメチルホルムアミドが用
いられる。
Polymerization of copolyimides or copolyamideimides and the solvents used to dissolve them are polar organic solvents such as dimethylformamide, dimethylacetamide,
Examples include N-methylpyrrolidone, dimethylsulfoxide, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, pyridine, etc., but are not particularly limited. Further, in the present invention, dimethylformamide and N-methylpyrrolidone are preferably used, and dimethylformamide is more preferably used as the copolyimide in the present invention, which may be used in combination.

コポリアミドイミドに対しては好ましくはジメチルホル
ムアミド、ジメチルアセトアミド、N−メチルピロリド
ンが用いられ、より好ましくはジメチルホルムアミドが
用いられる。
For the copolyamideimide, preferably dimethylformamide, dimethylacetamide, N-methylpyrrolidone is used, more preferably dimethylformamide is used.

上述の重合に使用する極性有機溶媒の分量は。What is the amount of polar organic solvent used in the above polymerization?

すべての反応体が最初に溶解するのく少なくとも十分な
ものであることが好ましい。溶媒の使用量は求めるコポ
リイミド、又はコポリアミドイミドの粘度によって調節
されるものでsb、コポリイミド、又はコポリアミドイ
ミドの重量%はそれほど重要でないが、通常約5重量%
から約33重量%までが好ましい。
It is preferred that there is at least sufficient initial dissolution of all reactants. The amount of solvent used is adjusted depending on the desired viscosity of the copolyimide or copolyamideimide, and the weight percent of sb, copolyimide, or copolyamideimide is not very important, but it is usually about 5% by weight.
to about 33% by weight is preferred.

本発明で用いられるコポリイミド又はコポリアミドイミ
ドの対数粘度(りinh )は(7,161/1以上、
よ)好ましくは0.3〜ダd1/I (N−メf、Ax
ピロリドン中、0.j%、30℃で測定)の範囲から選
ばれる。
The logarithmic viscosity (RI inh ) of the copolyimide or copolyamideimide used in the present invention is (7,161/1 or more,
y) Preferably 0.3 to da d1/I (N-Mef, Ax
in pyrrolidone, 0. j%, measured at 30°C).

上記コポリイミド、及び/又はコポリアミドイミドを用
いた非対称構造の膜とは、膜の断面方向に不均質な構造
を有している膜のことであり、例えば表面に緻密で薄い
スキン層、その下部に多孔化したスポンジ層が存在して
いるものであって、これらが同一素材で一体に形成され
ているものが挙げられる。スポンジ層の中に指状構造の
空孔が形成されているものでもよい。
The asymmetrically structured membrane using copolyimide and/or copolyamideimide refers to a membrane that has a non-uniform structure in the cross-sectional direction of the membrane, such as a dense and thin skin layer on the surface. Examples include those in which a porous sponge layer is present at the bottom, and these layers are integrally formed from the same material. The sponge layer may have finger-like pores formed therein.

このような非対称構造の膜では分離機能を有する部分は
スキン層の部分である。多孔層は、分離機能を有してい
ないが、薄くて機械的強度の不十分をスキン層を支持す
るものである。
In a membrane with such an asymmetric structure, the part having the separation function is the skin layer part. The porous layer does not have a separation function, but is thin and has insufficient mechanical strength to support the skin layer.

非対称構造でない、いわゆる均質膜では、薄膜化するに
従ってピンホール等の欠陥が発生しやすくなるため、実
用的レベルの透過速度を有する膜を形成することは困難
でアシ、有利とは言えない。
In a so-called homogeneous membrane that does not have an asymmetric structure, defects such as pinholes are more likely to occur as the membrane becomes thinner, so it is difficult to form a membrane with a practical level of permeation rate, and it cannot be said to be advantageous.

膜の形状としては、シート状、スパイラル状、管状、中
空糸状等各種のものが採用できるが、中空糸状の隔膜は
単位容積当シの有効膜面積を大きくすることができ、ま
た中空糸の外周側から加圧する場合には、管壁の厚さが
小さい割に高圧に対する機械的強度が高い等の利点が得
られる。
Various membrane shapes can be adopted, such as sheet, spiral, tubular, and hollow fiber shapes.Hollow fiber membranes can increase the effective membrane area per unit volume, and the outer periphery of the hollow fiber When pressurizing from the side, there are advantages such as high mechanical strength against high pressure despite the small thickness of the tube wall.

このような隔膜の製造法としては、先に述べたコポリイ
ミド及び/又はコポリアミドイミドとその重合溶媒であ
る極性有機溶媒とのドープ液を、ガラス板等の平板の上
にキャスティングする方法、ロールコートする方法、ス
ピン;−トする方法あるいは、表面積を大きくするため
に通常採用されている中空糸にする方法等の公知の方法
によって行うことができる。
Methods for producing such a diaphragm include a method of casting a dope solution of the above-mentioned copolyimide and/or copolyamide-imide and a polar organic solvent as its polymerization solvent onto a flat plate such as a glass plate, and a roll method. This can be carried out by a known method such as a coating method, a spinning method, or a method of forming a hollow fiber, which is usually employed to increase the surface area.

また、適当な多孔質(多孔質中空糸を含む)の裏打材上
に流延して、BXに対して支持体をさらに設けることも
できる。この多孔質支持体としては膜に対する透過ガス
の通過を阻止せず、かつ膜材料、溶媒、凝固液に侵され
ないような任意の不活性多孔質材料を用いることができ
んこの種の支持体の典型的なものとしては金属メツシュ
、多孔質セラミック、焼結ガラス、多孔質ガラス、焼結
金属、紙、多孔質非溶解性プラスチック等が好適に用い
られ、たとえばレーヨンのような不織布、アスベスト、
多孔質ポリイミドなどが挙げられる。これらの材料は分
離に関与せず単に膜用の支持体として作用するのみであ
る。ドープ液の薄膜の厚さは通常/III以下であるこ
とが好ましい。
It is also possible to further provide a support for BX by casting on a suitable porous (including porous hollow fiber) backing material. This porous support can be any inert porous material that does not block the passage of permeate gas through the membrane and is not attacked by the membrane material, solvent, or coagulation liquid. Preferred materials include metal mesh, porous ceramics, sintered glass, porous glass, sintered metal, paper, and porous non-dissolving plastics. For example, nonwoven fabrics such as rayon, asbestos,
Examples include porous polyimide. These materials do not participate in the separation and merely act as supports for the membrane. It is preferable that the thickness of the thin film of the dope liquid is usually /III or less.

薄膜が形成されたら、直ちに凝固液中に浸漬させるが、
この場合、薄膜を形成しながら、又は薄膜形成後、10
 % 730℃、好ましくはtio〜lコO℃の大気中
で2〜300秒間、好ましくは70〜/10秒間、さら
に好ましくは10〜l−0秒間加熱して薄膜中の溶媒の
一部を蒸発除去してから凝固させてもよい、また上記の
範囲で熱風を吹きつけてもよい。これによシ、非対称膜
の構造中の表面緻密層の厚みを変えることができ、得ら
れる膜の分離性能を容易にコントロールすることが可能
である。
Once a thin film is formed, it is immediately immersed in a coagulation solution.
In this case, while forming the thin film or after forming the thin film,
Part of the solvent in the thin film is evaporated by heating in the atmosphere at 730°C, preferably tio~10°C for 2~300 seconds, preferably 70~10 seconds, more preferably 10~10 seconds. It may be removed and then solidified, or hot air may be blown within the above range. This makes it possible to change the thickness of the surface dense layer in the structure of the asymmetric membrane, making it possible to easily control the separation performance of the resulting membrane.

凝固液としてはドープ液との相溶性が良好なものであっ
て、コポリイミド又はコポリアミドイミドとの溶解性が
低いもの(貧溶媒)の中から適宜選ぶことができる。例
えば、水、グロパノール等の低級アルコール類、アセト
ン等のケトン類、エチレンクリコール等ノエーテル類、
トルエン等の芳香族類あるいはこれらの混合液等が挙げ
られるが、経済性、公害等の問題から水が好適に用いら
れる。
The coagulating liquid can be appropriately selected from those having good compatibility with the dope liquid and having low solubility with the copolyimide or copolyamide-imide (poor solvent). For example, water, lower alcohols such as glopanol, ketones such as acetone, noethers such as ethylene glycol,
Examples include aromatics such as toluene and mixtures thereof, but water is preferably used from the viewpoint of economy and pollution.

凝固液の温度は0〜ioo℃、好ましくはθ〜SO℃の
範囲が好適に用いられる。
The temperature of the coagulating liquid is preferably in the range of 0 to ioo°C, preferably θ to SO°C.

液状・あるいは溶媒の一部を蒸発させた薄膜を凝固する
方法は公知のどのような方法であってもよい。例えば、
薄膜をその薄膜を形成されている基材とともに前記凝固
液中忙浸漬する方法、又は中空糸の薄膜のみで凝固液中
に浸漬する方法等が挙げられる。
Any known method may be used to solidify the thin film in liquid form or in which a portion of the solvent has been evaporated. for example,
Examples include a method in which the thin film is immersed together with the substrate on which the thin film is formed in the coagulating solution, or a method in which only the hollow fiber thin film is immersed in the coagulating solution.

凝固した湿潤膜は風乾又はアルコール類・炭化水素類に
浸漬し、溶媒、凝固液を低濃度にしておくことが好まし
い。
It is preferable that the coagulated wet film is air-dried or immersed in alcohols/hydrocarbons to maintain a low concentration of the solvent and coagulating liquid.

次いでコポリイミド膜の場合はjO〜す00℃、好まし
くは100〜3SO℃の範囲、コポリアミドイミド膜の
場合はSO〜、330℃、好ましくは100〜SOO℃
の範囲で加熱乾燥して溶媒及び含浸した凝固液等を除去
するが、その方法としては、例えば、常温よりしだいに
温度を上昇させていってもよいし、各温度範囲内で複数
段階で温度上昇させてもよい。あまシ急数に加熱乾燥を
行うと発泡が生じたシして好ましくない。
Next, in the case of a copolyimide film, the range is from jO to 00°C, preferably from 100 to 3SO°C, and in the case of a copolyamide-imide film, the temperature is from SO to 330°C, preferably from 100 to SOO°C.
The solvent and the impregnated coagulation liquid are removed by heating and drying within a range of May be increased. If heat drying is carried out too quickly, foaming may occur, which is not preferable.

前述の凝固した湿潤膜の加熱乾燥温度、時間及び凝固膜
厚は溶媒の種類、凝固した湿fr4膜中の蒸発成分量な
どによって変わるものであるので各具体例で適宜法めれ
ばよい。
The above-mentioned heating drying temperature, time, and coagulation film thickness of the coagulated wet film vary depending on the type of solvent, the amount of evaporated components in the coagulated wet fr4 film, etc., and may be determined as appropriate for each specific example.

上記の加熱、乾燥を行わない膜においても、分離膜とし
て使用することは可能であるが、上記の加熱、乾燥を行
うことKよシ、各種ガスの分離性能及び引張膜強度、引
張シ破断伸度等の膜強度が格段に改善される。
Although it is possible to use the membrane without heating and drying as described above as a separation membrane, it is not recommended to perform the heating and drying as described above. The film strength, such as heat resistance, is significantly improved.

この発明の方法ではドープ液中のコポリイミド又はコポ
リアミドイミドの濃度、溶媒の種類、溶媒の組合せ、膨
潤剤の添加、蒸発条件、凝固剤の種類及び凝固条件等に
より気孔率や孔の形状、緻密層の厚みを容易にかえるこ
とが出来る。
In the method of the present invention, the porosity and pore shape are determined by the concentration of copolyimide or copolyamideimide in the dope solution, the type of solvent, the combination of solvents, the addition of a swelling agent, the evaporation conditions, the type of coagulant, the coagulation conditions, etc. The thickness of the dense layer can be easily changed.

しかし、N、N−ジメチルホルムアミド、ジメチルアセ
トアミド、N−メチルピロリドン等の極性有′機溶媒に
常温で溶解しているコポリイミド又はコポリアミドイミ
ドは膨潤剤の添加なしでも水等の凝固剤中にて容易に多
孔質構造が得られるため特に膨潤剤を添加しなくてもよ
い。
However, copolyimide or copolyamideimide dissolved in a polar organic solvent such as N,N-dimethylformamide, dimethylacetamide, or N-methylpyrrolidone at room temperature can be dissolved in a coagulating agent such as water without adding a swelling agent. Since a porous structure can be easily obtained, there is no need to add a swelling agent.

コポリイミド及び/又はコポリアミドイミド分離膜の厚
さは約7〜JOOμ、よシ典型的にはコOμ〜100μ
の全体的厚さが好ましい。
The thickness of the copolyimide and/or copolyamide-imide separator membrane is about 7~JOOμ, typically about 0μ~100μ.
An overall thickness of is preferred.

本発明で気体とは、物質の種類に制限はなく例えば、酸
素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、
キセノン、ラドン、フッ淋塩素、臭素、−酸化炭素、二
酸化炭素、−酸化窒素、二酸化窒素、アンモ=7、二酸
化イオウ。
In the present invention, gas refers to any type of substance, including oxygen, nitrogen, helium, neon, argon, krypton,
Xenon, radon, fluorine, chlorine, bromine, carbon oxide, carbon dioxide, nitrogen oxide, nitrogen dioxide, ammonium 7, sulfur dioxide.

硫化水素、塩化水素、パラフィン系炭化水素、オレフィ
ン系炭化水素及びこれらの混合物等が挙げられる。
Examples include hydrogen sulfide, hydrogen chloride, paraffin hydrocarbons, olefin hydrocarbons, and mixtures thereof.

パラフィン系炭化水素は、飽和鎖式炭化水素、アルカン
またはメタン系炭化水素とも呼ばれ、炭素数が7のメタ
ン、−のエタン、3のプロパン、qのフリン、jのペン
タン、6のヘキサン。
Paraffin hydrocarbons are also called saturated chain hydrocarbons, alkanes or methane hydrocarbons, and include methane with 7 carbon atoms, ethane with -, propane with 3, furin with q, pentane with j, and hexane with 6.

7のへブタン、ざのオクタン等が好ましく挙げられる。Preferred examples include No. 7 hebutane and No. 7 octane.

炭素数が4IV上では直鎖のノルマル炭化水素のほかに
側鎖をもつ異性体も含まれる。
When the number of carbon atoms is 4IV, in addition to straight chain normal hydrocarbons, isomers with side chains are also included.

オレフィン系炭化水素は、二重結合をひとつ有し、不飽
和鎖式炭化水素、アルケンまたはエチレン系炭化水素と
も呼ばれ、炭素数が−のエチレン、3のプロピレン、q
のブチレン、jのアミジノ等が好ましく挙げられる。
Olefinic hydrocarbons have one double bond and are also called unsaturated chain hydrocarbons, alkenes or ethylene hydrocarbons, and include ethylene with a carbon number of -, propylene with a carbon number of -3, propylene with a carbon number of -3, and q
Preferred examples include butylene of , amidino of j, and the like.

本発明による水素の分離は、上記膜を使用し気体分離膜
を用いて分離する常法によりおこなうO 〔実施例〕 以下に実施例を挙げて本発明をさらに詳しく説明する。
Hydrogen separation according to the present invention is carried out by a conventional method of separating hydrogen using a gas separation membrane using the above membrane.Examples The present invention will be described in more detail with reference to Examples below.

製造参考例1 米国特許第370141jI号の実施例qに述べられて
いる手順を使用し3.J’、II、?’−ベンゾフェノ
ンテトラカルボン酸無水物とgOモル係のトリレンジイ
ソシアネート(コ、クーJ4性に約5θモルチとコ、6
−異性体約−〇モル係の混合物)及び20モルチの9.
q−ジフェニルメタンジイソシアネートを含む混合物よ
シ共重合ポリイミドを重合した。
Manufacture Reference Example 1 Using the procedure described in Example q of U.S. Pat. No. 3,701,41jI, 3. J', II,? '-benzophenone tetracarboxylic anhydride and tolylene diisocyanate (gO molar ratio of about 5θ molar ratio, 6
- a mixture of about -0 molar of isomers) and 20 molar of 9.
A copolyimide was polymerized from a mixture containing q-diphenylmethane diisocyanate.

重合溶媒i;[+N’Nジーチルホルムアミドな使用し
樹脂物濃度は一/重i−俤であった。
Polymerization solvent i; [+N'N dithylformamide The concentration of the resin used was 1/weight i-t.

このものを濃縮器にかけてコs t t %のコポリイ
ミド溶液を得た。
This was applied to a concentrator to obtain a copolyimide solution with a copolyimide concentration of s t %.

このコポリイミドは30℃において対数粘度(η1nh
)(ジメチルホルムアミド中0.!%)0.1.61/
lを有していた。
This copolyimide has a logarithmic viscosity (η1nh
) (0.!% in dimethylformamide) 0.1.61/
It had l.

製造参考例コ 予備乾燥した101の反応器にbly、I21!(1,
,10モルンのトリメリット酸無水物及びI32.qo
 It (o、tr oモル)のイン7タル酸を装入し
た。この反応器は温度計、凝m器、攪拌機及び窒素入口
を備えていた。
Production reference example I21! (1,
, 10 mol of trimellitic anhydride and I32. qo
It (o, tro mol) of in7talic acid was charged. The reactor was equipped with a thermometer, condenser, stirrer and nitrogen inlet.

jlの乾燥したびん中に/ 000.デみji(II、
0モ/l/)のII、?’−メチレ/ビスフェニルイン
シアネート(以下MDIと略称)をはかり取シ、次すで
q3ttmlのN−メチルピロリドン(以下NMPと略
称)をはかり取ってMDIを溶解した。このMDI溶液
を反応器に加え、次いでMDIをはかり取ったびんをす
すぐためにJt、joulのNMPを加えた。
In a dry bottle of jl / 000. Demiji (II,
II of 0 mo/l/)? '-Methylene/bisphenyl incyanate (hereinafter abbreviated as MDI) was weighed out, and then q3tml of N-methylpyrrolidone (hereinafter abbreviated as NMP) was weighed out to dissolve the MDI. This MDI solution was added to the reactor and then Jt, joul of NMP was added to weigh out the MDI and rinse the bottle.

1m j rpmの攪拌速度および窒素雰囲気の下でこ
の溶液を3時間qO分にわたってj、y℃から/70′
cまで加熱しさらに1時間3J分1tsq℃〜/り/’
Cに加熱した。このようにして繰り返し単4位の約to
モル係が の構造なMし繰り返し単位の約20モルチかの構造を有
するランダムコポリアミドイミドのIMFの23 if
%溶液が得られた。
The solution was stirred from j, y °C to /70' for 3 h qO min under a stirring speed of 1 m j rpm and a nitrogen atmosphere.
Heat to c and further 1 hour 3 J minutes 1tsq℃~/ri/'
It was heated to C. In this way, repeat the unit 4th place to
23 if IMF of a random copolyamideimide having a structure with a molar ratio of about 20 molar repeating units.
% solution was obtained.

このコポリアミドイミドの30℃における対数粘度(η
1nh) (’N−メチルピロリドン中、O,Sチ)は
0.403 dl/iであった。
The logarithmic viscosity (η
1nh) ('N-methylpyrrolidone, O, S) was 0.403 dl/i.

この溶液をメタノール中に加え、ポリマーを析出させた
後、/jO℃で3時間乾燥し、コポリアミドイミド粉末
を得た。得られたコポリアミドイミド粉末なN、y−ジ
メチルホルムアミドにて溶解し、17重量%の溶液とし
た。
This solution was added to methanol to precipitate a polymer, which was then dried at /jO°C for 3 hours to obtain a copolyamide-imide powder. The obtained copolyamide-imide powder was dissolved in N,y-dimethylformamide to form a 17% by weight solution.

実施例1 製造参考例1で得たコポリイミド溶液なN、1(−ジメ
チルホルムアミドで希釈し17重量%のコポリイミド溶
液を調整し、7μmのミリポアフィルタ−によl)濾過
精製した。このドープ液を室温でガラス板上に流延し、
ドクターナイフで均一な厚さく / 41 nil、1
m11=コjμm)の薄膜を形成し、直ちに10℃の水
の中にガラス板ごと浸漬した。10分間放置後、剥離し
た膜、を金属棒に固定しjO℃の水の中で30分間放置
した。ざらに室温で約1時間放置後−00℃、10分間
加熱、乾燥し、溶媒を除去して約1410μの厚さのコ
ポリイミド膜を製造した。
Example 1 The copolyimide solution obtained in Production Reference Example 1 was diluted with -dimethylformamide to prepare a 17% by weight copolyimide solution, and purified by filtration using a 7 μm Millipore filter. This dope solution was cast on a glass plate at room temperature,
Uniform thickness with a doctor knife / 41 nil, 1
A thin film of m11=Jμm) was formed, and the glass plate was immediately immersed in water at 10°C. After being left for 10 minutes, the peeled film was fixed on a metal rod and left in water at 0° C. for 30 minutes. After being left at room temperature for about 1 hour, it was heated and dried at -00 DEG C. for 10 minutes to remove the solvent, producing a copolyimide film with a thickness of about 1410 .mu.m.

このコポリイミド膜を用いてガス透過性能を測定したと
ころ、表7の結果を得た。
When gas permeation performance was measured using this copolyimide membrane, the results shown in Table 7 were obtained.

表    l 実施例コ 製造参考例−で得たコポリアミドイミド溶液を用いたこ
と以外は実施例/と同様にしてコポリアミドイミド膜を
製造し、ガス透過性能を測定したところ、水素の透過速
度はj、コ×10→d(sTP)/7・5ec−cIr
LHJi’、窒素の透過速度は? 、OX 10−龜(
STP)/cIIl・sea−mH&で6D、水素の透
過速度と窒素の透過速度の比はjざであった。
A copolyamide-imide membrane was manufactured in the same manner as in Example except that the copolyamide-imide solution obtained in Example 1 was used, and the gas permeation performance was measured. The hydrogen permeation rate was j, ko×10 → d(sTP)/7・5ec-cIr
LHJi', what is the nitrogen permeation rate? , OX 10-Ku(
STP)/cIIl·sea-mH&, the ratio of the hydrogen permeation rate to the nitrogen permeation rate was j.

実施例3 製造参考例/に従ってコポリイミド溶液を製造した。Example 3 A copolyimide solution was produced according to Production Reference Example.

中空糸製造用ノズルから上記コポリイミド溶液を一定流
量で押出し、同時に芯液として水とジメチルホルムアミ
ドをj O/J O(重量比)の割合で混合した液を一
定流量で押出した。形成された中空糸状体を−mのエア
ギャップをとって水からなる凝固浴中へ導き、10秒間
浸漬したのち一定速度brn1分で巻き取った。このあ
と水中Kj分間浸漬し、−昼伎風乾した。さらにこのあ
と、中空糸の両端を金属棒に固定し、320℃で30分
間熱処理を行つ之。この中空糸ヲ用いて水素! ! 1
101%、 エチレンダ!m01チからなる混合ガスの
透過テス)1行った。高圧側3々/ di G 、低圧
側は大気圧開放。温度はJj’C0高圧側、低圧側、そ
れぞれのガス組成は、ガスクロマトグラフによシ測定し
た。
The copolyimide solution was extruded at a constant flow rate from a hollow fiber manufacturing nozzle, and at the same time, a liquid mixture of water and dimethylformamide at a ratio of j O/J O (weight ratio) as a core liquid was extruded at a constant flow rate. The formed hollow fibers were introduced into a coagulation bath of water with an air gap of -m, immersed for 10 seconds, and then wound up at a constant speed of 1 minute. Thereafter, it was immersed in water for Kj minutes and air-dried. Furthermore, after this, both ends of the hollow fiber were fixed to metal rods, and heat treatment was performed at 320° C. for 30 minutes. Hydrogen using this hollow fiber! ! 1
101%, Elenda! A permeation test of a mixed gas consisting of m01 was conducted. High pressure side 3/di G, low pressure side open to atmospheric pressure. The temperature was measured on the Jj'C0 high-pressure side and the low-pressure side, and the respective gas compositions were measured using a gas chromatograph.

透過テストの結果は、水素透過速度コ、lIX/(7−
Iall (8TP)/i−5ea−c!rIHy、エ
チレン透過速度3.2×/ 0 ’cj (BTP )
/aA・e e c ・cmHyであシ、水素透過速度
とエチレン透過速度の比は弘6であった。
The results of the permeation test were as follows: hydrogen permeation rate co, lIX/(7-
Iall (8TP)/i-5ea-c! rIHy, ethylene permeation rate 3.2×/0'cj (BTP)
/aA·e e c ·cmHy, and the ratio of hydrogen permeation rate to ethylene permeation rate was 6.

〔発明の効果〕〔Effect of the invention〕

本願発明によると、耐熱性が高く、室温で紡糸等の成形
が可能な素材を用いて、気体から有利に水素を分離でき
るため、工業的に有用である。
According to the present invention, hydrogen can be advantageously separated from gas using a material that has high heat resistance and can be formed by spinning or the like at room temperature, and is therefore industrially useful.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼……( I ) の繰り返し単位で表わされる構造を有するコポリイミド
であつて、上記繰り返し単位の 10〜30モル%はRが▲数式、化学式、表等がありま
す▼ 表わすものであり、上記繰り返し単位の90〜70モル
%はRが、 ▲数式、化学式、表等があります▼及び/又は▲数式、
化学式、表等があります▼を表わすものであるコポリイ
ミド、及び/又は繰り返し単位の 90〜70モル%が式(II) ▲数式、化学式、表等があります▼…(II) で表わされる構造を有し、かつ繰り返し単位の10〜3
0モル%が式(III) ▲数式、化学式、表等があります▼…(III) で表わされる構造を有するコポリアミドイミドを主たる
構成材料とする非対称構造の膜を用いて気体から水素を
分離することを特徴とする水素の分離方法。
(1) General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...A copolyimide having a structure represented by repeating units of (I), in which 10 to 30 mol% of the above repeating units are R. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ It represents, and 90 to 70 mol% of the above repeating units are R.
There are chemical formulas, tables, etc.▼Copolyimide that represents ▼ and/or 90 to 70 mol% of the repeating units are formula (II) ▲There are numerical formulas, chemical formulas, tables, etc.▼…(II) and repeating units of 10 to 3
0 mol% is formula (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III) Hydrogen is separated from gas using a membrane with an asymmetric structure whose main constituent material is copolyamideimide with the structure represented by A hydrogen separation method characterized by the following.
(2)水素以外の気体の主たる成分がパラフィン系炭化
水素、オレフィン系炭化水素又はこれらの混合物である
ことを特徴とする特許請求の範囲第1項に記載の分離方
法。
(2) The separation method according to claim 1, wherein the main component of the gas other than hydrogen is a paraffinic hydrocarbon, an olefinic hydrocarbon, or a mixture thereof.
JP61237775A 1986-10-06 1986-10-06 Hydrogen separation method Expired - Lifetime JPH085961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237775A JPH085961B2 (en) 1986-10-06 1986-10-06 Hydrogen separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237775A JPH085961B2 (en) 1986-10-06 1986-10-06 Hydrogen separation method

Publications (2)

Publication Number Publication Date
JPS6390533A true JPS6390533A (en) 1988-04-21
JPH085961B2 JPH085961B2 (en) 1996-01-24

Family

ID=17020248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237775A Expired - Lifetime JPH085961B2 (en) 1986-10-06 1986-10-06 Hydrogen separation method

Country Status (1)

Country Link
JP (1) JPH085961B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952319A (en) * 1986-12-15 1990-08-28 Mitsubishi Kasei Corporation Process for separating liquid mixture
US5055116A (en) * 1989-05-22 1991-10-08 Hoechst Celanese Corp. Gas separation membranes comprising miscible blends of polyimide polymers
US5272264A (en) * 1989-05-22 1993-12-21 Mitsubishi Kasei Corporation Process for preparation of crystalline oxytitanium phthalocyanine
WO2005080487A1 (en) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha Porous film, process for producing the same, and lithium-ion secondary cell made with the same
CN108137780A (en) * 2015-09-25 2018-06-08 亨斯迈先进材料许可(瑞士)有限公司 The preparation of polyamide-imide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022902A (en) * 1983-07-15 1985-02-05 Mitsubishi Chem Ind Ltd Separation membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022902A (en) * 1983-07-15 1985-02-05 Mitsubishi Chem Ind Ltd Separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952319A (en) * 1986-12-15 1990-08-28 Mitsubishi Kasei Corporation Process for separating liquid mixture
US5055116A (en) * 1989-05-22 1991-10-08 Hoechst Celanese Corp. Gas separation membranes comprising miscible blends of polyimide polymers
US5272264A (en) * 1989-05-22 1993-12-21 Mitsubishi Kasei Corporation Process for preparation of crystalline oxytitanium phthalocyanine
WO2005080487A1 (en) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JPWO2005080487A1 (en) * 2004-02-23 2007-10-25 東洋紡績株式会社 Porous membrane, method for producing the same, and lithium ion secondary battery using the same
CN108137780A (en) * 2015-09-25 2018-06-08 亨斯迈先进材料许可(瑞士)有限公司 The preparation of polyamide-imide

Also Published As

Publication number Publication date
JPH085961B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
JP2635051B2 (en) Irregular gas separation membrane
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
JPH09136985A (en) Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
JPH04222832A (en) Polyimide and gas separation material made by using it
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JP2016503448A (en) Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer
JPH05506054A (en) Polybenzazole polymers containing indane moieties
JPS6390533A (en) Separation of hydrogen
JPS6274410A (en) Production process for separating membrane
JPS6391122A (en) Separation of steam
JPS6274411A (en) Production process for separating membrane
JP2004502850A (en) Membrane and its use
JPS5837842B2 (en) Manufacturing method of ultrafiltration membrane
JPS62114628A (en) Separation membrane
JPS63209730A (en) Process for separating steam
JPS63175116A (en) Copolyamide-imide hollow yarn and production thereof
JPS62114611A (en) Method for producing separation membrane
WO1994004253A2 (en) Polyazole polymer-based membranes for fluid separation
JPH0685861B2 (en) Dope liquid for separation membrane production
US4968470A (en) Asymmetric permselective polyacetylene membranes and process for the formation thereof
JP2701357B2 (en) Casting dope for film formation
JP2827212B2 (en) Polyamideimide separation membrane
JPS5850121B2 (en) Microporous permeable membrane
JPH0693985B2 (en) Manufacturing method of polyimide two-layer hollow fiber membrane
JPH0970523A (en) Polyimide separation membrane and production of polyimide hollow fiber membrane